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Abstract—The role of Ca2+ release from endoplasmic reticulum 
(ER) in influencing intracellular Ca2+ oscillation is elucidated. 
Various types of oscillations in a two-pool model are discussed, 
based on fast-slow dynamic analysis. Three types of burster are 
obtained by varying the parameter affecting Ca2+ release from 
ER, namely, subHopf-subHopf of point-cycle type, subHopf-cycle 
of point-cycle type with multiple rhythms and fold-fold of point-
point type. The results may help us better understand the role of 
Ca2+ release played in complex intra- and inter-cellular Ca2+ 
signaling. 
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I.  INTRODUCTION 
Ca2+ is the most widely used second messenger in both 

excitable and non-excitable cells [1]. In response to adequate 
agonist stimuli, Ca2+ concentration increases, oscillates and 
decreases, leading to regulate many cellular events, such as 
fertilization of oocytes, cell division and secretion [2].  

Among these oscillations, burst is highly correlated with 
encoding of information processing [3]. Many literatures are 
presented to reveal the dynamics underlying burst Ca2+ 
oscillations and their transitions in experimental observations [4].  

It is known that topological classification of burst 
mentioned above can be carried out by means of the fast-slow 
dynamic analysis [5-7]. For understanding the computational 
properties of bursting behaviors, the geometry of the phase 
plane, which is depicted in case of the fast-slow dynamic 
analysis, should be discussed. 

Marhl et al. proposed a two-pool model of calcium-induced 
calcium release (CICR) with a focus on the role of calcium 
binding proteins and mitochondria. With associated calcium 
pumps and calcium leak fluxes, this model is presented to 
explain calcium oscillation that occurs without IP3, which have 
similar characteristics as those observed in the experiments in 
cell biology [8-13].  

Bifurcation analysis of a theoretical model, proposed by 
Borghans and co-authors, was conducted by Zhang [8]. Regular 
and chaotic bursting calcium oscillations were investigated in a 
wide range of parameter values. A mathematical model is 
considered to reveal the impact of the calcium pump. Regular 
and quasi-periodic calcium oscillations are obtained by varying 

the calcium pump parameter. Perc investigated the flexibility 
and sensitivity of the calcium oscillation comparatively for 
chaotic calcium oscillations, and the results showed that the 
complexity of calcium oscillations did not directly imply 
sensitivity or flexibility [10].    

However, to the best of our knowledge, we believed that 
insufficient attention was being paid to the role of rate factor of 
calcium leak flux through ER membrane (kleak). Such a factor 
can vary according to the various environmental conditions. It 
is known that calcium leak flux out of ER is described by 
plausible rate laws. Once the IP3 receptor is open, the calcium 
ions leak out of ER into cytoplasm before inactivation by Ca2+ 
occurs. A special interest is how the factor influences the level 
on the calcium oscillation behavior. 

II. MODEL DESCRIPTION 
The model we considered here is mainly concerned with the 

functioning of two possible mechanisms (that is CICR and the 
mitochondrial CICR). In addition, cytosolic calcium binding 
proteins is also taken into account [9].  

This model can be described by the following equations: 
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This model consists of three variables, i.e. free Ca2+ 
concentration in cytosol (Cacyt), in ER (Caer), and in 
mitochondria (Cam). Parameters used in simulation are: kleak = 
0.01 s-1, kpump = 20.0 s-1, kin = 300 µMs-1, km = 125 s-1, k+ = 0.09 
µMs-1, k- = 0.01s-1, K1 = 5.0 µM, K2 = 0.8 µM, Catot = 90 µM, 
Prtot = 120 µM, ρer = ρm = 0.01, βer = βm = 0.0025.   

Seeing equations (1)-(3) as the full system with fast 
subsystem and slow subsystem, we consider the burst patterns, 
where Cam is used as the bifurcation parameter [5-6]. 

III. SIMULATION 
Fig.1 shows the corresponding time evolutions of Cacyt at 

different values of kleak, that is, subHopf-subHopf burster for 
kleak = 0.077 (Fig. 1(a)), the subHopf-cycle burster with 
multiple rhythms for kleak = 0.2131 (Fig. 1(b)) and fold-fold 
burster for kleak = 0.33 (Fig. 1(c)), are illustrated in the model.  

300 320 340 360 380 400
0.0

0.2

0.4

0.6

Ca
cy

t[µ
M

]

t(s)

(a)

 

300 320 340 360 380 400
0.0

0.2

0.4

0.6

Ca
cy

t[µ
M

]

t(s)

(b)

 

300 320 340 360 380 400
0.0

0.2

0.4

0.6

Ca
cy

t[µ
M

]

t(s)

(c)

 
FIGURE I.  TIME SERIES OF CALCIUM OSCILLATIONS: (A) 

SUBHOPF-SUBHOPF BURSER FOR KLEAK = 0.077. (B) 
SUBHOPF-CYCLE BURSTER FOR KLEAK = 0.2131. (C) FOLD-

FOLD BURSTER FOR KLEAK = 0.33. 
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FIGURE II.  THE FIRST (BLACK) AND THE SECOND (RED) LARGEST 

LYAPUNOV EXPONENTS Λ1, 2 OF THE WHOLE SYSTEM. 

