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Abstract—In this paper, we introduce a split general mixed
variational inequality problem, which is a natural extension of a
split  variational  inequality = problem, split  general
quasi-variational inequality problem in Hilbert spaces. Using the
resolvent operator technique, we propose two classes of
perturbed iterative algorithms for the split general mixed
variational inequality problem. Further, we discuss the
convergence criteria of the iterative algorithms. The results
presented here extend and improve many previously known
results in this area.
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l. INTRODUCTION

In a recent paper [1], Kazmi has developed an iterative
algorithm for finding approximate solution for a new split
general quasi-variational inequality problem in Hilbert spaces.
The aim of this work is to extend his idea to more general
problem. Throughout the paper unless stated otherwise, for
each ie{l,z}letHibe a real Hilbert space with inner product<,v,>
and norm IHl let ¢:H, >H,g :H, —»H, be continuous
mappings with 1mg, Ndomg, = ¢, L€t A.4, 1, be a bounded

linear operator with its adjoint operator A*. We consider the
following problem: Find x " < 4, such that g (x,") € domg,and

<f1(X;)v X = gl(X;)> 2 ¢1(91(X;)) —p (%) VX, € Hy» (1)
and such thatx; = Ax; e H,, g, (x}) e domg,S0lvVes
(1,00).% = 9,06)) = 0,(9, () -0, (%,). X, € H,. (@)

We call problem (1)-(2)the split general mixed variational
inequality problem (in short, SpGMVIP). SpGMVIP(1)-(2)
amounts to saying: find a solution of general mixed variational
inequality problem (1) image under a given bounded linear
operator is a solution of general mixed variational inequality
problem (2). For convenience, we denote the solution set of
SpGMVIP(1)-(2) by

r=1{e H,|x; solves(1) and Ax; e H, solves @}

Next, we give some special cases of SpGMVIP (1)-(2).

If we setg, =1, where |, is an identity operator ony , then

SpGMVIP(1)-(2) is reduced to the following split mixed
variational inequality problem (In short, SpMVIP): Find
x e H,such that

(1.0)% = %) 2 0,06) -, (%), ¥%, € H,, ©)
and such thatx; = Ax; e H, solves
(£,00).% =% ) 2 0,(6) — 0, (x;) 1 9%, € H,» (4)
which appears to be new one.
it we set @O =5 (MO =8, O m M, SH, i 4
single-valued mapping, where &) =Ci+m (). and Cijs a

closed convex subset of Hi'then SpMVIP (1)-(2) is reduced
to the following split general quasi-variational inequality

problem (in short, SPGQVIP): Find X €Hi | such that
0.0¢) €€, (¢) ang

(£,06)% = 9,(¢)) = 01 ¥% € C,(x) (5)
and such thaty, = Ax’, g,(x;)eC,(x;) solves

(£206),% = 9,(6)) 20,9, €C, (). ©)

This problem was introduced and studied by Kazmi in [1]
and he exhibited split quasi-variational inequality problem,
split  general variational inequality = problem and
quasi-variaeional inequality problem as special cases of
SpGQVIP (5)-(6). For details, see reference[1].

If , -5 the indicator function of a closed convex set
C, c H,»g, =1 the identity mappingp_, then SpGMVIP (1)-(2)

is reduced to the following split general variational inequality
problem (in short, SpVIP): Find - < 1 ,such that
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<f1(x1*),x1 _x;>z 0:Vx, €C,s (7)

and x; = Ax; e H,solves
(£,06).% =X; )20,Vx, €C,» 8
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which has been introduced and studied by Censor, Gibali
and Reich[2]. It is worth noting that SpGMVIP(1)-(2) is quite
general and includes as special cases split minimization
between two spaces so that the image of a minimize of a given
function, under a bounded linear operator, is a minimizer of a
given function, under a bounded linear operator, is a
minimizer of another function, split zero problem and the split
feasibility problem which have already been studied and used
in practice as a model in the intensity-moducated radiation
therapy planning, see[3, 4, 5].

In a word, SpGMVIP is more general, which is one of our
motivations to write this paper. By using the resolvent
operator technique about the maximal monotone mapping, we
propose two classes of perturbed iterative algorithms taking
into account a possible in exact computation for SpGMVIP
(1)-(2) and discuss the convergence criteria of these iterative
algorithms. The results presented here extend and improve the
previously known results in this area.

Il.  PERTURBED ITERATIVE ALGORITHMS

To begin with, let us transform SpGMVIP (1)-(2) into fixed
point problems.

