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Abstract—Algebraic multigrid is often used as the preconditioner 
in Krylov subspace iterations to solve general sparse linear 
systems, and the aggregation based version is one of the most 
popular, for its cheap complexity to setup. In this paper, when 
this version used as the preconditioner, two schemes are provided 
to improve its implementation. The first is to remove the trivial 
computation in the smoothing for zero initial vectors before the 
restriction process. For this case, part of the computation is 
related to the multiplication of an operator to a zero vector, and 
then it can be omitted without any changes to the derived result. 
The second is to reconstruct the restriction process, which can 
reduce the computation complexity at the cost of a little more 
storage. The analyses and the numerical experiments for the 
solution of sparse linear systems from a model partial differential 
equation with preconditioned conjugate gradients show that the 
provided schemes can reduce the solution time significantly. The 
improvements are much more significant when more nodes are 
aggregated each time, and are more significant to W-cycle than to 
V-cycle and K-cycle. 
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I. INTRODUCTION 
The solution of sparse linear systems is the kernel of many 

scientific and engineering computations and often takes a long 
time. Thus it attracts many attentions and up to now, a lot of 
methods have been developed. Among them, the so-called 
Krylov subspace iterations [1] and the multigrid methods [2] 
are two of the most efficient ones. The Krylov subspace 
methods are to seek an approximate solution in the Krylov 
subspace based on project schemes, which is very efficient due 
to some minimization properties. But the convergence rate is 
dependent on the distribution of the eigenvalues of the 
coefficient matrix. The narrower area they are distributed in, 
the faster the convergence rate will be. To improve the 
distribution, preconditioning techniques are often used, where a 
non-singular operator called the preconditioner is applied to the 
linear system to derive another with the same solution but with 
better eigenvalues distribution, and then the problem is 
converted to the solution of the newly derived system [1]. 

Multigrid is another of the most efficient methods to solve 
sparse linear systems, which is based on the complementation 
of two processes, smoothing and correction [2]. The residual 

vector related to the smoothing on the finer grid is restricted to 
a coarser level and the solution on this level is prolonged 
backed to correct the approximate solution on the finer level. 
For the smoothing can reduce the error components with 
relatively higher frequencies efficiently, and error components 
with lower frequencies can be more efficiently processed on 
coarser grids, the whole convergence rate of the multigrid can 
be guaranteed only if the coefficient matrix satisfies some 
property. In fact, many analyses and experiments show that for 
linear systems with good properties, the multigrid methods 
have the potential optimal convergence. But its robustness is 
not very good when used alone. Therefore, it is often used as 
preconditioners of the Krylov subspace methods. 

Algebraic multigrid methods are often used for general 
sparse linear systems [3], where the construction of coarser 
grids, the linear systems on the coarser levels, the restriction 
and the prolong operators are all based on the coefficient 
matrix only. Among them, the aggregation based version is one 
of the most popular. In the classical implementation, the 
prolong operator depends solely on the selection of the coarser 
grid, leading to the simplicity for the construction and cheap 
complexity to the setup process [3]. Though the aggregation 
based multigrid methods are very popular, the focus is mostly 
on the selection of the coarser grids [4-8] and the cycle type of 
multigrid [5]. In reference [6], the prolong operator is focused 
on and it is smoothed to accelerate the convergence rate of the 
derived multigrid version. But up to now, little focus is on the 
efficient implementation. In this paper, when it is used as the 
preconditioner to the conjugate gradient iterations, we focus on 
the improvements to the implementation. 

In section II, the conjugate gradient with aggregation based 
multigrid as the preconditioner will be given, which is the basis 
for further description and analyses. The considered multigrid 
methods include the V-, W- and the K-cycles. The schemes to 
improve the implementation will be given in section III and 
some analyses and discussions will be provided here too. In 
section IV, some numerical experiments will be given to verify 
the effectiveness of the schemes and some conclusions will be 
drawn in section V. 
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II. CONJUGATE GRADIENT WITH AGGREGATION BASED 
ALGEBRAIC MULTIGRID AS THE PRECONDITIONER 

Without loss of generality, consider the following linear 
system of order n 

Ax=b,                                            (1) 

where A is a given symmetric positive definite matrix, b is a 
known vector, and x is the unknown solution. We can use the 
preconditioned conjugate gradient (PCG) iteration to solve (1), 
where it is converted to 

MAx=Mb,                                      (2) 

and the inner product (., .) in the conjugate gradient iteration is 
replaced by (., .)M

-1, defined by (x, y)M 
-1= (x, M-1y). Therefore, 

the preconditioner M should be symmetric positive definite too. 
The PCG algorithm [1] can be described as in figure I, where 
maxIts is the maximum number of iterations allowed and ε is a 
threshold to control the process. 