The diagram of the first and the second largest Lyapunov 
exponents is shown in Fig. 2. This system is considered chaos 
as the first largest Lyapunov exponent becomes positive.  

Many theoretical studies of different bursting calcium 
oscillations have been published, treating Caer as the slow 
variable. In other theoretical studies, Cam is used as the slow 
variable. To investigate the bifurcation of various calcium 
oscillations we consider different time scales. 
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FIGURE III.  BIFURCATION DIAGRAM OF FAST SUBSYSTEM. CAM 

IS TREATED AS THE BIFURCATION PARAMETER FOR THE 
SUBHOPF-SUBHOPF BURSTER OF POINT-CYCLE TYPE FOR 

KLEAK = 0.077 (A) AND THE SUBHOPF-CYCLE BURSTER 
WITH MULTIPLE RHYTHMS FOR KLEAK = 0.2131 (B). BLACK 
SOLID (BLACK DASHED) LINE IS THE STABLE (UNSTABLE) 

STEADY STATE. HB REFERS TO THE SUBCRITICAL HOPF 
BIFURCATION. LP (UP-TRIANGLE) IS THE FOLD 

BIFURCATION OF LIMIT CYCLE. THE THICK BLUE LINE IS 2D 
PROJECTION OF THE TRAJECTORY IN THE WHOLE SYSTEM. 
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Fig. 3(a) shows the fast-slow dynamical analysis for the 
subHopf-subHopf burster of point-cycle type for kleak = 0.077. 
In this case, the variable Cam was chosen as the bifurcation 
parameter. It is seen that the fast subsystem has a subcritical 
Hopf bifurcation point (HB). Unstable periodic branches 
originating from HB become stable through the fold limit cycle 
bifurcation point (LP).  

The characteristic of this type of burster is that the active 
and silent phase depends on the stable limit cycle of the fast 
subsystem. Transition from the up-state to the down-state is 
due to LP. As kleak increases, the subHopf-cycle burster with 
multiple rhythms occurs (see Fig. 3(b)).  

To understand this type of burster, one can follow the 
trajectory of the whole system. The trajectories pass through 
HB and extend to the stable attractor, which contributes to the 
starting of the active phase. 

It takes more time before reaching limit cycle due to the 
slow passage effect [9]. The trajectories reach LP. In the 
proposed scheme, this burster is of the subHopf-cycle type with 
multiple rhythms. The main difference between them is the 
stable periodic attractor corresponding to repetitive spiking 
disappears through LP in Fig. 3(b). 

Model dynamics is investigated based on another slow 
variable Caer. Fig. 4 shows the fast-slow dynamical analysis of 
the fold-fold burster for kleak = 0.33. Unlike the previous cases, 
the fast subsystem has two fold bifurcations (F1 and F2). This 
characteristic is that the rest state disappears through F2 and the 
active state disappears through F1. It is seen that the fast 
subsystem does not have a limit cycle for any value of Caer. So, 
this system displays the point-point type instead of point-cycle 
type. 

IV. CONCLUSIONS 
The influence of rate factor of calcium release from the ER 

on Ca2+ oscillations in the two-pool model is investigated. 
Different effects of the slow variables Cam as well as Caer on 
the occurrence of bursting patterns are studied, based on the 
bifurcation theory and the fast-slow dynamical analysis. 

A new subHopf-cycle burster of point-cycle type with 
multiple rhythms is found in our simulations. Transition 
mechanisms with the parameter kleak varying are also explained. 
Our results show that the rate factor of calcium release from the 
ER and the slow variables on different time scales may 
simultaneously influence the complex calcium oscillations in 
biological cells. Meanwhile, the results in this paper indicate 
that the rate factor of calcium release from the ER could be of 
significant importance on various oscillating patterns of the 
biological cell systems.  

The method proposed in this paper can be applied to other 
cell system or other bifurcation parameter. The rate factor of 
calcium release from the ER may be of great importance in 
intracellular calcium activities. We should point out that further 
studies of intercellular and intracellular synchronization of 
calcium oscillation are needed to reveal the importance of 
dynamics in propagating calcium signals. 
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FIGURE IV.  BIFURCATION DIAGRAM OF THE FAST SUBSYSTEM. 

THE SLOW VARIABLE CAER IS TREATED AS THE 
BIFURCATION PARAMETER FOR THE FOLD-FOLD BURSTER 

OF POINT-POINT TYPE FOR KLEAK = 0.33. BLACK SOLID 
(BLACK DASHED) LINE IS THE STABLE (UNSTABLE) STEADY 
STATE. F1 AND F2 REFER TO THE FOLD BIFURCATION. THE 
THICK BLUE LINE IS 2D PROJECTION OF THE TRAJECTORY 

IN THE WHOLE SYSTEM. 
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