Lemma 2.1.% €Tif and only if % satisfies the following
relations

9,06) = 37 (0, () - p, £, (X)), )

9, (AX) = 37 (g, (AX) - p, £, (AX))), (10)

op; w_ -1 R
where? >Oisa constantand 2~ = +29%) " s the

resolvent operator of the maximal monotone mapping opi,

noting that 7 denotes the subdifferential of a proper, convex
and lower semi-continuous function?: - H = RU =}

o,
Proof From definition of o , It follows from (9)that
gl(XI) 2 f1(X;) € gl(X;) + P18¢1(g1(xf))n

then — f,(x’) e dp, (g, (x.)), definition of O implies
21(6) 2 0,(9, 06) + (= F,00), % = 9, (), v, e Hy.
this is,
(£,06).% = 9:(x)) = 0,8, ()) = 9, (x,), ¥x, € H,.

thusX is a solution of (1). Similarly, it is easy to know AX(

solves(2), hence €T-The converse relation is obvious, so is
omitted, completing the proof.

Based on Lemma 2.1, we can propose the following
perturbed iterative algorithms for approximating a solution to
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SPGMVIP(1)-(2). Let ©@'}=0D be a sequence such that

© n
a =
n=1

“and let P1»P2:7 be the parameters with positive
values.

Algorithm 2.1 Given % €Hi compute the iterative
sequence {Xf } defined by the iterative schemes

9,(y") = 3% (9, () - oy (X)), (11)
9,(2") = 37 (g, (AY") - p, £, (AY"), (12)
X =W ey A2 - Al ae g

for all "=012-p.p7>0gnd take into account a possible
e"|| - 0(n — o).

inexact computation, an error €"is added in
the right hand side of(13) withMoreover, we consider other
perturbations by replacing in (11) and (12) i by(pi ,where the
sequence bl approximates %1 , #fis a collection of proper
convex semi-continuous functions on .

1£70=% 0 \whereC.(¢) is same as the above, €" =0,
then Algorithm 2.1 is reduced to the following algorithm for
SpGQVIP:

Algorithm 2.2. Given compute the iterative
sequence i {defined by the iterative schemes

XloeH1
1

6. = P, o0, (6.06) ~ 2, LX), (14)

9.(2") =P oy (92 (AY") = p, T, (AY")), (15)

X7 =(L-a")X +a"[y" +y AT (2" - Ay, (16)

for all N=012p,p,7>0 \yhere P is the metric

projection of Hi on to i, and it is well known that™is a
nonexpansive mapping. Algorithm 2.2 was proposed by Kazmi
[1] for SpGQVIP.

Observe that (9)and (10) can change into the following :
X =% = g,0¢)+ 377 (9,06) - p £, (), 1 =12,

where - _ a. Pi>0 js a constant. In view of the above

equations, we can propose another perturbed iterative algorithm
for SpPGMVIP.

Algorithm 2.3. Given* €H  compute the iterative sequence{xi"}
defined by the iterative schemes

Y =X = 0,0+ 37 (9,(40) - oy (X)), (17)
2= AY" - 0, (y") + 32 (0, (AY") — p, Ty (AY)), (18)
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Nt =(-a") +a [y +yA (@ - A g
for all N=012-p,ppy>0 e
e"| — 0(n — o).

is an error term and

In order to obtain our main results, we need the following
definition, Assumption and lemmas.

Definition 2.1. A nonlinear mapping f:H: = H.: s said to be

(i) @ -strongly monotone if there exists a constant >0
such that

(f(x)- f(y),x7y>2afosz,VX,ye H,.

(i) -Lipschitz continuous if there exists a constant #>0
such that

If ) - f()|<Blx-y| v yeH,.

Remark 2.1. It is easy to know that if FrHi>H s o

-strongly monotone and 7 -Lipschitz continuous then ¢<#.
Assumption 2.2, For icf2) et @ H >R=RUlre=} pg 5
proper, convex and lower semi-continuous function, ol

approximate %1 and satisfies the condition:

lim

n—w

3% (v,) - 37 (Vi)H:O,VVi cH,.

Lemma 2.3([6]). Let!@ipe a sequence of nonnegative real
numbers satisfying the condition

a,, <(-mya, +m,, vk >0.
where m, }, 16} are sequences of real numbers such that
(i) M0l gng DMy =20 ,or, equivalently,

f[(l_mk):: lmﬁ(l—mi):o;

(i) timsup, ., 5, <0,0r (i)’ 2+*™ s convergent
Then lim, ,_a, =0.

