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Abstract—This paper analyzes optimal investment strategies for a 
DC pension fund under the Hull-White interest rate model. Under 
this model, the pension fund manager can invest capital in the 
bank account, stock index, and real estates. The dynamics of the 
interest rate follows the Hull-White interest rate model, and a 
drifted Brownian motion drives the financial market. The pension 
fund manager aims to maximize the expected terminal utility of 
wealth in a complete market setting under constant relative risk 
aversion (CRRA).  This paper derives the Hamilton-Jacobi-
Bellman (HJB) equation associated with the control problem using 
a dynamic programming technique. We obtain the explicit solution 
for optimal investment policies by solving the HJB equation and 
optimal value function. The results show that the optimal 
proportion invested in risky assets is higher in stock than in a real 
estate.  

Keywords-optimal investment strategy; defined contribution 
pension fund; stochastic dynamic programming; interest rate 

I. INTRODUCTION 
The fundamental idea of the pension fund is to finance the 

benefits to the particular group of recipients after retirement.  
These benefits are paid over a fixed period or for life. Managing 
such funds requires continuously monitoring the risk exposure 
and regularly rebalancing assets.[1] reported that the benefits 
are the results of three combined processes namely; 
accumulation of contributions, the investment returns of 
contributions and the presence of minimum guarantees on the 
benefits at retirement (guarantee on the lump sum) or after 
retirement (guarantee on annuities).  

Today, studies on the management of DC pension fund in the 
presence of stochastic interest rate has gained remarkable 
considerations in actuarial science and financial mathematics. 
For example, [2-5] presented comprehensive materials and 
theories of DC pension in the stochastic interest rate. In these 
studies, the interest rate is considered as a Vasicek type and 
taking the affine structure. Also, the affine structure has been 
studied extensively in the following works [6-10]. 

The stochastic dynamic programming method for solving 
DC pension fund problems is reported in [2], [6] [11], [12] and 
the reference therein. These studies aimed to maximize the 
utility of terminal value of DC pension fund during the 
accumulation phase. In these studies, martingale and duality 
approach was applied to find exact solutions for the CRRA 
utility function. Similarly, [4] used the stochastic dynamic 

programming to solve the continuous-time optimal portfolio 
management problem of DC pension plans. Under this study, the 
contribution flows, interest rates, and inflation rates are assumed 
to follow the stochastic model. Also, [7] used stochastic dynamic 
programming method to examine the optimal asset allocation for 
a DC pension plan with downside protection under stochastic 
inflation. 

Likewise, [13] discussed the portfolio optimization problem 
for an investor seeking to find the maximum expected utility of 
the terminal capital in a DC pension plan. The approach focused 
on a constant elasticity of variance (CEV) model, which describe 
the stock price dynamics without considering minimum 
guarantee on the terminal wealth. The exact solutions for the 
CRRA and CARA (Constant absolute risk aversion) utility 
function determined using stochastic optimal control, variable 
change technique, and power transform. In the same line, [5] 
applied optimal stochastic control method to investigate optimal 
asset allocation for aggregated defined benefits pension fund 
with the stochastic interest rate. The study aimed to minimize 
deviations of the unfunded actuarial liability from zero along a 
finite time horizon. 

Moreover, [9] applied the HJB equation, Legendre 
transformation, and dual theory to find the optimal investment 
strategies of DC pension fund. The proposed models included 
the stochastic interest rate. They assumed that the pension fund 
manager could invest in a risk-free asset, a zero-coupon bond, 
and a single risky asset. 

Comprehensive reviews concerning the optimal asset 
allocation and the dynamics of interest rate are modeled by; 
Vasicek model, Cox-Ingersoll-Ross (CIR) model and affine 
interest rate models (this combine both Vasicek and CIR). 
Although these approaches are used in practice, Vasicek model 
provides unique characteristics, in which the interest rate can be 
treated using normally distributed technique and simplifies the 
optimal portfolio strategy [2], [4], [5], [14]. 

For decades, various researchers have used Vasicek model, 
CIR model and affine models to study investment strategies and 
optimal management of a DC pension under the stochastic 
framework. However, these models are built upon a particular 
diffusion process with constant (i.e., time-independent) 
coefficients, which is not suitable for solving problems related 
to DC pension fund. So, the investment decision for a pension 
plan should not be treated as a constant value because the interest 
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rate is stochastic taking an extended period. Therefore, it is 
suitable to consider the future interest rate as the time-dependent. 

