
Two Schemes to Improve the Implementation of the
Aggregation Based Algebraic Multigrid

Preconditioner

Jianping Wu*, Fukang Yin, Jun Peng and Jinhui Yang
College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

*Corresponding author

Abstract—Algebraic multigrid is often used as the preconditioner
in Krylov subspace iterations to solve general sparse linear
systems, and the aggregation based version is one of the most
popular, for its cheap complexity to setup. In this paper, when
this version used as the preconditioner, two schemes are provided
to improve its implementation. The first is to remove the trivial
computation in the smoothing for zero initial vectors before the
restriction process. For this case, part of the computation is
related to the multiplication of an operator to a zero vector, and
then it can be omitted without any changes to the derived result.
The second is to reconstruct the restriction process, which can
reduce the computation complexity at the cost of a little more
storage. The analyses and the numerical experiments for the
solution of sparse linear systems from a model partial differential
equation with preconditioned conjugate gradients show that the
provided schemes can reduce the solution time significantly. The
improvements are much more significant when more nodes are
aggregated each time, and are more significant to W-cycle than to
V-cycle and K-cycle.

Keywords-aggregation based algebraic multigrid; sparse linear
system; preconditioner; conjugate gradient method; computation
complexity

I. INTRODUCTION
The solution of sparse linear systems is the kernel of many

scientific and engineering computations and often takes a long
time. Thus it attracts many attentions and up to now, a lot of
methods have been developed. Among them, the so-called
Krylov subspace iterations [1] and the multigrid methods [2]
are two of the most efficient ones. The Krylov subspace
methods are to seek an approximate solution in the Krylov
subspace based on project schemes, which is very efficient due
to some minimization properties. But the convergence rate is
dependent on the distribution of the eigenvalues of the
coefficient matrix. The narrower area they are distributed in,
the faster the convergence rate will be. To improve the
distribution, preconditioning techniques are often used, where a
non-singular operator called the preconditioner is applied to the
linear system to derive another with the same solution but with
better eigenvalues distribution, and then the problem is
converted to the solution of the newly derived system [1].

Multigrid is another of the most efficient methods to solve
sparse linear systems, which is based on the complementation
of two processes, smoothing and correction [2]. The residual

vector related to the smoothing on the finer grid is restricted to
a coarser level and the solution on this level is prolonged
backed to correct the approximate solution on the finer level.
For the smoothing can reduce the error components with
relatively higher frequencies efficiently, and error components
with lower frequencies can be more efficiently processed on
coarser grids, the whole convergence rate of the multigrid can
be guaranteed only if the coefficient matrix satisfies some
property. In fact, many analyses and experiments show that for
linear systems with good properties, the multigrid methods
have the potential optimal convergence. But its robustness is
not very good when used alone. Therefore, it is often used as
preconditioners of the Krylov subspace methods.

Algebraic multigrid methods are often used for general
sparse linear systems [3], where the construction of coarser
grids, the linear systems on the coarser levels, the restriction
and the prolong operators are all based on the coefficient
matrix only. Among them, the aggregation based version is one
of the most popular. In the classical implementation, the
prolong operator depends solely on the selection of the coarser
grid, leading to the simplicity for the construction and cheap
complexity to the setup process [3]. Though the aggregation
based multigrid methods are very popular, the focus is mostly
on the selection of the coarser grids [4-8] and the cycle type of
multigrid [5]. In reference [6], the prolong operator is focused
on and it is smoothed to accelerate the convergence rate of the
derived multigrid version. But up to now, little focus is on the
efficient implementation. In this paper, when it is used as the
preconditioner to the conjugate gradient iterations, we focus on
the improvements to the implementation.

In section II, the conjugate gradient with aggregation based
multigrid as the preconditioner will be given, which is the basis
for further description and analyses. The considered multigrid
methods include the V-, W- and the K-cycles. The schemes to
improve the implementation will be given in section III and
some analyses and discussions will be provided here too. In
section IV, some numerical experiments will be given to verify
the effectiveness of the schemes and some conclusions will be
drawn in section V.

