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Abstract—We describe a program learns to follow directions 
using a corpus, without human preprocessing. The program only 
build a semantic lexicon instead of semantic grammar to learn 
from an untagged corpus. Without grammar, the program uses a 
language-independent parser to find the boundaries between 
steps, then parse the steps. The rest of paper explains semantic 
interpreter and genetic algorithm. 
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I. INTRODUCTION 
In the field of natural language understanding, the problem 

of following instructions or directions is of great interest. Its 
practical value is easy to see, and it raises the important 
theoretical issue of connecting language to perception and 
action.  

Experience suggests that the best approach is not to build a 
grammar by hand, but to learn the grammar from a corpus of 
directions. One possibility is to tag each set of directions with 
the desired semantic representation, and then use an algorithm 
like WASP (YukWah Wong et al., 2006) [1] or KRISP (Rohit 
J. Kate et al., 2007) [2] to learn a grammar that maps 
directions to the their representations. On the other hand, it is 
clear that humans learn to understand language without using 
tagged data. A human being learning her native language must 
rely on natural language utterances in context -- there is no 
other evidence available. Imagine a corpus in which each 
example has two parts: a set of directions, and the route that 
they describe. The problem of learning to follow directions 
from such a corpus is roughly similar to the problem faced by 
humans learning their native language.  

Chen and Mooney's program learns to follow directions 
using a corpus collected by Kuipers. They first divided each 
set of directions into sentences, and paired each sentence with 
a sequence of actions, throwing away 300 sentences that did 
not describe any action. By comparing each sentence to the 
actions it describes, their program assigns a semantic 
representation to each sentence. The program uses Rohit 
Kate's KRISP to learn a semantic grammar from these 
representations.  

Our program learns to follow directions using a corpus 
similar to Kuipers's, but without human preprocessing. Each 
example consists of the text typed by an experimental subject 
and the path that it describes. The program does not build a 
semantic grammar. It builds only a semantic lexicon. 

II. OUTLINE OF A SOLUTION 
If we want to learn from an untagged corpus, we should 

reconsider the decision to start by tagging each sentence with a 
semantic representation. Clarke et. al. [3] have described an 
approach that does not require such a step. They assume that 
we start with a parser and semantic interpreter. The parser 
takes as input the text and the grammar; it creates a semantic 
representation. The semantic interpreter takes as input the 
semantic representation, and a starting point on the map. Its 
output is another point on the map. If the program is 
successful, this point will be the desired destination -- and we 
can use the corpus to check. Clarke points out that in principle, 
this is all the information we need to learn a grammar. Given a 
candidate grammar, we can use it to assign a semantic 
representation to each set of directions. Then we run the 
semantic interpreter, using the given representations as input. 
We can measure the success of the grammar by counting the 
number of times the semantic interpreter finds the correct goal. 
And if we can measure the success of the grammar, we can 
search through the space of possible grammars until we find a 
good one. Each candidate grammar assigns its own 
representation to each set of directions. We are not searching 
for a grammar that assigns correct representations -- we are 
searching for a grammar that can follow directions. Clarke 
calls this approach “learning from the world's response”.  

This direct approach is attractive, but it raises the question: 
how do we search the space of possible grammars? Many 
popular search algorithms cannot be handle this problem, 
because they require a subroutine that takes an imperfect 
solution and finds a way to improve it. To learn a hidden 
Markov model, we start with a random assignment of weights 
and repeatedly change the weights in a way that improves 
performance. The algorithm stops when it reaches a local 
maximum. Inductive logic programming algorithms also work 
in this way -- they nearly always rely on a subroutine that 
takes a program and modifies so that it agrees better with the 
data. In principle it might be possible to apply this method to 
our problem. We might find an algorithm that takes a gramma 
and modifies it so that the rate of success in direction-
following improves. However, this sounds unlikely.  