In this view, the present study attempts to find the optimal 
investment strategy for DC pension fund in an uncertain 
environment whose interest rate follows the Hull-White model. 
The risky assets price and the contributions are modeled using 
the geometric ى motion, and the optimal investment strategies 
are derived using CRRA utility function. The most important 
feature of the Hull-White model as revealed in [15] it provides 
complete structure and the term structure of forward rate 
volatilities. The main novelty of this paper is in the following; it 
proposes the use of the Hull-White interest model to describe the 
behavior of optimal investment strategies for a DC pension fund; 
find the explicit solution for optimal investment strategies, we 
give simulation results and explain the impact of model 
parameters on the investment strategies. 

This paper is organized as follows: Section II presents the 
mathematical model. Section III gives the proposed optimization 
problem and the explicit solution for CRRA utility function. In 
section IV the numerical example is presented to illustrate the 
efficiency of the proposed model. Finally, some concluding 
remarks are given in section 5. 

II. MATHEMATICAL MODEL 
In this section, we present the market structure and describe 

the stochastic dynamics of the asset values and the contributions. 
We consider a frictionless and complete financial market, which 
is continuously open over the fixed time interval [0,𝑇𝑇], where 
𝑇𝑇 > 0  stands for the retirement time. Let (Ω,ℱ,ℱ(𝑡𝑡) 𝑡𝑡≥0,Ρ) be 
a filtered complete probability space and ℱ(𝑡𝑡) represents the 
information available before time 𝑡𝑡 in the market. We assume 
that all the processes introduced below are well defined and 
adapted from  ℱ(𝑡𝑡) 𝑡𝑡≥0. 

A. The Financial Market 
The financial market consists of three classes of assets 

namely fixed income securities (Bond/Bank account), equities 
(stocks) and real estate securities (property). Bond/bank account 
is considered as risk-free assets while stock and real estate are in 
risky assets categories. These categories of assets operate 
independently and possess different risks depending on market 
conditions. 

1) Fixed income securities: The first asset in a financial 
market is the risk-free asset (bank account or bond) denoted by 
𝐵𝐵(𝑡𝑡) and the price of this asset at time 𝑡𝑡 evolve according to the 
differential equation: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝐵𝐵(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑,𝐵𝐵(0) = 𝐵𝐵0, 𝑟𝑟(𝑡𝑡) > 0,            (1) 

where 𝐵𝐵0 is the initial price of the risk-free asset, and 𝑟𝑟(𝑡𝑡) is the 
instantaneous rate of interest. We assume that the instantaneous 
risk-free interest rate 𝑟𝑟(𝑡𝑡) follows Hull-White model (1990). 
Based on the historical probability measure Ρ, the dynamics of 
𝑟𝑟(𝑡𝑡)  is given by the mean-reverting stochastic differential 
equation (SDE) as: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = �𝜃𝜃(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝜎𝜎(𝑡𝑡), 𝑟𝑟(0) = 𝑟𝑟0,        (2) 

where 𝜎𝜎 > 0,𝜃𝜃(𝑡𝑡), and 𝛽𝛽 denote; the interest rate volatility, the 
mean reversion or long-run mean which is time-dependent, and 
the reversion rate (speed) respectively. 𝑊𝑊(𝑡𝑡)  is a standard 
Brownian motion. 

2) The stock: The second asset in the financial market is 
stock denoted by 𝑆𝑆(𝑡𝑡)  whose dynamic follows stochastic 
differential equation given by: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝜃𝜃𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑+ 𝜎𝜎𝑠𝑠𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡),𝑆𝑆(0) =  𝑆𝑆0,     (3) 

where 𝑆𝑆0,𝜃𝜃𝑆𝑆(𝑡𝑡)  and 𝜎𝜎𝑠𝑠  denote; the initial stock price, the 
expected instantaneous rate of return, and the stock volatility 
respectively. 

