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Abstract—The Predicted Arabidopsis Interactome Resource 
(PAIR) is an online database of the functional interactions 
between Arabidopsis genes. PAIR is inferred by integrating six 
types of evidence each of which suggests a different aspect of 
functional associations between Arabidopsis genes and therefore 
enables extended analysis on the potential functional impacts of 
the observed omics changes at the physiological level. 
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I. INTRODUCTION 
We present the Predicted Arabidopsis Interactome 

Resource version 5.0 (PAIR v5.0) for analyzing omics data 
changes. Omics experiments are more and more commonly 
explored in contemporary plant research [1–3]. Taking RNA-
seq as example, transcriptomics results can provide a 
comprehensive overview on the differences between sample 
groups in different conditions or at different times. One aim of 
omics data analysis is to elucidate the biological pathways or 
functions that are altered to produce the molecular phenotype, 
so as to understand the regulatory logic behind how and why 
plants react to specific stimuli or interventions. To understand 
pathway-level regulations, a reference network that connects 
functionally linked genes is desired. 

PAIR v5.0 is designed to meet this need by inferring a 
functional interaction network of Arabidopsis genes. This 
network is built by integrating different evidences of functional 
associations in multiple forms and finally infers 335301 
putative functional interactions, which are expected to cover 
~26% of all true protein-protein interactions with ~38% 
reliability. Below we describe the preparation and evaluation of 
PAIR v5.0. 

II. RESULT 
Support vector machine (SVM) [4,5] was used for the 

inference of significant functional associations from six types 
of evidence including 17907 homologous interactions in other 
species (interologs), 517560 gene co-localization, 16233 
phylogenetic profile, 173378 shared functional annotations, 
1791283 domain interactions, 22240 gene co-expression 
profiles. All of the data were retrieved before 12/22/2014. 

31 features were extracted from these six types of evidences 
and their discriminatory powers to discriminate the known 
physically protein-protein interactions from all random protein-
protein pairs were estimated by the the Area Under Curve 
(AUC) in a Receiver Operator Characteristics (ROC) test. 
Finally, 16 features whose AUC of ROC is over 0.6 were 
selected for the subsequent inference of functional interactions 
by SVM (Figure I). 

 
FIGURE I. RECEIVE OPERATING CHARACTERISTICS CURVES AND 

AUC VALUES OF THE FEATURES 

In the SVM modeling process, we choose physical protein-
protein interactions as positive samples. We collected  260013 
experimentally reported physical protein interactions from 
Intact [6], BioGRID [7], BIND [8] and TAIR [9]. If the 
protein-protein interaction was reported by at least two 
researches or reported by any low-throughput experiment, this 
interaction was selected as high confidence interaction for use 
as positive examples. The 260013 protein-protein interactions 
were filtered and 6257 high confidence interactions were found. 
Using a ratio of 1:100, we use randomly generated protein-
protein pairs as negative samples. 

After parameter optimization using 5-fold cross-validation 
and grid search, we identified a set of optimal parameter 

, γ = 0 for SVM training. The resulting model has 
25.79% ± 2.180% sensitivity, and 99.95% ± 0.0099% 
specificity, which were calculated as below. 
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A total of 329,044 interactions were predicted with the 
model trained with optimal parameters. With this 329044 
predicted interactions, we can estimate the size of Arabidopsis 
interactome by solving the equation ‘True positives + False 
positives = All predicted interactions’. This equation is 
equivalent to, 

 I × Sen + ( N – I ) × ( 1 – Spe ) = P 

Where I is the Arabidopsis interactome size; N is the 
number of all possible protein pairs ( pairs 
between 27416 Arabidopsis protein coding genes); P is the 
number of predicted interactions (329,044); and Sen and Spe 
are the sensitivity and specificity, respectively, of the 
prediction model. 

Using this method, we estimate that the size of Arabidopsis 
interactome is . Compared to the number of all the 
possible protein pairs, 1/739 of the Arabidopsis protein pairs 
were predicted to interact according to this model. This 
probability is very similar to the observed interaction rate in 
Yeast (1/775) [10]. Consequently, the reliability of these 
interactions being true physical protein interactions is 38%. 
According to this estimated Arabidopsis interactome size, we 
also estimated the coverage and reliability of other available 
Arabidopsis interactomes (Figure II-B). 

 
FIGURE II. EVALUATION OF NETWORKS 

The quality of the inferred interaction network was 
evaluated, i.e., the fidelity to connect functionally related genes 
together was evaluated by predicting a gene’s function (gene 
ontology term) using a term enrichment tool (PANTHER [11]) 
from the terms that have been annotated to this gene’s first-
degree network neighbors [12]. Results of this evaluation were 
shown as a precision-recall curve (Figure II-A). Among five 
interactomes including Geisler-Lee [13], De Bodt [14], 
STRING [15], and AtPID [16], PAIR v5.0 performance the 
best, which was reflected by the highest AUC in the precision-
recall curves. STRING is the only interactome reached the 
same high recall region, however, the high recall of STRING 
was at the expense of very low precision in all regions. 

III. METHOD 

A. Data Collection and Integration 
Six types of evidence were chosen to be used in the 

prediction. Each of them suggests a certain aspect of 

functional association [17,18]. Thirty-one features were 
computed to represent these six types of evidence by different 
mathematical characterizations. 

Gene co-expression: Interacting proteins are often co-
expressed. We computed co-expression features from six 
microarray expression AtGenExpress data sets: AtGenExpress  
light, AtGenExpress pathogen, AtGenExpress development, 
AtGenExpress abiotic stress,  ecotypes [19–21]), and TAIR 
(ftp://ftp.arabidopsis.org//Microarrays/analyzed_data/affy_dat
a_1436_10132005.zip). These data sets were all pre-
normalized by a robust multi-array average method [22]. 
Using these data sets, we calculated the Pearson’s correlation 
coefficients for each pair of proteins, which produced six co-
expression features. 