International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 153

31

II. CONJUGATE GRADIENT WITH AGGREGATION BASED
ALGEBRAIC MULTIGRID AS THE PRECONDITIONER

Without loss of generality, consider the following linear
system of order n

Ax=b, (1)

where A is a given symmetric positive definite matrix, b is a
known vector, and x is the unknown solution. We can use the
preconditioned conjugate gradient (PCG) iteration to solve (1),
where it is converted to

MAx=Mb, (2)

and the inner product (., .) in the conjugate gradient iteration is
replaced by (., .)M

-1, defined by (x, y)M
-1= (x, M-1y). Therefore,

the preconditioner M should be symmetric positive definite too.
The PCG algorithm [1] can be described as in figure I, where
maxIts is the maximum number of iterations allowed and ε is a
threshold to control the process.

1. Set r(1) = b - Ax(1), z(1) = Mr(1) and s(1) = z(1).
2. For j = 1, maxIts
3. Compute αj = (z(j), r(j)) / (As(j), s(j)).
4. Compute x(j+1) = x(j) + αj s(j).
5. Compute r(j+1) = r(j) - αj As(j), if || r(j+1) ||2 / ||b||2 < ε, then stop.
6. Compute z(j+1) = Mr(j+1).
7. Compute βj+1 = (z(j+1), r(j+1)) / (z(j), r(j)).
8. Compute s(j+1) = z(j+1) + βj+1s(j).
9. Endfor

FIGURE I. ALGORITHM PCG(PRECONDITIONED CG)

In this section, the aggregation based multigrid method [3]
is used as the preconditioner M, which can be described as in
figure II. For more details about the V-cycle, W-cycle and K-
cycle, we can refer to [3][5]. In figure II, m denotes the
maximal number of levels allowed, l is the current level
number. On level l, the solution is smoothed with Sl, and the
corresponding residual vector r(l) = b(l) - Al x(l) is transferred to
the coarser level l+1 through multiplication by (Pl+1,l)T from
the left. On the (l+1)-th grid, algorithm MGprec is invoked
again to derive the correction vector y(l+1), which includes step
3 to 23 in figure II. It is transferred back to the l-th grid, to
correct the approximation x(l). And then a post smoothing is
used to x(l) with the smoother Sl

T.

When computing the correction, there are four branches. If
the number of levels reaches m, or the linear system is small
enough, the correction is on the coarsest level and can be
solved with a certain method, either with a direct solution, or
with an iterative process. Otherwise, the correction is
computed with the algorithm MGprec recursively, including
three options V-, W-, and K-cycle. In algorithm MGprec, the
grid hierarchy, Al, Pl,l+1, and Sl are unchanged with the
conjugate gradient iteration. They can be re-computed and put
into a set-up process beforehand, and be used directly in latter
iterations.

For aggregation based algebraic multigrid, there are
several schemes to determine the grid hierarchy. One of them
is provided by Kim et al., which aggregates two points each
time at most [4]. To reduce the number of levels, it can be
repeated two or several times each time [5]. Others include the
scheme based on strong coupling [6], the algorithm based on
graph partitioning for two-grid method [7], the scheme
according to seven known geometry structures [8], and the
scheme based on subsets grouping [8]. The researches in
reference [9] show that, among these schemes, the two-point
scheme and its variants with two or three recursions are the
most efficient in most cases. Therefore, these three
aggregations are used in this paper.

The prolonger Pl,l+1 interpolates a vector on level l+1 to
another on level l. When the l-th and the (l+1)-th level grid are
determined, the basic construction scheme can be used to
define Pl,l+1. The derived prolonger is related to constant
interpolation. To improve the performance of the multigrid
method, it can be smoothed too, to derive a new prolonger
related to more advanced interpolations [6]. In this paper, the
basic scheme is considered. In this scheme, if there are nl
nodes on the l-th level, Pl,l+1 is an nl by nl+1 matrix. If a node i
in the l-th level belongs to the j-th aggregation, the entry of
Pl,l+1 on the i-th row and the j-th column is 1. All entries not
equal to 1 are zeros. When Pl,l+1 is determined, Al+1 is defined
by Al+1 = (Pl,l+1)T Al Pl,l+1.

