
Perturbed Iterative Algorithms for Split General 
Mixed Variational Inequality Problem 

Yali Zhao, Qian Zhang and Shuyi Zhang 
College of Mathematics and Physics, Bohai University, Jinzhon, Liaoning 121013, China 

 
 
Abstract—In this paper, we introduce a split general mixed 
variational inequality problem, which is a natural extension of a 
split variational inequality problem, split general 
quasi-variational inequality problem in Hilbert spaces. Using the 
resolvent operator technique, we propose two classes of 
perturbed iterative algorithms for the split general mixed 
variational inequality problem. Further, we discuss the 
convergence criteria of the iterative algorithms. The results 
presented here extend and improve many previously known 
results in this area. 

Keyword-split general mixed variational inequality problem; 
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I. INTRODUCTION 
In a recent paper [1], Kazmi has developed an iterative 

algorithm for finding approximate solution for a new split 
general quasi-variational inequality problem in Hilbert spaces. 
The aim of this work is to extend his idea to more general 
problem. Throughout the paper unless stated otherwise, for 
each { },2,1∈i let

iH be a real Hilbert space with inner product ⋅⋅,

and norm ,⋅ let 
iiiiii HHgHHf →→ :,: be continuous 

mappings with ,Im φϕ ≠ii domg 

Let 
21: HHA → be a bounded 

linear operator with its adjoint operator ∗A . We consider the 
following problem: Find
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*
111
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11 xxgxgxxf ϕϕ −≥− , 
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and such that
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*
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*
2 HAxx ∈= ,
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22 )( ϕdomxg ∈ solves 

.),())(()(),( 2222
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*
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*
22 Hxxxgxgxxf ∈−≥− ϕϕ   

 (2) 

We call problem (1)-(2)the split general mixed variational 
inequality problem (in short, SpGMVIP). SpGMVIP(1)-(2) 
amounts to saying: find a solution of general mixed variational 
inequality problem (1) image under a given bounded linear 
operator is a solution of general mixed variational inequality 
problem (2). For convenience, we denote the solution set of 
SpGMVIP(1)-(2) by 

{ }.)2(    )1( 2
*
1

*
11

*
1 solvesHAxandsolvesxHx ∈∈=Γ  

Next, we give some special cases of SpGMVIP (1)-(2). 

If we set
ii Ig = , where 

iI is an identity operator on
iH , then 

SpGMVIP(1)-(2) is reduced to the following split mixed 
variational inequality problem (In short, SpMVIP): Find 

1
*
1 Hx ∈ such that 

,),()(),( 1111
*
1111

*
11 Hxxxxxxf ∈∀−≥− ∗ ϕϕ       (3) 

and such that
2

*
1

*
2 HAxx ∈= solves 

)()(),( 22
*
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*
22

*
22 xxxxxf ϕϕ −≥− ,

22 Hx ∈∀ ,      (4) 

which appears to be new one. 

If we set ),())(()( )(
*

* ⋅=−⋅=⋅
+ iiii xmCiiCi xm δδϕ

iii HHm →: is a 
single-valued mapping, where ),()( **

iiiii xmCxC += and iC is a 
closed convex subset of ,iH then SpMVIP (1)-(2) is reduced 
to the following split general quasi-variational inequality 
problem (in short, SpGQVIP): Find 1

*
1 Hx ∈ , such that

)()( *
1

*
11 xCxg i∈ and 

0)(),( *
111

*
11 ≥− xgxxf , )( *
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and such that *
1
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2 Axx = , )()( *

22
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).(,0)(),( *
222
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222

*
22 xCxxgxxf ∈∀≥−        

  (6) 

This problem was introduced and studied by Kazmi in [1] 
and he exhibited split quasi-variational inequality problem, 
split general variational inequality problem and 
quasi-variaeional inequality problem as special cases of 
SpGQVIP (5)-(6). For details, see reference[1]. 

If
iCi δϕ = the indicator function of a closed convex set

ii HC ⊂ ,
ii Ig = the identity mapping

iH , then SpGMVIP (1)-(2) 
is reduced to the following split general variational inequality 
problem (in short, SpVIP): Find 

1
*
1 Hx ∈ ,such that 

0),( *
11

*
11 ≥−xxxf ,

11 Cx ∈∀ ,             (7) 

and 
2

*
1

*
2 HAxx ∈= solves  
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22

*
22 ≥− xxxf ,

22 Cx ∈∀ ,            (8) 
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which has been introduced and studied by Censor, Gibali 
and Reich[2]. It is worth noting that SpGMVIP(1)-(2) is quite 
general and includes as special cases split minimization 
between two spaces so that the image of a minimize of a given 
function, under a bounded linear operator, is a minimizer of a 
given function, under a bounded linear operator, is a 
minimizer of another function, split zero problem and the split 
feasibility problem which have already been studied and used 
in practice as a model in the intensity-moducated radiation 
therapy planning, see[3, 4, 5]. 