3) The real estate security: The third asset in the financial 
market is a real estate; this is a significant investment asset and 
a potential contributor to pension fund wealth. In this study, we 
denote property by 𝑅𝑅(𝑡𝑡), with the assumption that dynamics 
follows stochastic differential equation expressed as: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑅𝑅(𝑡𝑡)𝜃𝜃𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑+ 𝜎𝜎𝑅𝑅 𝑑𝑑𝑊𝑊𝑅𝑅(𝑡𝑡),𝑅𝑅(0) =  𝑅𝑅0 ,         (4) 

where 𝑅𝑅(0) > 0,𝜃𝜃𝑅𝑅(𝑡𝑡) , and 𝜎𝜎𝑠𝑠 > 0  are the initial returns, 
expected rate of return, and the real estate price volatility 
respectively. 

B. Contributions 
In the defined contribution management, the fund members 

will be continuously contributing the part of their salaries to 
retirement time 𝑇𝑇 . A completeness of a market takes the 
instantaneous contributions, denoted by 𝐶𝐶(𝑡𝑡) . The dynamics of 
contributions process at time 𝑡𝑡  is given by the following 
stochastic differential equation: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝜃𝜃𝐶𝐶(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝐶𝐶 𝑑𝑑𝑊𝑊𝐶𝐶(𝑡𝑡),𝐶𝐶(0) =  𝐶𝐶0 ,       (5) 

where 𝜃𝜃𝐶𝐶 > 0,𝜎𝜎𝐶𝐶 >  0 , and 𝐶𝐶0 > 0  are; the expected rate of 
contributions, the contributions volatility, and the initial 
contribution respectively. 

C. The Wealth Process and Management 
In this study, the proportion of fund invested in the risk-free 

assets is given by 𝑢𝑢𝐵𝐵(𝑡𝑡) =  1 −  𝑢𝑢𝐵𝐵(𝑡𝑡) − 𝑢𝑢𝑅𝑅(𝑡𝑡), where 𝑢𝑢𝐵𝐵(𝑡𝑡) 
and 𝑢𝑢𝑅𝑅(𝑡𝑡) are proportions of the pension fund invested in the 
stock and the real estates respectively. 

Lemma 2.1: If 𝑋𝑋(𝑡𝑡) is the wealth of a pension fund at time 
𝑡𝑡 ∈ [0,𝑇𝑇], and {(𝑢𝑢𝑆𝑆(𝑡𝑡),𝑢𝑢𝑅𝑅(𝑡𝑡)): 𝑡𝑡 ≥ 0} is a Markovian control 
process adapted to filtration  ℱ(𝑡𝑡) 𝑡𝑡≥0 satisfying the condition; 

Ε∫ �𝑢𝑢𝑆𝑆2(𝑡𝑡) + 𝑢𝑢𝑅𝑅2(𝑡𝑡)�𝑑𝑑𝑑𝑑 < ∞.                        𝑇𝑇
0 (6) 

Then, the dynamics of fund under the investment strategy  
(𝑢𝑢𝑆𝑆(𝑡𝑡), 𝑢𝑢𝑅𝑅(𝑡𝑡)) is given by: 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑋𝑋(𝑡𝑡) �𝑢𝑢𝐵𝐵(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝐵𝐵(𝑡𝑡) + 𝑢𝑢𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑆𝑆(𝑡𝑡) + 𝑢𝑢𝑅𝑅(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑅𝑅(𝑡𝑡) �      +

 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑑𝑑,                                                        (7) 
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where 𝑋𝑋(0) = 𝑋𝑋0  is the initial wealth. By substituting 
equations (1), (3) and (4) in equation (7), the evolution of the 
wealth can be expressed as: 
𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)[𝑟𝑟(𝑡𝑡) + 𝑢𝑢𝑆𝑆(𝑡𝑡)𝜎𝜎𝑆𝑆𝜆𝜆𝑆𝑆 + 𝑢𝑢𝑅𝑅(𝑡𝑡)𝜎𝜎𝑅𝑅𝜆𝜆𝑅𝑅]𝑑𝑑𝑑𝑑 + 𝐶𝐶(𝑡𝑡)𝑑𝑑𝑑𝑑 +  

𝑋𝑋(𝑡𝑡)[𝑢𝑢𝑆𝑆(𝑡𝑡)𝜎𝜎𝑆𝑆𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡) + 𝑢𝑢𝑅𝑅(𝑡𝑡)𝜎𝜎𝑅𝑅𝑑𝑑𝑊𝑊𝑅𝑅(𝑡𝑡)],𝑋𝑋(0) = 𝑋𝑋0.                       
(8) 