1. Set r(1) = b - Ax(1), z(1) = Mr(1) and s(1) = z(1). 
2. For j = 1, maxIts 
3.   Compute αj = (z(j), r(j)) / (As(j), s(j)). 
4.   Compute x(j+1) = x(j) + αj s(j). 
5.   Compute r(j+1) = r(j) - αj As(j), if || r(j+1) ||2 / ||b||2 < ε, then stop. 
6.   Compute z(j+1) = Mr(j+1). 
7.   Compute βj+1 = (z(j+1), r(j+1)) / (z(j), r(j)). 
8.   Compute s(j+1) = z(j+1) + βj+1s(j). 
9. Endfor 

FIGURE I.  ALGORITHM PCG(PRECONDITIONED CG) 

In this section, the aggregation based multigrid method [3] 
is used as the preconditioner M, which can be described as in 
figure II. For more details about the V-cycle, W-cycle and K-
cycle, we can refer to [3][5]. In figure II, m denotes the 
maximal number of levels allowed, l is the current level 
number. On level l, the solution is smoothed with Sl, and the 
corresponding residual vector r(l) = b(l) - Al x(l) is transferred to 
the coarser level l+1 through multiplication by (Pl+1,l)T from 
the left. On the (l+1)-th grid, algorithm MGprec is invoked 
again to derive the correction vector y(l+1), which includes step 
3 to 23 in figure II. It is transferred back to the l-th grid, to 
correct the approximation x(l). And then a post smoothing is 
used to x(l) with the smoother Sl

T. 

When computing the correction, there are four branches. If 
the number of levels reaches m, or the linear system is small 
enough, the correction is on the coarsest level and can be 
solved with a certain method, either with a direct solution, or 
with an iterative process. Otherwise, the correction is 
computed with the algorithm MGprec recursively, including 
three options V-, W-, and K-cycle. In algorithm MGprec, the 
grid hierarchy, Al, Pl,l+1, and Sl are unchanged with the 
conjugate gradient iteration. They can be re-computed and put 
into a set-up process beforehand, and be used directly in latter 
iterations. 

For aggregation based algebraic multigrid, there are 
several schemes to determine the grid hierarchy. One of them 
is provided by Kim et al., which aggregates two points each 
time at most [4]. To reduce the number of levels, it can be 
repeated two or several times each time [5]. Others include the 
scheme based on strong coupling [6], the algorithm based on 
graph partitioning for two-grid method [7], the scheme 
according to seven known geometry structures [8], and the 
scheme based on subsets grouping [8]. The researches in 
reference [9] show that, among these schemes, the two-point 
scheme and its variants with two or three recursions are the 
most efficient in most cases. Therefore, these three 
aggregations are used in this paper. 

The prolonger Pl,l+1 interpolates a vector on level l+1 to 
another on level l. When the l-th and the (l+1)-th level grid are 
determined, the basic construction scheme can be used to 
define Pl,l+1. The derived prolonger is related to constant 
interpolation. To improve the performance of the multigrid 
method, it can be smoothed too, to derive a new prolonger 
related to more advanced interpolations [6]. In this paper, the 
basic scheme is considered. In this scheme, if there are nl 
nodes on the l-th level, Pl,l+1 is an nl by nl+1 matrix. If a node i 
in the l-th level belongs to the j-th aggregation, the entry of 
Pl,l+1 on the i-th row and the j-th column is 1. All entries not 
equal to 1 are zeros. When Pl,l+1 is determined, Al+1 is defined 
by Al+1 = (Pl,l+1)T Al Pl,l+1. 

