
Learning to Follow Directions with Untagged Data

Zhidan Yang1,* and Zhiting Yang2
1TSL School of Business and Information Technology, Quanzhou Normal University, Quanzhou 362000, Fujian, China

2Yuanyuan Zhu Haoyouxing Information Technology LTD, Quanzhou 362000, Fujian, China
*Corresponding author

Abstract—We describe a program learns to follow directions
using a corpus, without human preprocessing. The program only
build a semantic lexicon instead of semantic grammar to learn
from an untagged corpus. Without grammar, the program uses a
language-independent parser to find the boundaries between
steps, then parse the steps. The rest of paper explains semantic
interpreter and genetic algorithm.

Keywords-component; untagged;lexicon; interpreter;program;
semantic; directions; corpus

I. INTRODUCTION
In the field of natural language understanding, the problem

of following instructions or directions is of great interest. Its
practical value is easy to see, and it raises the important
theoretical issue of connecting language to perception and
action.

Experience suggests that the best approach is not to build a
grammar by hand, but to learn the grammar from a corpus of
directions. One possibility is to tag each set of directions with
the desired semantic representation, and then use an algorithm
like WASP (YukWah Wong et al., 2006) [1] or KRISP (Rohit
J. Kate et al., 2007) [2] to learn a grammar that maps
directions to the their representations. On the other hand, it is
clear that humans learn to understand language without using
tagged data. A human being learning her native language must
rely on natural language utterances in context -- there is no
other evidence available. Imagine a corpus in which each
example has two parts: a set of directions, and the route that
they describe. The problem of learning to follow directions
from such a corpus is roughly similar to the problem faced by
humans learning their native language.

Chen and Mooney's program learns to follow directions
using a corpus collected by Kuipers. They first divided each
set of directions into sentences, and paired each sentence with
a sequence of actions, throwing away 300 sentences that did
not describe any action. By comparing each sentence to the
actions it describes, their program assigns a semantic
representation to each sentence. The program uses Rohit
Kate's KRISP to learn a semantic grammar from these
representations.

Our program learns to follow directions using a corpus
similar to Kuipers's, but without human preprocessing. Each
example consists of the text typed by an experimental subject
and the path that it describes. The program does not build a
semantic grammar. It builds only a semantic lexicon.

II. OUTLINE OF A SOLUTION
If we want to learn from an untagged corpus, we should

reconsider the decision to start by tagging each sentence with a
semantic representation. Clarke et. al. [3] have described an
approach that does not require such a step. They assume that
we start with a parser and semantic interpreter. The parser
takes as input the text and the grammar; it creates a semantic
representation. The semantic interpreter takes as input the
semantic representation, and a starting point on the map. Its
output is another point on the map. If the program is
successful, this point will be the desired destination -- and we
can use the corpus to check. Clarke points out that in principle,
this is all the information we need to learn a grammar. Given a
candidate grammar, we can use it to assign a semantic
representation to each set of directions. Then we run the
semantic interpreter, using the given representations as input.
We can measure the success of the grammar by counting the
number of times the semantic interpreter finds the correct goal.
And if we can measure the success of the grammar, we can
search through the space of possible grammars until we find a
good one. Each candidate grammar assigns its own
representation to each set of directions. We are not searching
for a grammar that assigns correct representations -- we are
searching for a grammar that can follow directions. Clarke
calls this approach “learning from the world's response”.

This direct approach is attractive, but it raises the question:
how do we search the space of possible grammars? Many
popular search algorithms cannot be handle this problem,
because they require a subroutine that takes an imperfect
solution and finds a way to improve it. To learn a hidden
Markov model, we start with a random assignment of weights
and repeatedly change the weights in a way that improves
performance. The algorithm stops when it reaches a local
maximum. Inductive logic programming algorithms also work
in this way -- they nearly always rely on a subroutine that
takes a program and modifies so that it agrees better with the
data. In principle it might be possible to apply this method to
our problem. We might find an algorithm that takes a gramma
and modifies it so that the rate of success in direction-
following improves. However, this sounds unlikely.

