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Abstract—This paper proposes an application of surface elasticity 
theory in the analysis of contact problem at nano-scale. The 
Fourier integral transform method is adopted to derive the 
fundamental solutions for contact problem with surface tension 
effects. As a special case, the deformation induced by normal 
triangle distribution force is discussed in detail. The results 
indicate some interesting characteristics in nano-mechanics, 
which are distinctly different from those in classical contact 
problem. The results show that the hardness of material depends 
strongly on the surface tension.  
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I. INTRODUCTION  
The surface of solids is a special region with very small 

thickness (a few times of atom-spacing). Since the equilibrium 
lattice spacing in the surface is different from that in the bulk, 
surface effect appears. For solids with large characteristic 
dimensions, the volume ratios of surface region to the bulk 
material is small, the effect of surface then can be neglected 
because of its relatively tiny contribution. However, for micro-
nano solids with large surface-to-bulk ratio the significance of 
surfaces is likely to be important. Form the viewpoint of 
continuum mechanics, this difference can be described by such 
concepts as surface tension, surface energy, and surface 
constitutive relations [1]. This is extremely true for nano-scale 
materials or structures. In such cases, the surface residual 
tension plays a critical role and thus has been adding its appeal 
to many researchers. For example, Miller and Shenoy [2] first 
probed the size-dependent elastic properties of nanoplates and 
beams. Hang et al. [3] explained the size dependent 
phenomenon by the strain gradient continuum theory. Sharma 
et al. [4] and Sharma and Gantin [5] studied the effect of 
surface/interfacial energy on the Eshelby’s inclusion and 
inhomogeneity problems. Dingreville et al. [6] investigated the 
surface free energy and its effect on elastic behavior of the 
nanosized particles, wires, and films. There are a lot of work 
regarding the surface/interface energy effects on the 
nanostructures and solids, and we can only include a small part 
of them here. For more recent developments in this field, the 
readers can refer to a review article by Wang et al. [7]. 

To study the mechanical behavior of an immediate 
neighborhood of material surfaces through a continuum-based 
model, Gurtin and Murdoch [8, 9] developed a mathematical 
framework, known as the theory of surface elasticity. In the 
study of nano-scale problems, all material constants appearing 
in that constitutive model were commonly calibrated with data 
obtained from either experimental measurements [10] or 
atomistic simulations [2, 11]. Therefore, the surface effect has 
been widely adopted to investigate the mechanical phenomena 

at nano-scale. Wang et al. [12] studied the response of a half-
plane subjected to normal pressures with constant residual 
surface tension. Long and Wang [13] studied the effect of the 
residual surface stress on the two dimensional Hertz contact 
problem, and later Long et al. [14] generalized their work to the 
three dimensional case. Wang [15] derived the general 
analytical solution of nano-contact problem with surface effects 
by using the complex variable function method. In this paper, 
Fourier integral transform method is used to solve the non-
classical boundary value problems with surface tension effects. 

II. BASIC EQUATIONS 
In the absence of body force, the equilibrium equations, 

constitutive law, and geometry relations in the bulk are as 
follows 
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where G and µ  are the shear modulus and Poisson’s ratio of 

the bulk material, ijσ and ijε  are the stress tensor and strain 
tensor in the bulk material, respectively. Throughout the paper, 
Einstein’s summation convention is adopted for all repeated 
Latin indices (1, 2, 3) and Greek indices (1, 2). 

The strain tensor is related to the displacement vector iu  by 
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On the surface, the generalized Young-Laplace equation, 
surface constitutive relation and strain-displacement 
relationship can be expressed as 
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where in  denotes the normal to the surface, βακ  the curvature 

tensor of the surface, s
αβσ  and s

αβε  the surface stress and 

surface strain tensor, sτ  is the residual surface tension under 
unstrained conditions. 

III. GENERAL SOLUTIONS 
Now we consider a material occupying the upper half-

plane 0z >  , we refer to a Cartesian coordinate system (o-xyz), 
where the x axis is along the surface and the z axis 
perpendicular to the surface. It is assumed that the material is 
subjected to a normal triangle distribution force ( )p x  over the 

region x a≤ . While the normal forces maximum 0p  at the 
point O. The contact is assumed to be frictionless. 