Lemma 2.4. Let H be a real Hilbert space, for all *Y<H
the following hold:

[+ vl < "+ 2y, x-+ y),

[+ v =" + 20 )+ v
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I1l.  MAIN RESULTS

Theorem 3.1. For eachi e {,2}, letg, : H, — H,be &, -Lipschitz
continuous such that (, _ yis s, -strongly monotone, where |,
is the identity operator on H,. Letf:H, >H, be g
-strongly monotone with respect to g, and g, -Lipschitz
continuous. Let A:H, — H,be a bounded linear operator
and let A" be its adjoint operator. Suppose x; eI" and
Assumption 2.2 holds. Then the sequence {x} |generated by
Algorithm 2.1 converges strongly to x; provided that the
constant , and y satisfy the conditions

o _a <\/T12+0‘12*512 v 0 <wlrlz+a12 )
s B
y|AF 6,6, <1-6,7 < (0.-2.):
Al
o :Tiv5iz ~2p0+p BT = \/].-I-:]-T(Ti]pi >0i=12

Proof Since x; er,then x* cn, suchthat

0i (XI*) e domg, (g; (X)) and

9,() = 3,72(9,0¢) = o, F, (), (20)
0. (A%) = 317 (0, (AX)) - p, 1, (AX))), 1)

for p, >0 and x; = Ax.From Algorithm 2.1(11), Assumption
2.2 and (20), we have

lo:(y") = 0,0

o S CAEDEVRACH ENNACREOEVRACH) N2
<o (@00) = R0 = 357 (9,06) — 2 0|
3 000 = 0O = 35 (0,00 - £, ()
S ACORTACHEFACACDERACS) EAp
where and

350, 06) = P () = 32 (8, 06) = £, ()|
lim, . &' =0 owns to Assumption 2.2. Now, using the facts

n—o0

that f, is 4 -strongly monotone with respectto g, and

n_
& =

3, -Lipschitz continuous, and g, is &, -Lipschitz continuous,we
have

0,06~ 0,06) — o, (£ ) = £ =g, () - 0, (%)
~2p,( £ (x1) = £,06), 6, ()~ 6, (x)) + pZ £0x) = 1,06

2
< (512 -2pa; + pfﬁf)

X =% -

Combing (22)and(23), we have

42



ATLANTIS
PRESS

Hg1(yn) - gl(X;)H =S \/512 -2pa + plzﬂlz

X — XIH +e). (24)

Since (gl -1, )is o, -strongly monotone, we have

=29, -1y = (0 - LKLY - )

2 W2
_251Hy X

y' x| <]e.v") -6, (x)

<[o:(y") - 9:(x)

which implies
ly" =] < mfos (v - 9. 06))) (25)
where_ _ 1 . From(24)and(25), we get
! 1+ 20,

y" —fosHlef —XIH+1151”1 (26)

where 0, = Tl\/512 —2pa, + pl L. Similarly, from Algorithm
2.1(12), Assumption 2.2 and (21) and using the facts that f,
is o, -strongly monotone with respectto g,

and g, -Lipschitz continuous, (g, - 1,)iS s, -strongly monotone,
and g, is 5,-Lipschitz continuous, we have

Jo.(2") =9, (Ax)| <57 20,0, + p2 2 |Ay" - AX]

. (27)

and

z" —AfostHAy” —AXIH+7252, (28)

where

T, 1 0 :72V§22_2p2a2+p22ﬁ22 '
\J20,+1

n_
&, =

‘]Z:)g (9,(AX) - p, fz(AXI))_‘]ifz (9,(A%) - p, ,(AX))

and lim &) =0 owns to Assumption 2.2. From Algorithm
2.1(13), we obtain

n+l

x| —XIH (29)
S(l—a”]

y" =X — AT (AY" —Axl')HerHA*(z” —AXI)H]+ a"|e"

xl”—x[HJra"H

Further, using the definition of A", the face that A" is a
bounded linear operator with HA*H:W, and the given

condition on y, we have

y" - A (A" - A

30)

Y =] =2y =X AT (A" - A + AT (A" = A

< ‘- 7|AP)|Ay" - Alez < :

.
y =X

.
y =%
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and, using(3.9), we have

A"(z" - AX)) 2" — AX] +|Alz,e5 (31)

<[A]

< 0, A ay" - A

<6,|A? +|Az,5.