Shared ontology annotation: Functional related protein 
coding genes were expected to have similar descriptions in 
nature language in the biology knowledge-base. Considering 
using geneontology database as our knowledge-base, a 
protein-coding gene A is represented by all the geneontology 
terms annotated by A, define this term list as term(A). Then 
the functional linkage between a protein/gene pair can be 
described as a function F(term(A), term(B)). In our model, F is 
the minimum parent geneontology term shared by A and B. 
The number of the genes annotated by this parent term and all 
its children terms has been counted as the Minimum Parent 
Term Size (MPTS). We calculated the fraction of the MPTS 
and the size of the whole Arabidopsis genome as the feature 
score. 

Domain interaction: Protein interactions involve physical 
interactions between their domains. It has been proposed that 
novel protein interactions can be inferred by known domain 
interactions. In our prediction method, the domain 
composition of each protein was annotated according to the 
Pfam database [23], which assigned one or more of the 2,854 
distinctive domains to one or more of the 20,183 Arabidopsis 
proteins. Known domain-domain interactions were retrieved 
from the DOMINE database [24]. DOMINE contains two 
domain interaction datasets inferred from PDB entries (i.e. 
iPfam and 3did), and 13 datasets predicted by different 
computational approaches (i.e. ME, RCDP, Pvalue, Fusion, 
DPEA, PE, GPE, DIPD, RDFF, KGIDDI, INSITE, 
DomainGA and PP). According to each dataset, we counted 
the number of interacting domains in a pair of proteins as its 
feature value. This resulted in 15 domain interaction features. 

Co-localization: Considering the physical interactions 
between proteins, one of the prerequisites of physical 
interactions is that the proteins must be in the same location in 
a cell. Thus, if a pair of proteins are detected in the same sub-
cell location, they are more likely to interact with each other 
than other proteins which are not. We use the sub-location 
database SUBA3 [25,26] as the data source of the co-
localization proteins of Arabidopsis. For every protein, we 
construct a PLV (protein location vector) of n×0 or 1 in order 
to represent the sub-location conditions. If there is a record 
showing the protein is in this sub-cell location, we mark it as 1, 
otherwise, 0. Then we calculate the Tanimato Correlation 
Score of each PLV as the value of their col-localization feature. 
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Phylogenetic profile: The proteins which are co-evolved 
are more likely functional related [27,28], i.e., if a pair of 
proteins are co-presence and co-absence across different 
genomes, there might be functional interactions between them. 
The phylogenetic profiles are extracted from Roundup [29] as 
of the end of 2014. As in the feature of co-localization, we 
constructed the vector of n×0 or 1 to represent the presence or 
absence in one genome of any species. Then we calculated 
three feature values using different methods, including Mutual 
Information, Pearson’s Correlation, Tanimato Correlation of 
each pair of protein vectors.  

Homologous interactions: Homologous proteins may have 
more similar functions than other proteins, and therefore if 
there is an interaction proteins pair was found in a species, we 
can consider that the homologous proteins of the proteins in 
the interaction pair might have a higher probability to interact 
[17,30] and functionally associated. We collected the 
interactomes of four species, including Homo sapiens, 
Caenorhabditis elegans, Drosophila melanogaster, and 
Saccharomyces cerevisiae from following databases: IntAct, 
BioGRID, MINT and DIP. The data were updated to the end 
of 2014. We calculated the feature of interology using the 
equation as follows: 

 

I this equation, A, B represent the protein-coding gene pair 
to be calculated whereas i and j represent the possible 
homologous interacting proteins in one of other four species. 
I(i, j) is an indicator tells if there is a homologous interaction 
pair in a certain species. l(A, i) or l(B, j) is an indicator reflects 
how much is the homology between two proteins(genes), and 
in this study, there are two different methods were used to 
generate this indicator: one is the e-Value from the BLAST, 
and the other one is the ortholog mapping score in the 
InParanoid database [31]. 

We chose the value of the most homologous proteins 
between (A, j) and (B, i) as the representation of the 
homologous of the homology between interaction pairs (A, B) 
and (i, j) if (i, j) exists. Then we identified the most non-
homologous interaction pair through all interactomes from 
four species as the representation of their value of homologous 
interaction feature. Since we used two different kinds of l(A, i) 
or l(B, j), we finally computed two values of this feature. 

B. Network Evaluation 
We evaluated the newly inferred Arabidopsis interactome 

(PAIR 5.0) together with other four available interaction 
networks, i.e., Geisler-Lee, De Bodt, STRING and AtPID. 
Since PAIR v5.0 was inferred from data that were released up 
to the 12/22/2014, we selected 1313 genes from the Gene 
Ontology database with new annotations that were added after 
the time of our data collection. These genes have a total of 
19178 annotations and 4930 of them were newly updated since 
2015. These genes and their annotations were used to evaluate 
the quality of interaction networks. 

For each of the 1313 target genes, we first identified all 
first-degree neighbors of a target gene in the PAIR interaction 

network to create a gene set. This gene set was analyzed by 
PANTHER to find enriched annotation terms. 

For each p-value cutoff (as in PANTHER), we counted a) 
how many terms are predicted (N); b) how many of the N 
terms are correct (consistent with the known 19178 gene 
annotations, Y); and c) how many of the 4930 new annotations 
were covered by the N terms. Precision and Recall were 
calculated as follows. 
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