III. THE OPTIMIZATION PROGRAM 
The primary aim of the fund manager is to select a portfolio 

strategy to maximize the expected value of a terminal wealth. 
We assume that a plan member will retire at time 𝑇𝑇 and is risk 
averse. The utility function is denoted by 𝑈𝑈(𝑥𝑥), and the optimal 
control problem by: 

max
𝑢𝑢(𝑡𝑡)

𝐸𝐸(𝑈𝑈(𝑋𝑋(𝑇𝑇))) s.t (2) and (8)                    (9) 

whereas (𝑢𝑢𝑆𝑆(𝑡𝑡),𝑢𝑢𝑅𝑅(𝑡𝑡)) ∈ 𝑢𝑢(𝑡𝑡) . 

A. The Value Function and the Hamilton-Jacob-Bellman 
(HJB) Equation 
In stochastic dynamic programming, we define the value 

function of the problem as the conditional expectation. It follows 
from equation (9), the value function of optimal control problem 
for a strategy 𝑢𝑢(𝑡𝑡) is given by: 

𝑊𝑊(𝑡𝑡, 𝑟𝑟,𝑋𝑋) = max
𝑢𝑢(𝑡𝑡)

𝐸𝐸(𝑈𝑈(𝑋𝑋(𝑇𝑇))) |𝑋𝑋(𝑡𝑡) = 𝑥𝑥, 𝑟𝑟(𝑡𝑡) = 𝑟𝑟).   (10) 

The maximum principle leads to the following HJB equation: 

𝑊𝑊𝑡𝑡 + (𝜃𝜃(𝑡𝑡) − 𝛽𝛽𝛽𝛽)𝑊𝑊𝑟𝑟 +
1
2𝑋𝑋

2𝑊𝑊𝑥𝑥𝑥𝑥[𝑢𝑢𝑆𝑆2(𝑡𝑡)𝜎𝜎𝑆𝑆2 + 𝑢𝑢𝑅𝑅2(𝑡𝑡)𝜎𝜎𝑅𝑅2] 

+ 1
2
𝜎𝜎2𝑊𝑊𝑟𝑟𝑟𝑟 + [𝑟𝑟𝑟𝑟 + (𝑢𝑢𝑆𝑆(𝑡𝑡)𝜎𝜎𝑆𝑆𝜆𝜆𝑆𝑆 + 𝑢𝑢𝑅𝑅(𝑡𝑡)𝜎𝜎𝑅𝑅𝜆𝜆𝑅𝑅)𝑋𝑋 + 𝐶𝐶]𝑊𝑊𝑥𝑥  

+𝑋𝑋𝑋𝑋𝑥𝑥𝑥𝑥[𝑢𝑢𝑆𝑆(𝑡𝑡)𝜎𝜎𝑆𝑆 + 𝑢𝑢𝑅𝑅(𝑡𝑡)𝜎𝜎𝑅𝑅]𝜎𝜎 = 0,   (11) 
where 𝑊𝑊𝑡𝑡,𝑊𝑊𝑥𝑥,𝑊𝑊𝑟𝑟 ,𝑊𝑊𝑥𝑥𝑥𝑥,𝑊𝑊𝑥𝑥𝑥𝑥  and 𝑊𝑊𝑟𝑟𝑟𝑟  denote partial derivatives 
of first and second order with respect to time, wealth and interest 
rate respectively. The equation (11) is redefined as: 

0 = max
𝑢𝑢

𝑣𝑣(𝑢𝑢) 

At the optimal control 𝑢𝑢∗ , there are two conditions as: 

𝑣𝑣(𝑢𝑢∗) = 0, and  𝜕𝜕𝜕𝜕(𝑢𝑢∗)
𝜕𝜕𝜕𝜕

= 0                         (12) 

Applying the second order condition in equation (11) we 
obtain the optimal investment strategies as: 

𝑢𝑢𝑆𝑆∗(𝑡𝑡) = − 𝜆𝜆𝑆𝑆𝑊𝑊𝑥𝑥

𝑋𝑋𝜎𝜎𝑆𝑆𝑊𝑊𝑥𝑥𝑥𝑥
− 𝜎𝜎𝑊𝑊𝑥𝑥𝑥𝑥

𝑋𝑋𝜎𝜎𝑆𝑆𝑊𝑊𝑥𝑥𝑥𝑥
, and  

𝑢𝑢𝑅𝑅∗ (𝑡𝑡) = − 𝜆𝜆𝑅𝑅𝑊𝑊𝑥𝑥

𝑋𝑋𝜎𝜎𝑅𝑅𝑊𝑊𝑥𝑥𝑥𝑥
− 𝜎𝜎𝑊𝑊𝑥𝑥𝑥𝑥

𝑋𝑋𝜎𝜎𝑅𝑅𝑊𝑊𝑥𝑥𝑥𝑥
                   (13) 