After For the considered plane problem, the equilibrium 
equations and Hooke’s law in the bulk reduce to 
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The strains are related to the displacements by 
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which satisfy the following compatibility condition 
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As in classical theory of elasticity, the Airy stress function 
( , )x zχ  is defined by 
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Then the equilibrium equations in Eq. (7) are satisfied 
automatically, and the compatibility equation in Eq. (8) 
becomes 
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To solve the boundary value problem, the Fourier integral 
transformation method is adopted to the coordinate x. Then, the 
Airy stress function ( , )x zχ  and its Fourier transformation 

( , )zχ ξ  can be expressed as 
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Substituting Eqs. (10) into Eq. (9) and considering the 
condition that the stresses vanish at infinity, one obtains 

( )( , ) .zz A Bz e ξχ ξ −= +             (11) 

where A and B are generally functions of ξ  as yet to be 
determined by boundary conditions. 

Substituting Eq. (11) and Eqs. (10) into Eq. (9), the stresses 
can be written as 
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By substituting the stresses into the Eq. (9) and using Eqs. 
(10), the displacements are derived as 
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IV. ELASTIC SOLUTION UNDER A NORMAL TRIANGLE 
DISTRIBUTION FORCE 

As a particular example, let us consider the effect of a 
normal triangle distribution force ( )p x  over the 

region x a≤ , while remainder of the boundary 0y =  being 
unstressed. 

0( ) ( ),pp x a x
a

= −  x a≤           (14)
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Due to the second term in Eq. (4) indicates a variation of 
the surface energy density with respect to elastic strain, which 
is related to the stretching or compressing the atoms in the 
surface to accommodate to the bulk phase. If the change of the 
atomic spacing in deformation is infinitesimal, the contribution 
from the second term to the surface stresses is negligibly small 
compared to the residual surface tension [8]. In what follows, 
we keep only the first term in Eq. (4). Then, the surface stresses 
are given by  

s s
βα βασ τ δ=

                             
 (15) 

In this case, the boundary conditions (3) on the contact 
surface ( 0z = ) are simplified to 
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Substituting Eqs. (16) into Eqs. (12), one obtains 
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On the surface, the radius of curvature due to deformation 
is given by  
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By substituting Eqs. (17) and (18) into the surface condition 
Eqs. (16), ( )A ξ  is determined by 
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Substituting Eq. (21) into Eqs. (12) and (13), the stresses 
component and displaces component are obtained as 
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It is seen, when 0s = , that is, the surface influence is 
ignored in Eqs. (22), the stresses of the half-plane are 
consistent with those in the classical elastic results [16].  

On the contact surface 0z = , the normal stress is given by 
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If the normal displacement is w  specified to be zero at a 
distance 0r  on the contact surface, that is, 0( ,0) 0w r = , the 
displacement on the surface is derived as 
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As show in Figure 1, the distribution of the normal stress 
zzσ  that is predicted by the classical theory experiences a 

singularity at the loading boundary and does not change 
smoothly; thus, this result appears unreasonable. The results 
that take into account the residual surface tension give a 
smooth distribution of the stress zzσ  and overcome the 
singularity at the loading boundary x a= ± . If the residual 
surface tension is ignored (s/a=0), the values of zzσ  reduce to 
the classical values.  
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FIGURE I. THE DISTRIBUTION OF CONTACT NORMAL STRESS zzσ   
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Due to the different residual surface stress value, indent 
depth is plotted in Figure 2 with ( )2 1 /K v Gπ= − , which 
also shows that the slope of the deformed surface for a>0 is 
continuous everywhere. It is also found the indent depth 
decreases with the increase of residual surface tension.  
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FIGURE II. THE DISTRIBUTION OF SURFACE INDENTATION w  

UNDER NORMAL TRIANGLE DISTRIBUTION LOAD 

To elucidate the size dependence of hardness on indenter 
size in nanoindentation, the following parameter is H  defined 
by 
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To stand for the hardness of material subjected to the 
normal triangle distribution load. The variation of  0/H H  
with respect to the indenter size a is shown in Figure 3, 
where ( )0 / 1H G vπ= − . The numerical results illustrate that 
the size effect becomes remarkable. At the nano-scale, the 
smaller the contact region, the larger the contact stiffness 
compared with the classical result.  
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FIGURE III. THE VARIATION OF HARDNESS 

0/H H  WITH RESPECT 

TO THE CONTACT ZONE SIZE 

V. CONCLUSIONS 
In this paper, we consider the two-dimensional contact 

problem in the light of surface elasticity theory. The general 
analytical solution is derived by using the Fourier integral 
transform method. For a particular loading case of normal 
triangle distribution force, the results are analyzed in detail and 
compared with the classical linear elastic solutions. A series of 
theoretical and numerical results show that the surface 
elasticity theory illuminates some interesting characteristics of 
contact problems at nano-scale, which are distinctly different 
from the classical solutions of elasticity without surface effects. 
Therefore the effects of surface tension should be considered 
for nanocontact problems. 
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