In a word, SpGMVIP is more general, which is one of our 
motivations to write this paper. By using the resolvent 
operator technique about the maximal monotone mapping, we 
propose two classes of perturbed iterative algorithms taking 
into account a possible in exact computation for SpGMVIP 
(1)-(2) and discuss the convergence criteria of these iterative 
algorithms. The results presented here extend and improve the 
previously known results in this area. 

II. PERTURBED ITERATIVE ALGORITHMS 
To begin with, let us transform SpGMVIP (1)-(2) into fixed 

point problems. 

Lemma 2.1. Γ∈*
1x if and only if

*
1x satisfies the following 

relations 
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xfxgJxg ρϕ

ρ −= ∂              (9) 

)),()(()( *
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*
12

*
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AxfAxgJAxg ρϕ

ρ −= ∂         (10) 

where 0>iρ is a constant and 
1)(: −∂ ∂+= iiIJ i

i
ϕρϕ

ρ  is the 

resolvent operator of the maximal monotone mapping ,iϕ∂  

noting that iϕ∂ denotes the subdifferential of a proper, convex 
and lower semi-continuous function { }.: ∞+→ RHiϕ  

Proof  From definition of 
i

i
J ϕ
ρ
∂

, It follows from (9)that 

)),(()()()( *
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111
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11 xgxgxfxg ϕρρ ∂+∈−  

then )),(()( *
111

*
11 xgxf ϕ∂∈− definition of ϕ∂ implies  

.,)(),())(()( 11
*
111

*
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*
11111 Hxxgxxfxgx ∈∀−−+≥ ϕϕ  

this is, 

.),())(()(),( 1111
*
111

*
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*
11 Hxxxgxgxxf ∈∀−≥− ϕϕ  

thus
*
1x is a solution of (1). Similarly, it is easy to know

*
1Ax

solves(2), hence .*
1 Γ∈x The converse relation is obvious, so is 

omitted, completing the proof. 

Based on Lemma 2.1, we can propose the following 
perturbed iterative algorithms for approximating a solution to 

SpGMVIP(1)-(2). Let { } )1,0(⊆nα be a sequence such that 
∞=∑∞

=1n
nα and let γρρ ,, 21 be the parameters with positive 

values. 

Algorithm 2.1. Given ,1
0
1 Hx ∈ compute the iterative 

sequence{ }nx1 defined by the iterative schemes 

)),()(()( 111111
1

1

nnn xfxgJyg
n

ρϕ
ρ −= ∂              (11) 

)),()(()( 2222
2

2

nnn AyfAygJzg
n

ρϕ
ρ −= ∂            (12) 

1 *
1 1(1 ) [ ( )] ,n n n n n n n n nx x y A z Ay eα α γ α+ = − + + − +    (13) 

for all 0,,,,2,1,0 21 >= γρρn and take into account a possible 

inexact computation, an ).(0 ∞→→ nen

error 
ne is added in 

the right hand side of(13) withMoreover, we consider other 

perturbations by replacing in (11) and (12) iϕ by
n
iϕ ,where the 

sequence { }n
iϕ approximates iϕ , { }n

iϕ is a collection of proper 
convex semi-continuous functions on iH . 

If )()( )( * ⋅=⋅
ii xCi δϕ , where )( *

ii xC  is same as the above, 0=ne , 
then Algorithm 2.1 is reduced to the following algorithm for 
SpGQVIP: 

Algorithm 2.2. Given 1
0
1 Hx ∈ , compute the iterative 

sequence{ }nx1 defined by the iterative schemes  

)),()(()( 11111)(1
11

nn
xC

n xfxgPyg n ρ−=                 (14) 

)),()(()( 222)(2
2

nn
AyC

n AyfAygPzg n ρ−=              (15) 

1 *
1 1(1 ) [ ( )],n n n n n n nx x y A z Ayα α γ+ = − + + −       (16) 

for all 0,,,,2,1,0 21 >= γρρn , where iCP  is the metric 
projection of iH  on to iC , and it is well known that iCP is a 
nonexpansive mapping. Algorithm 2.2 was proposed by Kazmi 
[1] for SpGQVIP.  

Observe that (9)and (10) can change into the following : 

)),()(()( *****
iiiiiiiii xfxgJxgxx i

i
ρϕ

ρ −+−= ∂ ,2,1=i  

where ,*
1

*
2 Axx =

0>iρ  is a constant. In view of the above 
equations, we can propose another perturbed iterative algorithm 
for SpGMVIP. 