Substituting equation (13) into equation (11), we obtain the 
non-linear second order partial differential equation (PDE) for 
the value function as: 

𝑊𝑊𝑡𝑡 + (𝜃𝜃(𝑡𝑡) − 𝛽𝛽𝛽𝛽)𝑊𝑊𝑟𝑟 + 1
2
𝜎𝜎2𝑊𝑊𝑟𝑟𝑟𝑟 + (𝑟𝑟𝑟𝑟 + 𝐶𝐶)𝑊𝑊𝑥𝑥 −  

1
2

(𝜆𝜆𝑅𝑅2+𝜆𝜆𝑆𝑆
2)𝑊𝑊𝑥𝑥

2

𝑊𝑊𝑥𝑥𝑥𝑥
− 𝜎𝜎(𝜆𝜆𝑅𝑅+𝜆𝜆𝑆𝑆)𝑊𝑊𝑥𝑥𝑊𝑊𝑥𝑥𝑥𝑥

𝑊𝑊𝑥𝑥𝑥𝑥
− 𝜎𝜎2𝑊𝑊𝑥𝑥𝑥𝑥

2

𝑊𝑊𝑥𝑥𝑥𝑥
= 0         (14) 

 
From equation (14), the stochastic control problem has been 

transformed into a nonlinear second order PDE which cannot be 
solved easily using the typical differential techniques. The 
standard approach to address this kind of PDE is by separation 
condition. The subsequent section provides the explicit solution. 

B.  Explicit Solution for the Utility Function 
In this section, we find the explicit solution for the value 

function and optimal investment strategies by using stochastic 
optimal control methods. Considering the case of the CRRA 
utility, and define the utility function 𝑈𝑈: (𝑥𝑥0 , +∞) → ℝ, as an 
increasing, strictly concave, continuously differentiable and 
satisfies the condition that: lim

𝑥𝑥→+∞
𝑈𝑈′(𝑥𝑥) = 0, lim

𝑥𝑥→𝑥𝑥0
𝑈𝑈′(𝑥𝑥) + ∞,   

where 𝑥𝑥0 ∈ ℝ ∪ {−∞} . When these conditions are met, the 
CRRA utility function is defined as:  

𝑈𝑈(𝑥𝑥) = 𝑋𝑋𝛾𝛾

𝛾𝛾
   s.t  𝛾𝛾 ∈ (−∞, 0) ∪ (0,1)\{0},∀𝑥𝑥 ≥ 0,      (15) 

where 𝛾𝛾 is the relative risk aversion. Then, we conjecture the 
solution to equation (14) as: 

𝑊𝑊(𝑡𝑡, 𝑟𝑟,𝑋𝑋) = 𝑈𝑈(𝑥𝑥)𝑓𝑓(𝑡𝑡, 𝑟𝑟),                           (16) 

with boundary condition 𝑓𝑓(𝑇𝑇, 𝑟𝑟) = 1 . Substituting partial 
derivatives of equation (16) into (14) and the simplification 
yields the following equation: 

(𝛾𝛾 − 1) �𝑓𝑓𝑓𝑓𝑡𝑡 + (𝜃𝜃(𝑡𝑡) − 𝛽𝛽𝛽𝛽)𝑓𝑓𝑓𝑓𝑟𝑟 + 1
2
𝜎𝜎2𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟� + 𝛾𝛾(𝛾𝛾 − 1) �𝑟𝑟 + 𝐶𝐶

𝑥𝑥
� 𝑓𝑓2 −

1
2
𝛾𝛾(𝜆𝜆𝑆𝑆2 + 𝜆𝜆𝑅𝑅2 )𝑓𝑓2 − 𝛾𝛾𝛾𝛾(𝜆𝜆𝑆𝑆 + 𝜆𝜆𝑅𝑅2 )𝑓𝑓𝑓𝑓𝑟𝑟 − 𝛾𝛾𝜎𝜎2𝑓𝑓𝑟𝑟

2 =
0.                                                                         (17) 

