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Abstract—In order to develop a new hearing loss detection method, 
this paper proposed to combine wavelet entropy with feedforward 
neural network trained by genetic algorithm. The dataset contains 
72 subjects—24 healthy controls, 24 left-sided hearing loss patients, 
and 24 right-sided hearing loss patients. The 10 runs of 8-fold cross 
validation showed that optimal decomposition level was 4, better 
than the results using decomposition level of 2, 3, and 5. Our 
method using 4-level decomposition yielded a sensitivity for 
healthy controls of 81.25±4.91%, a sensitivity for left-sided hearing 
loss of 80.42±5.57%, a sensitivity for right-sided hearing loss of 
81.67±6.86%, and an overall accuracy of 81.11±1.34%. 

Keywords-hearing loss; wavelet entropy; feedforward neural 
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I. INTRODUCTION 
Hearing loss (HL) [1] may occur in one of both ears. The 

HL problems in children may even destroy his/her spoken 
ability. It may cause loneliness for adults. Nowadays scholars 
prefer to use magnetic resonance imaging (MRI) [2-4] method 
to detect hearing loss. 

For example: Li [5] proposed a fractional Fourier transform 
method. Jia [6] used deep autoencoder method. Liu [7] 
suggested to use dual-tree complex wavelet transform. Li [8] 
offered a new method using fitness-scaling adaptive genetic 
algorithm. Nayak [9] used stationary wavelet transform and 
Shannon entropy. Chen [10] gave a new method of using 
generalized eigenvalue proximal support vector machine. 
Gorriz [11] employed directed acyclic graph support vector 
machine.  

Nevertheless, those methods are too complicated and hard 
to implement. In addition, their methods may not get accurate 
results that meet practical requirement. Further, some 
algorithms are too time-consuming. 

Our contribution is we proposed a novel method that 
combined wavelet entropy, feedforward neural network, and 
genetic algorithm. Our method shows promising results in 
identifying hearing loss patients. 

II. SUBJECTS 
We collected 72 magnetic resonance brain images from local 
hospitals. The dataset can be divided into three categories, 
including 24 healthy brain images, 24 left HL brain images, and 
24 right HL brain images. Written consents were obtained from 

all subjects. Different types of hearing loss images are shown 
below in Figure 1. 
 

  
(a) healthy control (b) left-sided hearing loss 

 

 

(c) right-sided hearing loss  

FIGURE I. SAMPLE OF BRAIN IMAGES 

III. METHODOLOGY 
Wavelet entropy is a novel method to analyze transient 

features of complicated images. It has already been applied in 
satellite image processing, brain image processing [12-17], face 
recognition [18, 19], etc. The pseudocode of wavelet entropy is 
listed in Table 1. 

TABLE I.  ALGORITHM OF WAVELET ENTROPY 

Algorithm – Wavelet entropy (WE) 
Step A Import the magnetic resonance brain image; 
Step B Choose the wavelet family; 
Step C Choose decomposition level k; 
Step D Perform discrete wavelet transform (DWT) on given brain image; 
Step E Generate and record (3k+1) wavelet subbands; 
Step F Calculate entropy over each subband; 
Step G Vectorize all the entropy results and output it as the feature 
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FIGURE II. DIAGRAM OF CARRYING OUT WAVELET ENTROPY 

 
Figure 2 shows a diagram of carrying out a 2-level wavelet 

entropy. Here we first decompose 1-level discrete wavelet 
transform (DWT) over the magnetic resonance (MR) brain 
image, and obtained four subbands (LL1, LH1, HL1, and HH1) 
[20]. Then, we used DWT to decompose the LL1, and obtained 
four new subbands (LL2, LH2, HL2, and HH2). In total, we get 
7 subbands altogether. Finally, entropy was performed over 
these seven subbands. 

In this study, we chose bior5.5 wavelet as suggested in Ref. 
[11]. Here a “bior x.y” means a B-spline biorthogonal compactly 
supported wavelet with reconstruction order of x and 
decomposition order of y. The decomposition functions and 
filters of bior5.5 wavelet are shown in Figure 3. 

