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Abstract—In this paper, we obtain the optimum plan by 
discussing a step-down-stress accelerated life testing (SDS-ALT) 
satisfying some specific condition at k stresses under an 
exponential distribution. 
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I. INTRODUCTION 
Reliability evaluation for products of high-reliability and 

long-lifetime is one of the challenges in reliability 
engineering[1]. ZHANG Chun-hua[2-4] proposed a method of 
step-down-stress accelerated life testing (SDS-ALT). CHEN J 
and WANG D Y[5-6] did an experimental study on 
Double-crossed step-stress accelerated life testing . XU 
Xiao-ling, WANG Rong-hua and YU Song [7] studied 
step-down test based on lognormal distribution , and the 
finding of their study is that the efficiencies of step-down test 
is better than step-up test .WANG Yu-ming and SUN 
Yu-dong[8-9] studied double-crossed step-down-stress 
accelerated life test under different life distribution. LÜ 
Meng[10] gave an optimal design of double-crossed 
step-down-stress accelerated life test. Chernoff[11] initially 
discussed the optimum plans for simple constant-stress 
accelerated life tests under an exponential distribution, Mao 
shi song[12-13] studied constant-stress ALTs. J.F. Lawless 
and R. Liu [14-15] studied stress accelerated life testing . 
MEEKER W Q and AN Zong-wen [16-17] studied accelerated 
life problems based on certain distribution. 

KOU Hai-xia and An Zong-wen[18] studied double 
synchronous-step-down-stress accelerated life testing .This 
paper gives the optimum plan for a step-down-stress ALT 

which satisfies the condition 
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an exponential distribution at k≥3 constant stresses by 
minimizing the asymptotic variance of MLE in line with a 
linear accelerating equation . 

II. BASIC ASSUMPTION AND LEMMAS 
A step-down-stress ALT with censoring I can be designed 

as following: 

We sample n(n≥r) products at random, supposing the unit 
number at stress level si to be 1τ , divide them into 2S  

groups and test the life times of the products at stress level 

1S  respectively till 2τ products fail ,where 1k −  is a usual 

stress level ,the failure data at stress level kS  are denoted by 

1
, ,

ri
i it t  respectively (i=1,…k). Let the life times of the 

products satisfy the following assumptions: 

A1: The life times of the products at stress iS  follow an 

exponential distribution with t
i

ietF λ−−=1)( , 

T ≥ 0 , ki ,,1= ; 1i iθ λ= is a mean life at stress iS . 

A2: The accelerating equation between mean life θ  and 
stress S  is: θln ( )a b sφ= + , where ( )sφ is a decreasing 
function of S . 

According to the test data and the basic assumptions, the 
likelihood function is  
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Where 0 0τ =  is the total time of the test at stress 

iS (i=1,…,k).  

By (1.1) we have:  
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From A2, we have : iba
i e Φ+=θ and put it into (1.2) , 
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Lemma1.1: When testing with censoring I, we have 
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III. ASYMPTOTIC VARIANCE OF THE LOG MEAN 
To compute the Fisher information matrix of the log 

likelihood function (1.3) 
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The following instructionsThe meaning of inA : set X For 
product life,The distribution of (1.3) so 
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Then the Fisher information matrix of the likelihood 

function is: 11 12
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And so the asymptotic variance of the log mean life at 
usual stress is : 
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IV. OPTIMAL DISTRIBUTION OF THE FAILURE NUMBER 
IN A STEP-DOWN-STRESS ALT WITH CENSORING Ⅰ 

To make computing and application easy, we take k 
accelerating stress levels satisfying: 
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where d is a integer,∆  is a constant, i=2, …, k. 

Put (3.1) into (2.5), then: 
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The optimum test plan in a step-down-stress ALT ,on one 
hand, requires the minimum Asymptotic variance of estimator 
at normal stress so as to improve the preciseness of statistical 
analysis, on the other hand ,needs to satisfy that the failure 
numbers at higher stress levels are not smaller than that at the 
minimum stress level so as to get more failure data in a 
shorten time, moreover, the following conditions should also 
be satisfied: 
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In the rest of the paper, we assume that (4.3) holds and 
give the optimal distribution plan of r failure numbers at k 
accelerating stress-levels by regarding the minimum 
asymptotic variance of the log mean as principle. 

Theorem For a step-down-stress test with censoring I at k 
stress levels, if (3.3) holds, the optimum failure numbers of 
transformation are 1A diminishing. 

Proof: 
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V. OPTIMAL DISTRIBUTION OF THE SAMPLE NUMBER IN 
A STEP-DOWN-STRESS ALT WITH CENSORING Ⅰ 

One of the purposes to accelerate life tests is to shorten the 
testing time and cut down the testing cost ,therefore ,one can 
assume that the mean times of the step-down-stress SDS-ALT 

at time τ   geometric sequence. 1 2 k
PA A A
K

= = = = . 
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