Again, we conjecture a solution to equation (17) in the form: 

𝑓𝑓(𝑡𝑡, 𝑟𝑟) = 𝐴𝐴(𝑡𝑡) exp(𝐵𝐵(𝑡𝑡)𝑟𝑟),                        (18) 

with boundary conditions 𝐴𝐴(𝑇𝑇) = 1 , and 𝐵𝐵(𝑇𝑇) = 0 . 
Substituting partial derivatives of equation (18) into (17) and 
simplifying we get: 

(𝛾𝛾 − 1)[𝐴𝐴(𝑡𝑡)𝑟𝑟𝐵𝐵′(𝑡𝑡) + 𝐴𝐴′(𝑡𝑡)𝐵𝐵(𝑡𝑡) + 1
2

 𝐴𝐴(𝑡𝑡)𝐵𝐵2(𝑡𝑡) 𝜎𝜎^2 ] + (𝛾𝛾 −
1)(𝑟𝑟 + 𝐶𝐶

𝑥𝑥
 𝐴𝐴(𝑡𝑡) − 1

2
 𝛾𝛾(𝜆𝜆𝑆𝑆2 + 𝜆𝜆𝑅𝑅2 )𝐴𝐴(𝑡𝑡) − 𝛾𝛾𝛾𝛾(𝜆𝜆𝑆𝑆 + 𝜆𝜆𝑅𝑅)𝐴𝐴(𝑡𝑡)𝐵𝐵(𝑡𝑡) −

𝜆𝜆𝜎𝜎2𝐴𝐴(𝑡𝑡)𝐵𝐵2 (𝑡𝑡) = 0.                                                                                 (19)  

Furthermore, removing the dependency on r in equation (19) 
results to ODEs:  
(𝛾𝛾 − 1)𝐴𝐴′(𝑡𝑡) + 𝑀𝑀(𝑡𝑡)𝐴𝐴(𝑡𝑡) = 0,𝐵𝐵′(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡) + 𝛾𝛾 = 0.                (20) 

For simplicity, we denote 𝑀𝑀(𝑡𝑡) by: 

𝑀𝑀(𝑡𝑡) = (𝛾𝛾 − 1) �𝐵𝐵(𝑡𝑡)𝜃𝜃(𝑡𝑡) + 1
2
𝐵𝐵2(𝑡𝑡)𝜎𝜎2 + 𝛾𝛾 𝐶𝐶

𝑥𝑥
� − 1

2
𝛾𝛾(𝜆𝜆𝑆𝑆2 + 𝜆𝜆𝑅𝑅2 ) −

𝛾𝛾𝛾𝛾(𝜆𝜆𝑆𝑆 + 𝜆𝜆𝑅𝑅)𝐵𝐵(𝑡𝑡) − 𝛾𝛾𝜎𝜎2𝐵𝐵2(𝑡𝑡) = 0.                                                     (21) 
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Solving ODEs in equation (20) with boundary conditions 
𝐴𝐴(𝑇𝑇) = 1 and 𝐵𝐵(𝑇𝑇) = 0 we obtain the values of 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡) 
as: 

𝐴𝐴(𝑡𝑡) = exp �
1

(1 − 𝛾𝛾) �𝑀𝑀(𝑡𝑡) −𝑀𝑀(𝑇𝑇)��  ,   and 

𝐵𝐵(𝑡𝑡) =  𝛾𝛾
𝛽𝛽
�1 − 𝑒𝑒−𝛽𝛽(𝑇𝑇−𝑡𝑡)�.                         (22) 

Therefore, we summarize the solution by the theorem below. 