 
(a) Scaling Function 

 
(b) Wavelet Function 

 
(c) Low-pass filter 

 
(d) High-pass filter 

FIGURE III. DECOMPOSITION FOR BIOR5.5 

The features extracted by WE was submitted to a 
feedforward neural network (FNN), also named multilayer 
perceptron [21]. It does not need any a priori information about 
the data distribution. Scholars have reported that FNN gained 
remarkable success compared to traditional classifiers [22-26]. 
Suppose it contains NI input nodes, NH hidden nodes, and NO 
output nodes. We can draw its fully-connected structure in 
Figure 4. We did not use deep learning methods, such as 

convolutional neural network [27-30] and autoencoder [31, 32], 
because our dataset in this study is relatively small. 

 
FIGURE IV. STRUCTURE OF FNN 

Finally, traditional back propagation algorithm was an FNN 
training method. Nevertheless, it may fall into local optimum. 
Hence, to avoid this problem, we used genetic algorithm (GA) 
to train the FNN. We first transform the training to an 
optimization problem using mean squared error (MSE) [33-36] 
as fitness function. 

 
FIGURE V. DIAGRAM OF GENETIC ALGORITHM 

MR Brain Image
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Then in a standard GA, each candidate solution is named as 
the chromosome [37, 38], and the whole population evolved 
towards better solution by three implementations: crossover, 
mutation, and selection. Figure 5 shows the diagram of a 
standard GA. Detailed description can be found in Ref. [39-41]. 

IV. EXPERIMENTS AND RESULTS 
Eight-fold cross validation was used. In each fold, we 

contains three healthy controls, three left-sided HL brain images, 
and three right-sided HL brain images. The optimal 
decomposition level was found to be 4. The statistical results of 
10 runs of eight-fold cross validation are listed in Table 2. 

TABLE II.  CORRECTLY IDENTIFIED RESULTS (F = FOLD; R = RUN) 

 F1 F2 F3 F4 F5 F6 F7 F8 Total 

R
1 

3+3
+3 
=9 

3+2
+2 
=7 

2+2
+3 
=7 

2+3
+2 
=7 

3+2
+3 
=8 

2+2
+2 
=6 

2+3
+3 
=8 

3+3
+0 
=6 

20+20
+18 
=58 

R
2 

3+2
+3 
=8 

3+2
+3 
=8 

1+3
+3 
=7 

3+2
+3 
=8 

2+2
+1 
=5 

3+2
+3 
=8 

2+2
+3 
=7 

2+3
+3 
=8 

19+18
+22 
=59 

R
3 

3+3
+2 
=8 

3+3
+1 
=7 

2+3
+3 
=8 

1+2
+3 
=6 

3+3
+3 
=9 

2+3
+2 
=7 

3+1
+2 
=6 

3+3
+3 
=9 

20+21
+19 
=60 

R
4 

3+1
+3 
=7 

3+3
+2 
=8 

2+3
+2 
=7 

3+2
+3 
=8 

2+3
+3 
=8 

0+3
+3 
=6 

3+1
+3 
=7 

2+3
+3 
=8 

18+19
+22 
=59 

R
5 

1+2
+3 
=6 

3+3
+2 
=8 

3+2
+2 
=7 

2+2
+2 
=6 

3+2
+1 
=6 

3+3
+3 
=9 

2+3
+3 
=8 

3+3
+3 
=9 

20+20
+19 
=59 

R
6 

3+3
+2 
=8 

3+1
+3 
=7 

1+3
+3 
=7 

2+3
+3 
=8 

3+1
+3 
=7 

3+2
+3 
=8 

3+3
+0 
=6 

3+3
+2 
=8 

21+19
+19 
=59 

R
7 

3+3
+3 
=9 

2+2
+3 
=7 

2+3
+2 
=7 

3+1
+2 
=6 

2+2
+3 
=7 

1+3
+2 
=6 

2+3
+3 
=8 

2+3
+2 
=7 

17+20
+20 
=57 

R
8 

3+2
+2 
=7 

1+3
+3 
=7 

3+2
+2 
=7 

3+3
+2 
=8 

3+1
+1 
=5 

2+1
+3 
=6 

3+3
+3 
=9 

2+3
+3 
=8 

20+18
+19 
=57 

R
9 

3+3
+2 
=8 

3+2
+2 
=7 

3+3
+3 
=9 

2+3
+2 
=7 

2+3
+1 
=6 

3+3
+3 
=9 

1+2
+2 
=5 

3+2
+2 
=7 

20+21
+17 
=58 

R
10 

2+2
+3 
=7 

2+2
+3 
=7 

2+2
+3 
=7 

3+2
+1 
=6 

2+3
+3 
=8 

3+3
+3 
=9 

3+2
+3 
=8 

3+1
+2 
=6 

20+17
+21 
=58 

Here (a+b+c) = z means a healthy controls, b left-sided, and c right-sided were 
correctly identified. In total z brains were identified. 