1. Compute x(l) = Sl(x(l), b(l)).
2. Compute r(l+1) = (Pl,l+1)T

 (b(l) - Al x(l)).
3. If (l=m-1 or the order of Al+1 is small enough) then
4. Compute x(l+1) = (Al+1)-1 r(l+1).
5. Else
6. Set c(l+1)=0 and c(l+1) = MGprec(c(l+1), r(l+1), Al+1, l+1).
7. If V-cycle then
8. Set y(l+1) = c(l+1).
9. Else if W-cycle then
10. Compute s(l+1) = r(l+1) - Al+1 c(l+1).
11. Set y(l+1)=0 and y(l+1) = MGprec(y(l+1), s(l+1), Al+1, l+1).
12. Else if K-cycle then
13. Compute v(l+1) = Al+1c(l+1), ρ1=(c(l+1), v(l+1)) and α1=(c(l+1), r(l+1)).
14. Compute s(l+1) = r(l+1) – (α1/ρ1) v(l+1).
15. If ||s(l+1)||2 ≤ t ||r(l+1)||2 then
16. y(l+1) = (α1/ρ1) c(l+1).
17. Else
18. Set d(l+1)=0 and d(l+1) = MGprec(d(l+1), s(l+1), Al+1, l+1).
19. Compute w(l+1) = Al+1d(l+1), γ=(d(l+1), v(l+1)) and β=(d(l+1), w(l+1)).
20. Compute α2 = (d(l+1), s(l+1)) and ρ2 = β - γ2/ρ1.
21. Compute y(l+1) = (α2/ρ2) d(l+1) + (α1/ρ1 - γα2/(ρ1ρ2)) c(l+1).
22. Endif
23. Endif
24. Compute x(l) = x(l) + Pl,l+1y(l+1).
25. Compute x(l) = Sl

T(x(l), b(l)).
26. Endif

FIGURE II. ALGORITHM x(l) = MGprec(x(l), b(l), Al, l)

On the l-th level, once the sparse linear system is given, we
can denote it as Al x(l) = b(l). Two kinds of smoothers are

Advances in Intelligent Systems Research, volume 153

32

frequently used [3]. One is the Jacobi smoothing. For this case,
we have

x(l): = Dl
-1{b(l) – (Al –Dl) x(l)}, (3)

where Dl is a matrix with Dl(i,i)=Al(i,i) for i=1 to nl and all
others zero. The other is the Gauss-Seidel smoothing. For this
case, we have

x(l): = (Dl +Ll) -1{b(l) – (Al – Dl –Ll) x(l)}, (4)

where Ll is a matrix, with Ll(i,j)=Al(i,j) for j=1 to i-1 and i=1 to
nl. All other entries of Ll are zero.

Therefore, in figure II, when Jacobi and Gauss-Seidel
smoothing are used, step 1 can be detailed as (3) and (4)
respectively. For Al – Dl, Dl + Ll and Al – Dl – Ll are the non-
diagonal part, the lower triangular part and the strictly upper
triangular part of Al respectively, if CSR or MSR storage
format [1] is used for matrix Al, they can be accessed directly
from the data structures for Al in the implementation. Of
course, these matrices can be stored independently too, which
is beneficial to the computation performance.

Correspondently, for Jacobi and Gauss-Seidel smoothing,
step 25 in figure II can be described as the following formulas
respectively

x(l): = Dl
-T{b(l) – (Al –Dl)T x(l)}, (5)

x(l): = (Dl +Ll) -T{b(l) – (Al – Dl –Ll) T x(l)}.