Not every search algorithm relies on a subroutine that
improves a given solution. Hill-climbing is an obvious
example. It uses a subroutine that takes a candidate solution
and finds its neighbors in the search space -- other solutions
that are only slightly different. It does not require that these
neighbors are improvements on the original solution. It
searches through them, testing the quality of each solution and

International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 153

70

choosing one (if any) that improves on the original.
Unfortunately, simple hill-climbing is not enough to solve
difficult search problems.

Clarke solved the problem with a new learning algorithm of
his own invention. Our solution depends on two ideas. First,
one can learn to follow directions without learning a grammar.
It is enough to learn a semantic lexicon: a mapping from
words to concepts. Second, one can learn a semantic lexicon
by using a genetic algorithm. Genetic algorithms, like hill-
climbing, do not require a subroutine that takes a solution and
improves it. Their fundamental operation is to combine two
existing solutions into a new solution. On some occasions, the
new solution will combine the best parts of the existing
solutions, so that it improves on its parents. This is what
allows the algorithm to make progress.

Here is an outline of the learning program. The back end
consists of the parser and the semantic interpreter. Given a
semantic lexicon, the parser creates a semantic representation
for each set of directions in the corpus. The semantic
interpreter uses this representation in an attempt to follow the
directions. By counting the number of times it succeeds, we
can measure the quality of the lexicon.

The genetic algorithm begins by creating a large number of
lexicons at random, and measuring the quality of each one. It
repeatedly chooses two lexicons of high quality and combines
them to form a new lexicon. This continues until the average
quality of the lexicons in the population stops improving. At
this point we take the best lexicon found so far, and improve it
further with a simple hill-climbing algorithm. This is common
practice --genetic algorithms are not good at fine- tuning.

III. COLLECTING A CORPUS OF DIRECTIONS
Our work uses a corpus of directions similar to the one

Kuipers collected. In the first round of experiments we used a
small virtual building. We later replaced it with a larger
building, containing about 90 rooms. Our virtual building is
simpler than the one that Kuipers used -- he added extra
landmarks, such as paintings on the walls, and decorated the
halls in different colors. Kuipers's program also requires the
agent to move from place to place in a series of discrete steps.
We have removed this apparently unmotivated requirement,
allowing the direction-follower to move continuously. This
makes our direction- following task more like direction-
following in real life.

Our subjects sit in front of a terminal that displays one of
the hallways in this building. The screen also displays two
buttons labeled “Show Path” and “Done”. When the subject
clicks on “Show Path”, the display changes. The point of view
moves down the hall, around a corner, and ultimately into one
of the offices. The subject can watch this animation as many
times as she likes, until she feels confident that she knows the
way. She then types her directions and clicks on “Done”. The
directions are sent to the experimenter, who sits at another
computer in an adjoining room. The experimenter's computer
displays the subject's directions and the starting point of the
path. The experimenter has no way of knowing where the
destination is, except by reading the directions. The
experimenter tries to follow the directions, and then clicks a

button marked “Check the Answer”. The result, success or
failure, is sent back to the subject, and the experiment
continues until the experimenter has succeeded ten times. The
experiment is designed to offer the subject some motive for
writing good directions. The experimenter is waiting to follow
her directions, and she is payed only when the experimenter is
able to understand her and reach the desired destination.

We have collected 1324 sets of directions from 133
subjects. One can divide each path into a series of decisions.
Each time you turn into a side hall, you have made a decision.
Each time you enter an office, you have made a decision. The
paths used in our experiment contain from 1 to 3 decisions,
with an average of 2 decisions.

IV. THE LEXICONS
A lexicon is a mapping from words to meanings. The

possible meanings are atomic symbols, and there are only a
few of them. First come the directions, represented by the
constants leftp, rightp and forwardp. Then come the ordinals:
firstf, secondf, thirdf and lastf. The predicate doorp means that
the destination is a doorway, not a side hall. Finally, some
words and punctuation signs are interpreted as separators.
They mark the boundaries between steps. In English, the word
“and” and the period and comma are separators. The program
searches for words that represent these concepts. This is a top-
down approach to learning the lexicon. The program does not
start with a word and search for its meaning. It starts with a
meaning, and searches for words that represent that meaning.