Not every search algorithm relies on a subroutine that 
improves a given solution. Hill-climbing is an obvious 
example. It uses a subroutine that takes a candidate solution 
and finds its neighbors in the search space -- other solutions 
that are only slightly different. It does not require that these 
neighbors are improvements on the original solution. It 
searches through them, testing the quality of each solution and 

International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017)

Copyright © 2017, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Intelligent Systems Research, volume 153

70



choosing one (if any) that improves on the original. 
Unfortunately, simple hill-climbing is not enough to solve 
difficult search problems.  

Clarke solved the problem with a new learning algorithm of 
his own invention. Our solution depends on two ideas. First, 
one can learn to follow directions without learning a grammar. 
It is enough to learn a semantic lexicon: a mapping from 
words to concepts. Second, one can learn a semantic lexicon 
by using a genetic algorithm. Genetic algorithms, like hill-
climbing, do not require a subroutine that takes a solution and 
improves it. Their fundamental operation is to combine two 
existing solutions into a new solution. On some occasions, the 
new solution will combine the best parts of the existing 
solutions, so that it improves on its parents. This is what 
allows the algorithm to make progress.  

Here is an outline of the learning program. The back end 
consists of the parser and the semantic interpreter. Given a 
semantic lexicon, the parser creates a semantic representation 
for each set of directions in the corpus. The semantic 
interpreter uses this representation in an attempt to follow the 
directions. By counting the number of times it succeeds, we 
can measure the quality of the lexicon.  

The genetic algorithm begins by creating a large number of 
lexicons at random, and measuring the quality of each one. It 
repeatedly chooses two lexicons of high quality and combines 
them to form a new lexicon. This continues until the average 
quality of the lexicons in the population stops improving. At 
this point we take the best lexicon found so far, and improve it 
further with a simple hill-climbing algorithm. This is common 
practice --genetic algorithms are not good at fine- tuning. 

III. COLLECTING A CORPUS OF DIRECTIONS 
Our work uses a corpus of directions similar to the one 

Kuipers collected. In the first round of experiments we used a 
small virtual building. We later replaced it with a larger 
building, containing about 90 rooms. Our virtual building is 
simpler than the one that Kuipers used -- he added extra 
landmarks, such as paintings on the walls, and decorated the 
halls in different colors. Kuipers's program also requires the 
agent to move from place to place in a series of discrete steps. 
We have removed this apparently unmotivated requirement, 
allowing the direction-follower to move continuously. This 
makes our direction- following task more like direction-
following in real life.  

Our subjects sit in front of a terminal that displays one of 
the hallways in this building. The screen also displays two 
buttons labeled “Show Path” and “Done”. When the subject 
clicks on “Show Path”, the display changes. The point of view 
moves down the hall, around a corner, and ultimately into one 
of the offices. The subject can watch this animation as many 
times as she likes, until she feels confident that she knows the 
way. She then types her directions and clicks on “Done”. The 
directions are sent to the experimenter, who sits at another 
computer in an adjoining room. The experimenter's computer 
displays the subject's directions and the starting point of the 
path. The experimenter has no way of knowing where the 
destination is, except by reading the directions. The 
experimenter tries to follow the directions, and then clicks a 

button marked “Check the Answer”. The result, success or 
failure, is sent back to the subject, and the experiment 
continues until the experimenter has succeeded ten times. The 
experiment is designed to offer the subject some motive for 
writing good directions. The experimenter is waiting to follow 
her directions, and she is payed only when the experimenter is 
able to understand her and reach the desired destination.  

We have collected 1324 sets of directions from 133 
subjects. One can divide each path into a series of decisions. 
Each time you turn into a side hall, you have made a decision. 
Each time you enter an office, you have made a decision. The 
paths used in our experiment contain from 1 to 3 decisions, 
with an average of 2 decisions. 