III. TWO SCHEMES TO IMPROVE THE IMPLEMENTATION OF
AGGREGATION BASED MULTIGRID METHODS

In this section, two schemes will be considered to improve
the implementation of algorithm MGprec described in figure II.
Firstly, for algorithm MGprec is only used as the
preconditioner of PCG, where the input vector x(1) to MGprec
is a given vector. Only if it is invariant to the PCG iterations,
(A1–D1)x(1) and (A1–D1–L1)x(1) can all be recomputed in the
setup. At the same time, for l > 1, it is clear that the input
vector x(l) to MGprec is always zero, thus the computation of
(Al –Dl) x(l) and (Al – Dl –Ll) x(l) are not required at all.

In this paper, we consider the special case where the input
vector x(1) to MGprec is zero too. For this case, the formula (3)
and (4) can be simplified into

x(l): = Dl
-1b(l), (7)

x(l): = (Dl +Ll)-1b(l), (8)

respectively. This means that the computation complexity
of the pre-smoothing can be reduced significantly. For
convenience, in the following context, the number of nonzero
in a matrix B is denoted as nnz(B). For Jacobi smoothing, the

number of floating operations is reduced from (2 nnz(Al) – nl)
to nl. For Gauss-Seidel smoothing, the value is reduced from
(2 nnz(Al) – nl) to (2 nnz(Ll) + nl).

The second scheme is to reconstruct the restriction process,
that is, step 2 in figure II. It can be seen that the computation
r(l+1) = (Pl,l+1)T

 (b(l) – Al x(l)) is equivalent to

r(l+1) = (Pl,l+1)T
 b(l) – ((Pl,l+1)TAl) x(l). (9)

If we denote Bl+1,l=(Pl,l+1)TAl, it is known that it is a nl+1 by
nl matrix, and (9) can be rewritten as

r(l+1) = (Pl,l+1)T
 b(l) – Bl+1,l x(l). (10)

For Pl,l+1 and Al are both determined in the setup, Bl+1,l can
be recomputed too. Then the number of float operations of
step 2 in figure II can be improved approximately from 2
nnz(Al) + nl(k-1)/k to 2 nnz(Bl+1,l) + nl(k-1)/k, where k is the
number of nodes aggregated each time on the average. Only if
the number of non-zeros of matrix Bl+1,l is smaller than that of
Al, the reformulation is profitable.

On the other hand, (Pl,l+1)T is an nl+1 by nl matrix, for a
node i in level l+1, if it relates to the aggregation of nodes i1,
i2, …, ij in level l, for the i-th row, the entries in these columns
are 1, and others 0. From the definition of aggregations, there
is no joint between different aggregations, which means that in
each column of (Pl,l+1)T, there is only one non-zero element 1,
and all the others are 0. Therefore, when computing the matrix
Bl+1,l =(Pl,l+1)TAl, the i-th row is derived from the sum of the i1-
th, the i2-th, …, and the ij-th row of matrix Al, and each row of
Al is used only once. Therefore, if the non-zero structure of a
vector v is denoted as nz(v), nz(Bl+1,l,i*) is equal to the union of
nz(Al, k*), k = i1, i2, …, ij, where Bl+1,l,i* is the i-th row of Bl+1,l,
and Al, k* is the k-th row of Al, that is,

nz(Bl+1,l,i*) = ∪{k ∈ i1, i2, …, ij: nz(Al, k*)}. (11)

While the number of non-zeros in Bl+1,l is equal to the sum
of |nz(Bl+1,l,i*)| for i=1,2,…,nl+1, we can deduce that

nnz(Bl+1,l) = ∑|nz(Bl+1,l,i*)|

 ≤ ∑ ∑{k ∈ i1, i2, …, ij: |nz(Al, k*)|} = nnz(Al),

that is

nnz(Bl+1,l) ≤ nnz(Al). (12)

This means that the number of non-zeros of matrix Bl+1,l is
actually smaller than that of Al, so this reconstruction is more
efficient than the original version.