1. Compute x(l) = Sl(x(l), b(l)). 
2. Compute r(l+1) = (Pl,l+1)T

 (b(l) - Al x(l)). 
3. If (l=m-1 or the order of Al+1 is small enough) then 
4.   Compute x(l+1) = (Al+1)-1 r(l+1). 
5. Else 
6.   Set c(l+1)=0 and c(l+1) = MGprec(c(l+1), r(l+1), Al+1, l+1). 
7.   If V-cycle then 
8.     Set y(l+1) = c(l+1). 
9.   Else if W-cycle then 
10.    Compute s(l+1) = r(l+1) - Al+1 c(l+1). 
11.    Set y(l+1)=0 and y(l+1) = MGprec(y(l+1), s(l+1), Al+1, l+1). 
12.  Else if K-cycle then 
13.    Compute v(l+1) = Al+1c(l+1), ρ1=(c(l+1), v(l+1)) and α1=(c(l+1), r(l+1)). 
14.    Compute s(l+1) = r(l+1) – (α1/ρ1) v(l+1). 
15.    If ||s(l+1)||2 ≤ t ||r(l+1)||2 then 
16.      y(l+1) = (α1/ρ1) c(l+1). 
17.    Else 
18.      Set d(l+1)=0 and d(l+1) = MGprec(d(l+1), s(l+1), Al+1, l+1). 
19.      Compute w(l+1) = Al+1d(l+1), γ=(d(l+1), v(l+1)) and β=(d(l+1), w(l+1)). 
20.      Compute α2 = (d(l+1), s(l+1)) and ρ2 = β - γ2/ρ1. 
21.      Compute y(l+1) = (α2/ρ2) d(l+1) + (α1/ρ1 - γα2/(ρ1ρ2)) c(l+1). 
22.    Endif 
23.  Endif 
24.  Compute x(l) = x(l) + Pl,l+1y(l+1). 
25.  Compute x(l) = Sl

T(x(l), b(l)). 
26. Endif 

FIGURE II.  ALGORITHM x(l) = MGprec(x(l), b(l), Al, l) 

On the l-th level, once the sparse linear system is given, we 
can denote it as Al x(l) = b(l). Two kinds of smoothers are 
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frequently used [3]. One is the Jacobi smoothing. For this case, 
we have 

x(l): = Dl
-1{b(l) – (Al –Dl) x(l)},                         (3) 

where Dl is a matrix with Dl(i,i)=Al(i,i) for i=1 to nl and all 
others zero. The other is the Gauss-Seidel smoothing. For this 
case, we have 

x(l): = (Dl +Ll) -1{b(l) – (Al – Dl –Ll) x(l)},                  (4) 

where Ll is a matrix, with Ll(i,j)=Al(i,j) for j=1 to i-1 and i=1 to 
nl. All other entries of Ll are zero. 

Therefore, in figure II, when Jacobi and Gauss-Seidel 
smoothing are used, step 1 can be detailed as (3) and (4) 
respectively. For Al – Dl, Dl + Ll and Al – Dl – Ll are the non-
diagonal part, the lower triangular part and the strictly upper 
triangular part of Al respectively, if CSR or MSR storage 
format [1] is used for matrix Al, they can be accessed directly 
from the data structures for Al in the implementation. Of 
course, these matrices can be stored independently too, which 
is beneficial to the computation performance. 

Correspondently, for Jacobi and Gauss-Seidel smoothing, 
step 25 in figure II can be described as the following formulas 
respectively 

x(l): = Dl
-T{b(l) – (Al –Dl)T x(l)},                          (5) 

x(l): = (Dl +Ll) -T{b(l) – (Al – Dl –Ll) T x(l)}. 

III. TWO SCHEMES TO IMPROVE THE IMPLEMENTATION OF 
AGGREGATION BASED MULTIGRID METHODS 

In this section, two schemes will be considered to improve 
the implementation of algorithm MGprec described in figure II. 
Firstly, for algorithm MGprec is only used as the 
preconditioner of PCG, where the input vector x(1) to MGprec 
is a given vector. Only if it is invariant to the PCG iterations, 
(A1–D1)x(1) and (A1–D1–L1)x(1) can all be recomputed in the 
setup. At the same time, for l > 1, it is clear that the input 
vector x(l) to MGprec is always zero, thus the computation of 
(Al –Dl) x(l) and (Al – Dl –Ll) x(l) are not required at all. 

In this paper, we consider the special case where the input 
vector x(1) to MGprec is zero too. For this case, the formula (3) 
and (4) can be simplified into 

x(l): = Dl
-1b(l),                                              (7) 

x(l): = (Dl +Ll)-1b(l),                                      (8) 

respectively. This means that the computation complexity 
of the pre-smoothing can be reduced significantly. For 
convenience, in the following context, the number of nonzero 
in a matrix B is denoted as nnz(B). For Jacobi smoothing, the 

number of floating operations is reduced from (2 nnz(Al) – nl) 
to nl. For Gauss-Seidel smoothing, the value is reduced from 
(2 nnz(Al) – nl) to (2 nnz(Ll) + nl). 