yn_xl

It follows from (29)-(31), we obtain

n+l

X =
<@-a")|x x| +a "L+ yHAHZHZ) y" —XfH]+an7HAH725§ +a"|e"
<@-a") -] +a"g, -+ y|AL 6 )x - x|

+a"[(L+ 7| AL 0)rel + 7| Alr,el +[e"

I

K=+l A 0 + A+

] (32)

=f-a"a-0)

whereg_ g a1+ YA 6,). It follows from the conditions on p,, p,
and y that@ < (0,1). Letting

a —X;

X/

m, =a"(1-0),

0=

6", vn > 0. By virtue of

1 n n
6, = m[(lJr 7HAH202)71€1 + 7HAH72‘92 +
(3.13) , we have a,, <(-m,)a, +m s, Moreover the

conditions (i) and (ii) of Lemma 3.1 are satisfied. It follows
that {x| converges stronglyto x; as n— oo.

Since A is continuous, it follows from (25), (26)-(28) that
V' ok G000 - AT AG 2 A and
9,(z") > g,(Ax’) @ N —> co. This completes the proof.

In the following, we consider the convergence of
Algorithm 2.3 for SpGMVIP.
Theorem 3.2. For eachic {12}, let g :H, — H beo; -strongly
monotone and g, -Lipschitz continuous. Let f,:H - H, be ¢
-strongly monotone with respect to g and g -Lipschitz
continuous. Let .y _, y,be a bounded linear operator and A”
be its adjoint operator. Suppose x < and Assumption 2.2
holds. Then the sequence {x|generated by Algorithm 2.3
converges strongly tox; provided that the constants o andy
satisfy the conditions

pfﬂﬁ/m' a, > Bk (2-k) k <1

ﬂf ﬂiz

ki =1-20,+567 i=12,y

2
Af00:<1-0: o 2
1A

0, =k +1-2p,a, +pi2:3i2 P> 0.iI=1,2.

Proof Sincex’ <, thenx; e H,is such that g, (x") e dom,and

)1

R R KOV R (HER R RAC e
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AX, = A =0 (AX) + 3% (@A) =2, T (AXD). (99

for p, >0. From Algorithm 2.3(19), Assumption2.2and (33),
we have

vy -x]
K= x; = (0:0¢) - 9,060) + I (9, () - 2y Fy (X)) = 22 (0,06) - oy (X))
<[x =% = (0,0 = 9, 0] + o 06 - 8, (%) - oy (£,06) - £,06))]

2 (0, (6) = 00 = 32 (9,06) - o, T ()

(35)

Note that g, is o, -strongly monotone and 6, -Lipschitz
continuous, and f, is ¢, -strongly monotone with respect to g,
and g, -Lipschitz continuous, we have

X)) < kX -]

Xln - X; _(91()(1[])_ g1(

(36)

where kl:m ;
J0.64)-0,00)- i) - R0D| < 1-200 1B K] (59

from (33)-(35), we have
"-u[<a-x]eel (38)

where

6, =k +~1-2pia, + p{ B,

I (9,06) = £, 00 =37 (9,06) = o, £, ()

gl”—

Similary ,from Algorithm 2.3(18), Assumption 2.2 and
(34),and using the fact that f, is,-strongly monotone with

respect to g, and g, -Lipschitz continuous, g, is

o, -strongly monotoneand s, -Lipschitz continuous, we have

Ax} (<

2HAyn -AX|+é&;

(39)

where g, —k, +1-2p,a, + p2B% + k, =1-20, +57,

n_
& |

3% (@2 (A) = o Fo (AX) =357 (02 (A) = p, T, (AX))|
Combining (29)-(31), (38), (39), we obtain

n+1 *

X=X

(40)

e

Py Alez +

e"|1.

whereg = g, + 7HAH29192. It follows from the conditions on ,, ,
p,and,thatg e (0,1). Letting
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a‘n: 9 !mn:a"(lfﬁ)’

5 en],Vnzo

1 " ;
v =gl A 0] + A
Then (40) implies

3, <(-m,)a, +m,5,, Vn=0.

Noting the conditions (i) and (ii) of Lemma 3.1 are
satisfied and it follows that{x '} converges strongly to y:as

n — oo . The rest of argument is same as in Theorem 3.3, S0 is
omitted, which is completed the proof.

Remark 3.3. Algorithm 2.2 is a special case of Algorithm
2.1 and Theorem 3.1 extends the corresponding results in [1].
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