IV. NUMERICAL EXPERIMENTS
In this section, all the experiments are performed on a

processor of Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz
(cache 20480 KB). The operating system is Linux version
2.6.32-431.el6.x86_64 and the compiler is Intel FORTRAN

Advances in Intelligent Systems Research, volume 153

33

Version 15.0.0.090. When algorithm PCG is used to solve
linear systems, the initial approximation is selected as zero all
the time and ε is selected as 1E-10. In multigrid method, the
linear system on the coarsest level is solved with ILU(0)
preconditioned CG and ε is selected as 1E-10 too.

Experiments are done for discrete linear systems derived
from a 3-D model partial differential equations with finite
difference method. The PDE is

– ∂2u/∂x2 – ∂2u/∂y2 – ∂2u/∂z2 = f, (13)

where x, y, z ∈ (0,1) and the function f and the boundary
values are given from a true solution u=1. There are n+2
points are selected in each dimension and u(xi, yj, zk) is
denoted as ui,j,k for any function u, where n=128 and

xi = ih, yj = jh, zk = kh, i, j, k = 0,1, …, n+1,

and h=1/(n+1). The discrete form used is

–∑i’=i-1
i+1∑j’=j-1

j+1∑k’=k-1
k+1ui’,j’,k’ + 27 ui,j,k = h2fi,j,k. (14)

Some experiments are given in table I and II for Jacobi and
Gauss-Seidel smoothing respectively. In all the tests, the
recursion process of the multigrid is stopped when the number
of nodes on some level is not larger than 100, and all the
timing results are given in seconds. In the tables, S2 denotes
the aggregation scheme based on strong connection. S4 and S8
denote the scheme recursively invoking S2 with two and three
times respectively. V-cyc and W-cyc means the multigrid with
V-cycle and W-cycle respectively. K000 and K025 denote the
K-cycle multigrid with t is selected as 0 and 0.25 respectively.
Its denotes the number of PCG iterations. Itm1 denotes the
time used for PCG iterations with the original implementation.
Itm2 denotes the iteration time with the first scheme only.
Item3 denotes the iteration time with both schemes. Sav2 and
Sav3 mean the percentage of the iteration time saved when the
first and both schemes are adopted respectively. In detail, they
are computed as 1–Itm2/Itm1 and as 1–Itm3/Itm1 respectively.

