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Abstract—Locating diffusion source in network is an important 
issue in network data analysis. Many methods have been 
developed. However, noiseless assumption used in the literature is 
restrictive and the methods are not robust enough. In this paper, 
we consider the problem of locating diffusion source in networks 
with the noisy presented. Since the sample size is much smaller 
than the dimension of unknown parameters, the Lasso method is 
used to identify the locating diffusion source in networks. 
Simulation results confirm the effectiveness of our method. 
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I. INTRODUCTION 
Dynamical process is commonly taken place in complex 

network such as epidemic spreading in the human society [1], 
[2]. Identifying the spreading source is a very important issue 
in network data analysis. Many works have been developed on 
this issue, such as maximum-likelihood estimation [3], belief 
propagation [4], the phenomena of hidden geometry of 
contagion [5] and inverse spreading [6]. Satterlee and Penman 
[7] studied some simple models of disease transmission on 
small-world networks.  Balcan et al. [8] gave a computational 
model of infectious diseases. These researches found the 
important sources in the networks. So how to locate the source 
exactly in network is a challenging problem. Yuan et al. [9] 
considered the exact controllability of the network. Shen et al. 
[10] considered a general locatability framework for sources 
localization in complex networks by time-reversal backward 
spreading. Moreover, vital nodes identification [11], [12], [13] 
attracted great attentions in different complex networks. Hu et 
al. [14] considered the localization of diffusion sources in 
complex network, where a theoretically optimal algorithm has 
been proposed to identify the source node. However, this 
algorithm is actually solved a nonconvex optimization problem 
and was computational heavily when the number of the nodes 
was large. Then the authors proposed a compress sensing CS 
method to identify the source node, which could be solved 
efficiently. 

We briefly review this CS based approach. Let N be the 
number of the nodes in the network. Variable  denotes 
the state of node  at time , which describes the 
concentration of water or air pollutant, etc. Denote  the 
diffusion coefficient and  the weight of the directed link 
from node  to node . Specifically  for undirected 
networks.  Let  be the weighted adjacent 
matrix and  be the diagonal 
matrix with , where  denote the 

neighborhood of node . Denote  the Laplacian 
matrix. Define 

         (1) 

where . The vector  is the 
output at time  and  is the output matrix. The 
matrix  satisfies the observability rank condition [9] and can 
be determined by the algorithm of Hu et al [14]. 

Denote  the initial time of the spreading. Then 

 

and consequently  

 

Generally, to obtain a unique solution, no fewer than  
snapshots of measurement are needed. Assume that 
uninterrupted time series from  to  are available. 
Then one has the equation 

               (2) 

where 

 

Given , CS method can be applied to recover the sparse 
signal , based on the equation (2). 

In practice, the observations often contain many noise or 
measurement error. Recall that  denotes the true state of 
nodes at time . However, in practice, it is inevitable that the 
observation  contains some noisy or measurement error. 
Therefore, it is more reasonable to consider the model 

 

where  stands for the independent noisy with mean 
zero and unknown variance. 
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The classical CS methods aim to recover a sparse signal for 
the case of no noise and consequently are well suited for the 
model (2). When there is measurement error or noise presented, 
CS method is not applicable any more. In this paper, we 
propose a Lasso method to solve the problem. 

II. IDENTIFY THE SOURCE DIFFUSION BY LASSO WHEN 
MEASUREMENT ERROR IS PRESENTED 

A. Review of Lasso  
Lasso proposed by Tibshirani [15] is a statistical method 

that can be used to recover the sparse signal for a linear model 

 

where  are  observations with 
and  and  is the 

unknown sparse vector, while  denotes the random error. 
Here  can be much large than . Write the model in matrix 
form, we have 

 

where  and 
. The goal is to estimate the sparse 

coefficient . Let  and 
. 

Lasso estimates  by minimizing the following objective 
function 

. 

Here  is the tuning parameter and can be calculated by a 
modification of the LARS algorithm (Tibshirani (2004)). In 
addition, the estimator  is generally sparse.  

B. Localization of Diffusion Sources by Lasso 
When the noises are presented, similar to (2), we have the 

model 

         (3) 

Then  and consequently 
. Since Lasso can handle the 

case where the sample size is much small than the dimension of 
unknown parameter. Therefore, the number of observations can 
be significantly reduced. Therefore, snapshot of the network 
can be much less than  and requirement on  can also be 
relaxed. In this paper, we assume that  and  are known. 
Given the observation at time point , 
where  can be much small than , we have the model 

            (4) 

where 

 

and . 