The second scheme is to reconstruct the restriction process, 
that is, step 2 in figure II. It can be seen that the computation 
r(l+1) = (Pl,l+1)T

 (b(l) – Al x(l)) is equivalent to 

r(l+1) = (Pl,l+1)T
 b(l) – ((Pl,l+1)TAl) x(l).                       (9) 

If we denote Bl+1,l=(Pl,l+1)TAl, it is known that it is a nl+1 by 
nl matrix, and (9) can be rewritten as 

r(l+1) = (Pl,l+1)T
 b(l) – Bl+1,l x(l).                         (10) 

For Pl,l+1 and Al are both determined in the setup, Bl+1,l can 
be recomputed too. Then the number of float operations of 
step 2 in figure II can be improved approximately from 2 
nnz(Al) + nl(k-1)/k to 2 nnz(Bl+1,l) + nl(k-1)/k, where k is the 
number of nodes aggregated each time on the average. Only if 
the number of non-zeros of matrix Bl+1,l is smaller than that of 
Al, the reformulation is profitable. 

On the other hand, (Pl,l+1)T is an nl+1 by nl matrix, for a 
node i in level l+1, if it relates to the aggregation of nodes i1, 
i2, …, ij in level l, for the i-th row, the entries in these columns 
are 1, and others 0. From the definition of aggregations, there 
is no joint between different aggregations, which means that in 
each column of (Pl,l+1)T, there is only one non-zero element 1, 
and all the others are 0. Therefore, when computing the matrix 
Bl+1,l =(Pl,l+1)TAl, the i-th row is derived from the sum of the i1-
th, the i2-th, …, and the ij-th row of matrix Al, and each row of 
Al is used only once. Therefore, if the non-zero structure of a 
vector v is denoted as nz(v), nz(Bl+1,l,i*) is equal to the union of 
nz(Al, k*), k = i1, i2, …, ij, where Bl+1,l,i* is the i-th row of Bl+1,l, 
and Al, k* is the k-th row of Al, that is, 

nz(Bl+1,l,i*) = ∪{k ∈ i1, i2, …, ij: nz(Al, k*)}.           (11) 

While the number of non-zeros in Bl+1,l is equal to the sum 
of |nz(Bl+1,l,i*)| for i=1,2,…,nl+1, we can deduce that 

nnz(Bl+1,l) = ∑|nz(Bl+1,l,i*)| 

                 ≤ ∑ ∑{k ∈ i1, i2, …, ij: |nz(Al, k*)|} = nnz(Al), 

that is 

nnz(Bl+1,l) ≤ nnz(Al).                                (12) 

This means that the number of non-zeros of matrix Bl+1,l is 
actually smaller than that of Al, so this reconstruction is more 
efficient than the original version. 

IV. NUMERICAL EXPERIMENTS 
In this section, all the experiments are performed on a 

processor of Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz 
(cache 20480 KB). The operating system is Linux version 
2.6.32-431.el6.x86_64 and the compiler is Intel FORTRAN 
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Version 15.0.0.090. When algorithm PCG is used to solve 
linear systems, the initial approximation is selected as zero all 
the time and ε is selected as 1E-10. In multigrid method, the 
linear system on the coarsest level is solved with ILU(0) 
preconditioned CG and ε is selected as 1E-10 too. 

Experiments are done for discrete linear systems derived 
from a 3-D model partial differential equations with finite 
difference method. The PDE is 

– ∂2u/∂x2 – ∂2u/∂y2 – ∂2u/∂z2 = f,                       (13) 

where x, y, z ∈ (0,1) and the function f and the boundary 
values are given from a true solution u=1. There are n+2 
points are selected in each dimension and u(xi, yj, zk) is 
denoted as ui,j,k for any function u, where n=128 and 

xi = ih, yj = jh, zk = kh, i, j, k = 0,1, …, n+1, 

and h=1/(n+1). The discrete form used is 

–∑i’=i-1
i+1∑j’=j-1

j+1∑k’=k-1
k+1ui’,j’,k’ + 27 ui,j,k = h2fi,j,k.      (14) 