V. THE PARSER
If the program does not learn a grammar, how can it parse?

The rather surprising answer is that it uses a parser which is
supposed to be language-independent. The parser's first
assumption is that the directions consist of a series of steps,
and these steps appear in the same order that we are to execute
them. This is not logically necessary -- one could imagine a
language in which people always give directions backwards.
But that seems unlikely. So the parser begins by assuming a
simple language universal. This assumption is both plausible
and useful.

The parser's first task is to find the boundaries between
steps. In some cases, the separators in the lexicon will mark
these boundaries. Separators alone will not solve the problem,
for two reasons. In some cases the separators are just not there.
More important, the parser must function to some extent in the
early stages of the learning process -- when most of the
lexicons do not contain accurate information about separators.
In the absence of reliable separators, we can use semantic cues
to find the boundaries between steps. It is not possible for the
same object to be on the left, and also on the right. Therefore
two words that mean Left and Right should not appear in the
same step. In the same way, an object cannot be both the first
and second member of a set -- so two words that mean First
and Second should not appear in the same step. Exceptions
exist (“Go past the doors on the left and right”), but they are
rare in our corpus. One can find the step boundaries with fair
accuracy using a simple greedy algorithm: keep adding words
to a step until you find either a separator, or a word that is

Advances in Intelligent Systems Research, volume 153

71

semantically inconsistent with the words that are already in the
step.

Next comes the problem of parsing the steps. We are of
course not interested in building parse trees for their own sake.
We are trying to build a semantic representation by combining
the meanings of keywords, and we want to use syntactic clues
to find the correct combination. Compare “Take the second
hall on the right” and “Turn right into the second hall”. In the
first example the word “right” is in the scope of the ordinal
“second”. To find the referent of “second hall on the right”,
one must take the intersection of the set of halls and the set of
objects on the right, then choose the second member of this set.
To find the referent of “second hall”, one must find the second
member of the set of halls; this hall should also be on the right.
The location of the word “right” tells us whether it is in scope
of “second” or not.

This example shows that sometimes we need syntactic
cues to combine the meanings of keywords correctly. The next
question is: “How often do we need these cues?”, and the
answer is “Very seldom”. The syntactic clue used in the last
example is not even reliable. The sentence “Take a right into
the first hall” is often synonymous with “Take the first hall on
the right”. Our parser ignores the syntax of the steps, and
combines the meanings of keywords with the following simple
rule. Suppose the keywords describe the ordinal “n-th”, a
direction D and a type T (either door or hall). The
representation is n-th DT. That is: we assume the direction is
in the scope of the ordinal.

So the parser relies on a simple syntactic assumption
which is claimed to be true for all human languages, combined
with semantic parsing techniques that are also supposed to be
universal. The claim that an object cannot be on my left and
my right is correct no matter what language we are speaking.
The phrase “language universal” suggests a profound
discovery about human language. The language universals
used here are not exciting discoveries, but they are useful for
the task at hand.

VI. THE SEMANTIC INTERPRETER
This part of the program is very simple. It starts by filling

in default values for certain features. If no ordinal is given, it
uses the ordinal “firstf”. So “Take a right” is understood as
“Take the first right”. If the symbol “doorp” does not appear,
the program assumes that the type is “hallp” -- that is, the
destination is a side hall. So “Take a right” means a hall on the
right, not a doorway. This is not always true. When the
directions reach the last step, some speakers consider it
obvious that we are about to enter a doorway, and they say
“Take the second right” meaning “second door on the right”.
But such examples are too rare to have much effect on
performance.

Given a type T, a direction D, and an ordinal N-th, the
semantic interpreter takes the intersection of the set of
currently visible objects of type T and the set of currently
visible objects whose direction is D. From this set it chooses
the N-th element. It moves the point of view to a point inside
the doorway, or a point a short way down the hall. Then it
proceeds to the next step. If it reaches a point inside an office,

it assumes that this is the desired destination, and ignores the
rest of the input.