Then we can apply Lasso method to estimate the sparse 
vector , minimizing the objective function 

      (5) 

where . 

III. SIMULATION 
To illustrate the performance of our diffusion source 

localization in networks with the noisy data, we consider 
different kinds of unweighted networks. Because of the lack of 
controllable noise in the real networks, we set parameters and 
build ER networks. We use a standard index, receiver operating 
characteristic curve (ROC curve), to test the performance. The 
larger the area under the curve(AUC), the better the 
performance. AUC = 1 means that the initial messenger nodes 
can be found entirely. 

We generate the data from the model (4) with 
, where the number of 1 depends on 

the value of . 

There are 5 parameters. 

: With probability , we connect each pair of nodes; 

: number of nodes; 

: number of source spreading nodes; 

: number of observed nodes; 

: parameter controls the diffusion coefficient . 

 

In the following figures, for each setting, we repeat  = 
200 times to compute the average TPR and FPR and plot the 
ROC curve. 

A. Effect of  
We set parameter  to control the sparsity of the networks. 

As shown in Figure I, for  = 0.1,0.2,0.3,0.4 and 0.5, there are 
slightly differences of the ROC and the AUC remained above 
0.9. In the case of sparse network, the sparse degree does not 
affect the effectiveness of our method. 
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FIGURE I. EFFECT OF . WE CHANGE  = 0.1,0.2,0.3,0.4 AND 0.5. 

AND SET  = 50,  = 4,  = 10,  = 1. THE RESULTS ARE 
OBTAINED BY OVER 200 SIMULATIONS. 

B. Effect of the Number of Nodes   
We build network with different number of nodes, e.g., 

50,100,150,200. Figure II shows that smaller values of  
results in higher values of AUC. With the same amount of the 
initial messenger nodes, larger network is sparser than the 
smaller one. 

 
FIGURE II. EFFECT OF . WE CHANGE  = 50, 100, 150 
AND 200. AND SET  = 0.4. THE OTHER PARAMETERS ARE THE 

SAME AS IN FIGURE I. THE RESULTS ARE OBTAINED BY OVER 200 
SIMULATIONS. 

C. Effect of the Source Spreading Nodes   
We set the amount of the source spreading nodes  = 

1,2,5,10. In Figure III, it shows the value of AUC changes 
slightly if  is equal to 1,2,5 or 10. And the value of AUC 
always stays at a higher level.   

 
FIGURE III. EFFECT OF . WE CHANGE  = 1, 2, 5 AND 10. 
AND SET  = 0.4. THE OTHER PARAMETERS ARE THE SAME AS IN 

FIGURE I. THE RESULTS ARE OBTAINED BY OVER 200 
SIMULATIONS. 

D. Effect of the Observed Nodes   
As we can see in Figure IV, the value of the AUC increases 

when the number of the observed nodes increases. With twenty 
percent of the nodes in network are observed, the accuracy of 
the diffusion source localization is close to 1.  

 
FIGURE IV. EFFECT OF . WE CHANGE  = 5, 8, 10, 15 AND 
20. AND SET  = 0.4. THE OTHER PARAMETERS ARE THE SAME AS 

IN FIGURE I. THE RESULTS ARE OBTAINED BY OVER 200 
SIMULATIONS. 

E. Effect of the Diffusion Coefficient  
In Figure V, we test the influence of the diffusion 

coefficient  with controlling the parameter . We find that 
the value of AUC is always close to 1. So we think the 
diffusion coefficient does not affect the source localization 
much in network. 

Advances in Intelligent Systems Research, volume 153

104



 
FIGURE V. EFFECT OF . WE CHANGE   = 1, 10, 20, 40 
AND 100. AND SET  = 0.4. THE OTHER PARAMETERS ARE THE 

SAME AS IN FIGURE I. THE RESULTS ARE OBTAINED BY OVER 200 
SIMULATIONS. 

IV. DISCUSSION 
We propose a model for locating diffusion source in 

networks with noisy data, which is commonly encountered in 
application. And the Lasso method is used to identify the 
diffusion resource. Simulation results show that the proposed 
method works well under different settings. However, here we 
only consider the case of  and  are known. When  and 

 are unknown, how to estimate them is problem for future 
study.  
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