Some experiments are given in table I and II for Jacobi and 
Gauss-Seidel smoothing respectively. In all the tests, the 
recursion process of the multigrid is stopped when the number 
of nodes on some level is not larger than 100, and all the 
timing results are given in seconds. In the tables, S2 denotes 
the aggregation scheme based on strong connection. S4 and S8 
denote the scheme recursively invoking S2 with two and three 
times respectively. V-cyc and W-cyc means the multigrid with 
V-cycle and W-cycle respectively. K000 and K025 denote the 
K-cycle multigrid with t is selected as 0 and 0.25 respectively. 
Its denotes the number of PCG iterations. Itm1 denotes the 
time used for PCG iterations with the original implementation. 
Itm2 denotes the iteration time with the first scheme only. 
Item3 denotes the iteration time with both schemes. Sav2 and 
Sav3 mean the percentage of the iteration time saved when the 
first and both schemes are adopted respectively. In detail, they 
are computed as 1–Itm2/Itm1 and as 1–Itm3/Itm1 respectively. 

TABLE I.  RESULTS FROM JACOBI SMOOTHING 

Method Its Itm1 Itm2 Itm3 Sav2 Sav3 

S2 

Vcyc 33 44.81 38.93 35.83 13.12% 20.04% 

Wcyc 14 128.4 105.0 96.10 18.22% 25.16% 

K000 15 154.2 131.3 123.7 14.85% 19.78% 

K025 16 54.77 47.38 44.95 13.49% 17.93% 

S4 

Vcyc 40 38.72 33.65 30.16 13.09% 22.11% 

Wcyc 17 24.40 21.29 18.33 12.75% 24.88% 

K000 15 23.17 20.50 17.93 11.52% 22.62% 

K025 19 26.38 23.23 20.62 11.94% 21.83% 

S8 

Vcyc 43 36.95 32.26 27.97 12.69% 24.30% 

Wcyc 22 22.17 19.57 16.30 11.73% 26.48% 

K000 16 16.88 15.02 12.61 11.02% 25.30% 

K025 21 21.32 18.84 16.15 11.63% 24.25% 

TABLE II.  RESULTS FROM GAUSS-SEIDEL SMOOTHING 

Method Its Itm1 Itm2 Itm3 Sav2 Sav3 

S2 

Vcyc 30 54.00 46.86 42.62 13.22% 21.07% 

Wcyc 13 157.0 129.7 121.8 17.39% 22.42% 

K000 13 179.4 147.0 146.1 18.06% 18.56% 

K025 16 61.98 50.70 48.29 18.20% 22.09% 

S4 

Vcyc 36 47.28 38.36 36.28 18.87% 23.27% 

Wcyc 16 31.41 26.38 23.59 16.01% 24.90% 

K000 14 27.92 24.74 21.60 11.39% 22.64% 

K025 15 27.14 23.89 21.82 11.97% 19.60% 

S8 

Vcyc 40 46.17 37.67 34.66 18.41% 24.93% 

Wcyc 19 25.95 21.91 19.07 15.57% 26.51% 

K000 14 19.13 16.91 14.36 11.60% 24.93% 

K025 24 30.55 26.85 23.86 12.11% 21.90% 

 
From the results, it is clear that, when both schemes are 

adopted, for Jacobi smoothing the improvement is from 17.9% 
to 26.5%. While in table II, when the Gauss-Seidel smoothing 
is used, it is from 18.5% to 26.5%. In addition, when the same 
smoothing and the same aggregation are used, the savings with 
W-cycle is much larger than that with V-cycle, which reflects 
the fact that there are two times to invoke MGprec in each W-
cycle, and only one in V-cycle. For similar reasons, the savings 
with W-cycle is larger than that with V-cycle too in general. 
And when the same smoothing and the same cycle are used, in 
general, the savings with aggregation S8 is much larger than 
that with S4, which is again much larger than that with S2. It is 
consistent to the differences between the number of non-zeros 
of (Pl,l+1)TAl and that of Al. 
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V. CONCLUSION 
Two schemes to improve the aggregation based multigrid 

when used as the preconditioner are provided in this paper. One 
is aimed to the smoothing before the restriction process, to 
remove the trivial computation as much as possible. The other 
is to reconstruct the restriction process, using the fact that the 
number of non-zeros in matrix (Pl,l+1)TAl is smaller than that in 
Al. The analyses and the numerical experiments for a model 
partial differential equation show that the provided schemes 
can reduce the solution time significantly. The improvements 
are more significant to W-cycle than to V-cycle and K-cycle. In 
future, these schemes will be tested in actual applications, 
including the meso-scale numerical simulation of concrete 
samples, where the coefficient matrix is more dense. Much 
larger efficiency improvements can be expected for this case. 
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