TABLE III.  SENSITIVITY OF THREE CLASSES OF 10 RUNS 
(DECOMPOSITION LEVEL = 4) 

Run Healthy Left Right Overall 
R1 83.33 83.33 75.00 80.56 
R2 79.17 75.00 91.67 81.94 
R3 83.33 87.50 79.17 83.33 
R4 75.00 79.17 91.67 81.94 
R5 83.33 83.33 79.17 81.94 
R6 87.50 79.17 79.17 81.94 
R7 70.83 83.33 83.33 79.17 
R8 83.33 75.00 79.17 79.17 
R9 83.33 87.50 70.83 80.56 
R10 83.33 70.83 87.50 80.56 
Avr 81.25±4.91 80.42±5.57 81.67±6.86 81.11±1.34 

The sensitivities of each classes are shown in Table 3. Here 
our method yields a sensitivity for healthy controls of 
81.25±4.91%, a sensitivity for left-sided hearing loss of 
80.42±5.57%, a sensitivity for right-sided hearing loss of 
81.67±6.86%, and an overall accuracy of 81.11±1.34%. 

 
FIGURE VI. OPTIMAL LEVEL 

 
 
 
 

TABLE IV.  SENSITIVITY OF THREE CLASSES OF 10 RUNS (DECOMPOSITION LEVEL = 2, 3, AND 5) 

Run Decomposition Level = 2 Decomposition Level = 3 Decomposition Level = 5 
Healthy Left Right Overall Healthy Left Right Overall Healthy Left Right Overall 

R1 70.83 83.33 75.00 76.39 79.17 83.33 83.33 81.94 83.33 87.50 75.00 81.94 
R2 75.00 79.17 70.83 75.00 79.17 87.50 75.00 80.56 79.17 83.33 75.00 79.17 
R3 79.17 75.00 79.17 77.78 75.00 75.00 83.33 77.78 91.67 87.50 66.67 81.94 
R4 70.83 83.33 70.83 75.00 75.00 79.17 87.50 80.56 87.50 75.00 87.50 83.33 
R5 79.17 79.17 79.17 79.17 83.33 75.00 83.33 80.56 70.83 79.17 75.00 75.00 
R6 79.17 75.00 75.00 76.39 83.33 79.17 75.00 79.17 83.33 79.17 83.33 81.94 
R7 87.50 66.67 75.00 76.39 83.33 75.00 66.67 75.00 87.50 75.00 75.00 79.17 
R8 75.00 75.00 83.33 77.78 79.17 79.17 79.17 79.17 87.50 62.50 83.33 77.78 
R9 79.17 79.17 75.00 77.78 79.17 79.17 75.00 77.78 66.67 83.33 87.50 79.17 
R10 66.67 79.17 83.33 76.39 70.83 79.17 91.67 80.56 79.17 79.17 83.33 80.56 

Avr 76.25± 
5.91 

77.50± 
4.89 

76.67± 
4.48 

76.81± 
1.32 

78.75±  
4.14 

79.17±  
3.93 

80.00±  
7.30 

79.31±  
2.01 

81.67± 
7.91 

79.17± 
7.35 

79.17± 
6.80 

80.00± 
2.47 
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In order to validate why we chose 4-level as the optimal 
decomposition level, we showed the results using 2, 3, and 5 
levels in Table 4. Here it shows the overall accuracy of 2-level 
decomposition was 76.81±1.32%, the overall accuracy of 3-
level decomposition was 79.31±2.01%, and the overall 
accuracy of 5-level decomposition was 80.00±2.47%. 
Compared to the results of 4-level decomposition, we can see 
that 4-level obtained the better result than 2-level, 3-level, and 
5-level did, as shown in Figure 6. 

V. CONCLUSION 
This study give a new method for hearing loss detection 

based on wavelet entropy, feedforward neural network, and 
genetic algorithm. In the future, we shall test our method on a 
larger dataset of hearing loss diseases. 
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