VII. THE SEARCH ALGORITHM
The genetic algorithm represents a lexicon as a vector of

words. Four positions in the vector are reserved for each of the
possible meanings, but some of these positions can be left
empty. So the vector contains up to four words that mean
“left”, up to four words that mean “right”, and so on. The
words are chosen from a list of the 87 words that occur most
frequently in our corpus. Rare words cannot be very useful
because in most of the examples, they never appear at all. So
in building the initial population, the program fills each slot as
follows. With probability 0.2, the slot is left empty. If the slot
is filled, the probability of choosing a word is equal to its
frequency in the corpus.

The genetic algorithm itself is quite routine. Parents are
chosen by tournament selection, with a tournament size of 4.
The population size is 12,000 -- a bit on the high side. The
measure of fitness is the number of decisions that are made
correctly. So if a path contains three decisions and a certain
lexicon gets only the first decision right, it still gets one point.
The algorithm typically makes progress for 50 to 60
generations before it plateaus. The result is a pretty good, but
not excellent, solution.

The next phase of learning is hill-climbing. This phase is
effective because the genetic algorithm is able to reach a part
of the search space that is well-behaved -- a place where
simple hill-climbing can get results. Each step of hill climbing
starts with a cleanup. The program removes any word-
meaning pair that fails to improve performance by at least 0.75
percent. Next it addresses a particular weakness of the genetic
algorithm. It tends to confuse the ordinals -- thinking that
“third” means “last”, for example. The hill-climbing algorithm
checks each pair (W,O), where W is a word and O is an
ordinal. If it is possible to improve performance by replacing
ordinal O with another ordinal, the program does so.

When the cleanup phase is complete, the hill-climbing
algorithm considers every lexicon formed by adding a single
pair to the current lexicon, choosing the one with the best
performance. As usual, it repeats the cleanup and addition of a
pair until no more improvement results.

Given a lexicon and a starting point, the semantic
interpreter returns a path. Comparing this path with the correct
path in the data, one can mark each decision on the path as
correct or incorrect. The performance of the path is the
number of correct decisions. If the first decision on the path is
wrong, performance is zero. Otherwise it is one plus the
performance of the rest of the path. Perfect performance is
equal to the number of decisions on the correct path.

A ten-fold cross validation yields an average performance
of 73 percent of perfect performance. The program returned
the same lexicon eight times. It was as follows.

separators: comma,period,and,enter,go,then

leftp: left  

Advances in Intelligent Systems Research, volume 153

72

rightp: right  

doorp: door,doorway,office,room

firstf: first  

secondf: 2nd,second

thirdf: third  

lastf: last

Notice that the verbs “go” and “enter” appear as separators.
Most of the data consists of imperative sentences, and an
English imperative starts with the main verb. If “go” and
“enter” are common main verbs, they will often appear at the
beginning of step, and the system can correctly count them as
separators.

The other two lexicons created by the system are as
follows. One adds the word “3rd” to the lexicon above, while
the other omits the word “then”. All definitions in these three
lexicons are correct.

ACKNOWLEDGEMENTS
The authors would like to appreciate and memorize

Associate Professor Andrew Haas from SUNY Albany, who
details the theory in this paper. Since he passed away in 2013,
his contact and other information are omitted to avoid
unreponsing to requests. The authors are mainly responsible
for engineering verification of the theory, therefore most parts
of paper are kept as original draft from Andrew. Any
questions are welcome, especially those understand the thoery.
However, authors may not understand some of the theory part.

REFERENCES
[1] YukWah Wong and Raymond J. Mooney, 2006, Learning for Semantic

Parsing with Statistical Machine Translation, In Proc. Of the Human
Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics (HLT/NAACL-2006). pp.
439- 446

[2] Rohit J. Kate and Raymond J. Mooney, 2007, Learning Language
Semantics from Ambiguous Supervision, In Proc. Of the 22nd
Conference on Artificial Intelligence (AAAI-07). pp. 895-900

[3] James Clarke, 2010, Driving Semantic Parsing from the World’s
Response, In Proc. Of the Fourteenth Conference on Computational
Natural Language Learning.

Advances in Intelligent Systems Research, volume 153

73

	I. Introduction
	II. Outline of a Solution
	III. Collecting a Corpus of Directions
	IV. The Lexicons
	V. The Parser
	VI. The Semantic Interpreter
	VII. The Search Algorithm
	Acknowledgements
	References