IV. THE LEXICONS 
A lexicon is a mapping from words to meanings. The 

possible meanings are atomic symbols, and there are only a 
few of them. First come the directions, represented by the 
constants leftp, rightp and forwardp. Then come the ordinals: 
firstf, secondf, thirdf and lastf. The predicate doorp means that 
the destination is a doorway, not a side hall. Finally, some 
words and punctuation signs are interpreted as separators. 
They mark the boundaries between steps. In English, the word 
“and” and the period and comma are separators. The program 
searches for words that represent these concepts. This is a top- 
down approach to learning the lexicon. The program does not 
start with a word and search for its meaning. It starts with a 
meaning, and searches for words that represent that meaning.  

V. THE PARSER 
If the program does not learn a grammar, how can it parse? 

The rather surprising answer is that it uses a parser which is 
supposed to be language-independent. The parser's first 
assumption is that the directions consist of a series of steps, 
and these steps appear in the same order that we are to execute 
them. This is not logically necessary -- one could imagine a 
language in which people always give directions backwards. 
But that seems unlikely. So the parser begins by assuming a 
simple language universal. This assumption is both plausible 
and useful. 

The parser's first task is to find the boundaries between 
steps. In some cases, the separators in the lexicon will mark 
these boundaries. Separators alone will not solve the problem, 
for two reasons. In some cases the separators are just not there. 
More important, the parser must function to some extent in the 
early stages of the learning process -- when most of the 
lexicons do not contain accurate information about separators. 
In the absence of reliable separators, we can use semantic cues 
to find the boundaries between steps. It is not possible for the 
same object to be on the left, and also on the right. Therefore 
two words that mean Left and Right should not appear in the 
same step. In the same way, an object cannot be both the first 
and second member of a set -- so two words that mean First 
and Second should not appear in the same step. Exceptions 
exist (“Go past the doors on the left and right”), but they are 
rare in our corpus. One can find the step boundaries with fair 
accuracy using a simple greedy algorithm: keep adding words 
to a step until you find either a separator, or a word that is 
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semantically inconsistent with the words that are already in the 
step.  

Next comes the problem of parsing the steps. We are of 
course not interested in building parse trees for their own sake. 
We are trying to build a semantic representation by combining 
the meanings of keywords, and we want to use syntactic clues 
to find the correct combination. Compare “Take the second 
hall on the right” and “Turn right into the second hall”. In the 
first example the word “right” is in the scope of the ordinal 
“second”. To find the referent of “second hall on the right”, 
one must take the intersection of the set of halls and the set of 
objects on the right, then choose the second member of this set. 
To find the referent of “second hall”, one must find the second 
member of the set of halls; this hall should also be on the right. 
The location of the word “right” tells us whether it is in scope 
of “second” or not.  

This example shows that sometimes we need syntactic 
cues to combine the meanings of keywords correctly. The next 
question is: “How often do we need these cues?”, and the 
answer is “Very seldom”. The syntactic clue used in the last 
example is not even reliable. The sentence “Take a right into 
the first hall” is often synonymous with “Take the first hall on 
the right”. Our parser ignores the syntax of the steps, and 
combines the meanings of keywords with the following simple 
rule. Suppose the keywords describe the ordinal “n-th”, a 
direction D and a type T (either door or hall). The 
representation is n-th DT. That is: we assume the direction is 
in the scope of the ordinal.  

So the parser relies on a simple syntactic assumption 
which is claimed to be true for all human languages, combined 
with semantic parsing techniques that are also supposed to be 
universal. The claim that an object cannot be on my left and 
my right is correct no matter what language we are speaking. 
The phrase “language universal” suggests a profound 
discovery about human language. The language universals 
used here are not exciting discoveries, but they are useful for 
the task at hand.  