TABLE I. RESULTS FROM JACOBI SMOOTHING

Method Its Itm1 Itm2 Itm3 Sav2 Sav3

S2

Vcyc 33 44.81 38.93 35.83 13.12% 20.04%

Wcyc 14 128.4 105.0 96.10 18.22% 25.16%

K000 15 154.2 131.3 123.7 14.85% 19.78%

K025 16 54.77 47.38 44.95 13.49% 17.93%

S4

Vcyc 40 38.72 33.65 30.16 13.09% 22.11%

Wcyc 17 24.40 21.29 18.33 12.75% 24.88%

K000 15 23.17 20.50 17.93 11.52% 22.62%

K025 19 26.38 23.23 20.62 11.94% 21.83%

S8

Vcyc 43 36.95 32.26 27.97 12.69% 24.30%

Wcyc 22 22.17 19.57 16.30 11.73% 26.48%

K000 16 16.88 15.02 12.61 11.02% 25.30%

K025 21 21.32 18.84 16.15 11.63% 24.25%

TABLE II. RESULTS FROM GAUSS-SEIDEL SMOOTHING

Method Its Itm1 Itm2 Itm3 Sav2 Sav3

S2

Vcyc 30 54.00 46.86 42.62 13.22% 21.07%

Wcyc 13 157.0 129.7 121.8 17.39% 22.42%

K000 13 179.4 147.0 146.1 18.06% 18.56%

K025 16 61.98 50.70 48.29 18.20% 22.09%

S4

Vcyc 36 47.28 38.36 36.28 18.87% 23.27%

Wcyc 16 31.41 26.38 23.59 16.01% 24.90%

K000 14 27.92 24.74 21.60 11.39% 22.64%

K025 15 27.14 23.89 21.82 11.97% 19.60%

S8

Vcyc 40 46.17 37.67 34.66 18.41% 24.93%

Wcyc 19 25.95 21.91 19.07 15.57% 26.51%

K000 14 19.13 16.91 14.36 11.60% 24.93%

K025 24 30.55 26.85 23.86 12.11% 21.90%

From the results, it is clear that, when both schemes are

adopted, for Jacobi smoothing the improvement is from 17.9%
to 26.5%. While in table II, when the Gauss-Seidel smoothing
is used, it is from 18.5% to 26.5%. In addition, when the same
smoothing and the same aggregation are used, the savings with
W-cycle is much larger than that with V-cycle, which reflects
the fact that there are two times to invoke MGprec in each W-
cycle, and only one in V-cycle. For similar reasons, the savings
with W-cycle is larger than that with V-cycle too in general.
And when the same smoothing and the same cycle are used, in
general, the savings with aggregation S8 is much larger than
that with S4, which is again much larger than that with S2. It is
consistent to the differences between the number of non-zeros
of (Pl,l+1)TAl and that of Al.

Advances in Intelligent Systems Research, volume 153

34

V. CONCLUSION
Two schemes to improve the aggregation based multigrid

when used as the preconditioner are provided in this paper. One
is aimed to the smoothing before the restriction process, to
remove the trivial computation as much as possible. The other
is to reconstruct the restriction process, using the fact that the
number of non-zeros in matrix (Pl,l+1)TAl is smaller than that in
Al. The analyses and the numerical experiments for a model
partial differential equation show that the provided schemes
can reduce the solution time significantly. The improvements
are more significant to W-cycle than to V-cycle and K-cycle. In
future, these schemes will be tested in actual applications,
including the meso-scale numerical simulation of concrete
samples, where the coefficient matrix is more dense. Much
larger efficiency improvements can be expected for this case.

ACKNOWLEDGMENT
This work is funded by NSFC(61379022).

REFERENCES
[1] Y. Saad. Iterative methods for sparse linear systems. PWS Publication

Corporation, Boston, 1996
[2] R. Wienands, W. Joppich. Practical Fourier analysis for multigrid

methods. Taylor and Francis Inc., 2004
[3] C. Wagner. Introduction to algebraic multigrid. Course Notes,

University of Heidelberg, 1998/1999; available at: http://www.iwr.uni-
heidelberg.de/~Christian.Wagner/, 1999

[4] H. Kim, J. Xu, and L. Zikatanov. A multigrid method based on graph
matching for convection-diffusion equations, Numer. Linear Algebra
Appl., 10(2003), 181-195

[5] Notay, Y.. An aggregation-based algebraic multigrid method. Electronic
Transactions On Numerical Analysis, 37(2010), 123-146.

[6] Vanek P., Mandel J., and Brezina M.. Algebraic multigrid by smoothed
aggregation for second order and fourth order elliptic problems.
Computing, 56(1996):179-196

[7] P. Kumar. Aggregation based on graph matching and inexact coarse grid
solve for algebraic two grid. International Journal of Computer
Mathematics, 91:5(2014), 1061-1081

[8] D. Braess. Towards algebraic multigrid for elliptic problems of second
order. Computing, 55(1995), 379-393

[9] Wu Jian-ping, Yin Fu-kang, Peng Jun, Yang Jin-hui. Research on
Aggregations for Algebraic Multigrid Preconditioning Methods. In:
2017 2nd International Conference on Computer Science and
Technology [CST2017], Guilin, China, 2017.

Advances in Intelligent Systems Research, volume 153

35

	I. Introduction
	II. Conjugate Gradient with Aggregation Based Algebraic Multigrid as the Preconditioner
	Without loss of generality, consider the following linear system of order n
	III. Two Schemes to Improve the Implementation of Aggregation Based Multigrid Methods
	If we denote Bl+1,l=(Pl,l+1)TAl, it is known that it is a nl+1 by nl matrix, and (9) can be rewritten as
	IV. Numerical Experiments
	V. Conclusion
	Acknowledgment
	References