Algorithm 2.3. Given Hx ∈0
1 , compute the iterative sequence{ }nx1

defined by the iterative schemes 

)),()(()( 11111111
1

1

nnnnn xfxgJxgxy
n

ρϕ
ρ −+−= ∂           (17) 

)),()(()( 2222
2

2

nnnnn AyfAygJygAyz
n

ρϕ
ρ −+−= ∂       (18) 
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1 *
1 1(1 ) [ ( )] ,n n n n n n n n nx x y A z Ay eα α γ α+ = − + + − +   (19) 

for all 0,,,,2,1,0 21 >= γρρn , ne is an error term and 
).(0 ∞→→ nen

 
In order to obtain our main results, we need the following 

definition, Assumption and lemmas. 

Definition 2.1. A nonlinear mapping 11: HHf →  is said to be  

(i)α -strongly monotone if there exists a constant 0>α  
such that 

.,,),()( 1
2 Hyxyxyxyfxf ∈∀−≥−− α  

(ii) β -Lipschitz continuous if there exists a constant 0>β  
such that 

.,,)()( 1Hyxyxyfxf ∈∀−≤− β  

Remark 2.1. It is easy to know that if HHf →1: is α
-strongly monotone and β -Lipschitz continuous then βα ≤ . 

Assumption 2.2. For { }2,1∈i , let { }∞+=→ RRH ii :ϕ  be a 
proper, convex and lower semi-continuous function, { }n

iϕ  

approximate iϕ  and satisfies the condition: 

. ,0)()(lim iiiin HvvJvJ i

i

n
i

i
∈∀=− ∂∂

∞→
ϕ

ρ
ϕ

ρ
 

Lemma 2.3([6]). Let { }ka be a sequence of nonnegative real 
numbers satisfying the condition 

.0,)1(1 ≥∀+−≤+ kmama kkkkk δ  

where { }km ,{ }kδ  are sequences of real numbers such that  

(i) { } ]1,0[⊂km and ∑
∞

=
∞=

0k km ,or, equivalently, 

;0)1(lim:)1(
00

=−=− ∏∏
=

∞→

∞

=

k

j
ikk

k mm
 

(ii) ,0suplim ≤∞→ kk δ or (ii)’ ∑
∞

=0k kk mδ  is convergent. 

Then .0lim =∞→ kk a  

Lemma 2.4. Let H  be a real Hilbert space, for all Hyx ∈, , 
the following hold: 

,,222 yxyxyx ++≤+  

.,2 222 yyxxyx ++=+    

 

III. MAIN RESULTS 
Theorem 3.1. For each { },2,1∈i let iii HHg →: be iδ -Lipschitz 
continuous such that )( ii Ig − is

iδ -strongly monotone, where iI
is the identity operator on .iH  Let

iii HHf →:  be iα
-strongly monotone with respect to ig  and iβ -Lipschitz 
continuous. Let 21: HHA → be a bounded linear operator 
and let *A be its adjoint operator. Suppose Γ∈*

1x  and 
Assumption 2.2 holds. Then the sequence { }nx1

generated by 
Algorithm 2.1 converges strongly to *

1x provided that the 
constant

iρ  andγ satisfy the conditions 
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Proof  Since Γ∈*
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iiiii xgdomxg ϕ∈ and 
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       (21) 

for 0>iρ  and .*
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*
2 Axx = From Algorithm 2.1(11), Assumption 

2.2 and (20), we have 
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n ε  owns to Assumption 2.2. Now, using the facts 
that 

1f  is 
1α -strongly monotone with respect to 1g  and 

iβ -Lipschitz continuous, and 1g is iδ -Lipschitz continuous,we 
have 
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Combing (22)and(23), we have  
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Since ( )iIg −1 is 1σ -strongly monotone, we have  
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which implies 
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2
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2.1(12), Assumption 2.2 and (21) and using the facts that 2f  
is 2α -strongly monotone with respect to 2g  

and 2β -Lipschitz continuous, ( )22 Ig − is
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n ε  owns to Assumption 2.2. From Algorithm 
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Further, using the definition of *A , the face that *A  is a 
bounded linear operator with AA =* , and the given 

condition on γ , we have 
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It follows from (29)-(31), we obtain 
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Moreover the 

conditions (i) and (ii) of Lemma 3.1 are satisfied. It follows 
that { }nx1

 converges strongly to *
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In the following, we consider the convergence of 
Algorithm 2.3 for SpGMVIP. 
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be its adjoint operator. Suppose Γ∈*
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holds. Then the sequence { }nx1
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for .0>iρ  From Algorithm 2.3(19), Assumption2.2and（33）, 
we have  
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Similary ,from Algorithm 2.3(18), Assumption 2.2 and 
(34),and using the fact that 2f  is 2α -strongly monotone with 
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Combining (29)-(31), (38), (39), we obtain 
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Noting the conditions (i) and (ii) of Lemma 3.1 are 
satisfied and it follows that }{ 1

nx converges strongly to *
1x as

∞→n . The rest of argument is same as in Theorem 3.3, so is 
omitted, which is completed the proof. 

Remark 3.3. Algorithm 2.2 is a special case of Algorithm 
2.1 and Theorem 3.1 extends the corresponding results in [1]. 
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