VI. THE SEMANTIC INTERPRETER 
This part of the program is very simple. It starts by filling 

in default values for certain features. If no ordinal is given, it 
uses the ordinal “firstf”. So “Take a right” is understood as 
“Take the first right”. If the symbol “doorp” does not appear, 
the program assumes that the type is “hallp” -- that is, the 
destination is a side hall. So “Take a right” means a hall on the 
right, not a doorway. This is not always true. When the 
directions reach the last step, some speakers consider it 
obvious that we are about to enter a doorway, and they say 
“Take the second right” meaning “second door on the right”. 
But such examples are too rare to have much effect on 
performance.  

Given a type T, a direction D, and an ordinal N-th, the 
semantic interpreter takes the intersection of the set of 
currently visible objects of type T and the set of currently 
visible objects whose direction is D. From this set it chooses 
the N-th element. It moves the point of view to a point inside 
the doorway, or a point a short way down the hall. Then it 
proceeds to the next step. If it reaches a point inside an office, 

it assumes that this is the desired destination, and ignores the 
rest of the input.  

VII. THE SEARCH ALGORITHM  
The genetic algorithm represents a lexicon as a vector of 

words. Four positions in the vector are reserved for each of the 
possible meanings, but some of these positions can be left 
empty. So the vector contains up to four words that mean 
“left”, up to four words that mean “right”, and so on. The 
words are chosen from a list of the 87 words that occur most 
frequently in our corpus. Rare words cannot be very useful 
because in most of the examples, they never appear at all. So 
in building the initial population, the program fills each slot as 
follows. With probability 0.2, the slot is left empty. If the slot 
is filled, the probability of choosing a word is equal to its 
frequency in the corpus.  

The genetic algorithm itself is quite routine. Parents are 
chosen by tournament selection, with a tournament size of 4. 
The population size is 12,000 -- a bit on the high side. The 
measure of fitness is the number of decisions that are made 
correctly. So if a path contains three decisions and a certain 
lexicon gets only the first decision right, it still gets one point. 
The algorithm typically makes progress for 50 to 60 
generations before it plateaus. The result is a pretty good, but 
not excellent, solution.  

The next phase of learning is hill-climbing. This phase is 
effective because the genetic algorithm is able to reach a part 
of the search space that is well-behaved -- a place where 
simple hill-climbing can get results. Each step of hill climbing 
starts with a cleanup. The program removes any word- 
meaning pair that fails to improve performance by at least 0.75 
percent. Next it addresses a particular weakness of the genetic 
algorithm. It tends to confuse the ordinals -- thinking that 
“third” means “last”, for example. The hill-climbing algorithm 
checks each pair (W,O), where W is a word and O is an 
ordinal. If it is possible to improve performance by replacing 
ordinal O with another ordinal, the program does so.  

When the cleanup phase is complete, the hill-climbing 
algorithm considers every lexicon formed by adding a single 
pair to the current lexicon, choosing the one with the best 
performance. As usual, it repeats the cleanup and addition of a 
pair until no more improvement results.  

Given a lexicon and a starting point, the semantic 
interpreter returns a path. Comparing this path with the correct 
path in the data, one can mark each decision on the path as 
correct or incorrect. The performance of the path is the 
number of correct decisions. If the first decision on the path is 
wrong, performance is zero. Otherwise it is one plus the 
performance of the rest of the path. Perfect performance is 
equal to the number of decisions on the correct path.  

A ten-fold cross validation yields an average performance 
of 73 percent of perfect performance. The program returned 
the same lexicon eight times. It was as follows.  

separators: comma,period,and,enter,go,then  

leftp: left  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rightp: right   

doorp: door,doorway,office,room  

firstf: first   

secondf: 2nd,second  

thirdf: third   

lastf: last  

Notice that the verbs “go” and “enter” appear as separators. 
Most of the data consists of imperative sentences, and an 
English imperative starts with the main verb. If “go” and 
“enter” are common main verbs, they will often appear at the 
beginning of step, and the system can correctly count them as 
separators. 

The other two lexicons created by the system are as 
follows. One adds the word “3rd” to the lexicon above, while 
the other omits the word “then”. All definitions in these three 
lexicons are correct.  
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