Theorem 3.1: The optimal investment strategies for a DC 
pension fund and the value function with power utility function 
under the Hull-White stochastic interest rate model are given by 
equations (23)-(25) as: 

𝑢𝑢𝑆𝑆∗ = (𝜃𝜃(𝑡𝑡)−𝑟𝑟(𝑡𝑡))
(1−𝛾𝛾)𝜎𝜎𝑆𝑆

2 
+ 𝜎𝜎𝜎𝜎(𝑡𝑡)

(1−𝛾𝛾)𝜎𝜎𝑆𝑆
 ,                            (23) 

𝑢𝑢𝑅𝑅∗ = (𝜃𝜃(𝑡𝑡)−𝑟𝑟(𝑡𝑡))
(1−𝛾𝛾)𝜎𝜎𝑅𝑅2 

+ 𝜎𝜎𝜎𝜎(𝑡𝑡)
(1−𝛾𝛾)𝜎𝜎𝑅𝑅

 ,    and               (24) 

𝑊𝑊(𝑡𝑡, 𝑟𝑟,𝑋𝑋) = 𝑋𝑋𝛾𝛾

𝛾𝛾 
𝐴𝐴(𝑡𝑡)exp (𝐵𝐵(𝑡𝑡)𝑟𝑟(𝑡𝑡)).                        (25) 

Whereby equation (23) and (24) denote the optimal 
investment strategies in stock and real estate respectively. 
Equation (25) is for the value function. In addition to that, the 
values of 𝐴𝐴(𝑡𝑡) and 𝐵𝐵(𝑡𝑡)  are given by equation (22). 

The above theorem permits to review optimal investment 
strategies expressions which are formed by two terms. The first 
term of the optimal policy gives the effects of risk aversion, 
instantaneous volatility, and the risk premium on the investment 
strategies. The second term presents the effects of interest rate 
volatility, risk aversion, risky asset volatility and the reversion 
rate on investment strategy. This term reflects the pension 
manager’s decision to hedge the volatility risk. 

IV. NUMERICAL ILLUSTRATION 
A numerical example of the proposed model was given to 

demonstrate the dynamic behavior of a DC pension fund and 
optimal investment strategy. Tanzania-National Social Security 
Fund (NSSF) real data was used to illustrate the efficiency of the 
proposed model. The parameters used are summarized in Table 
I below. 

TABLE I. PARAMETERS AND THEIR RESPECTIVE VALUE 
Name of a parameter Symbol used Numerical value 
Initial interest rate 𝑟𝑟0 0.065 
Interest rate volatility 𝜎𝜎 0.016 
Reversion rate 𝛽𝛽 0.4 
Mean reversion 𝜃𝜃(𝑡𝑡) 0.067 
Initial stock value 𝑆𝑆0 0.10 
Stock means return 𝜃𝜃𝑆𝑆(𝑡𝑡) 0.116 
Stock volatility 𝜎𝜎𝑆𝑆 0.095 
Initial Real estate value 𝑅𝑅0 0.029 
Real estate mean return 𝜃𝜃𝑅𝑅(𝑡𝑡) 0.035 
Real estate volatility 𝜎𝜎𝑅𝑅 0.01 
Initial contribution  𝐶𝐶0 0.026 
Mean contribution 𝜃𝜃𝐶𝐶(𝑡𝑡) 0.1 
Contribution volatility 𝜎𝜎𝐶𝐶 0.064 
Risk aversion degree 𝛾𝛾 0.5 
Time horizon (years) 𝑇𝑇 10 

A. Results 
Figure 1 describes the evolution of the stock and real estate 

prices over time under the Hull-White interest model. It shows 
that the stock price increases over time with a very wild 
fluctuation of price, while the price growth for the real estate 
asset seems to be steady over time.  

Figure 2 shows the influence of time on the optimal 
investment strategies. It reveals that the optimal investment 
policies increase with time. That is, as the time passes on, 
investment in riskless asset decreases. Results suggest that the 
pension fund manager maintains diversifying the portfolio by 
investing more in stock since the optimal investment strategies 
in risky assets increase with time. 

Figure 3 shows the effect of interest rate volatility 𝜎𝜎  on 
optimal investment strategies. It shows that increase in the 
interest rate volatility decreases the optimal investment strategy, 
this tells the pension fund manager to invest more in a riskless 
asset to hedge risk. It implies that investment in the risky assets 
is not suitable when the interest rate volatility increases and vice-
versa. 

 Figure 4 presents the impact of mean-reversion rate 𝛽𝛽 on the 
optimal investment strategies. It points out that as the mean-
reversion rate increases the optimal investment strategies 
decreases. Further, it depicts that as the time 𝑡𝑡 approaches the 
maturity time 𝑇𝑇, the risk assets seem to be relatively insensitive 
to the mean-reversion rate. In practice, to monitor the 
fluctuations in the interest rate, the risk assets may partially be 
used to hedge the real interest rate uncertainty.  

Figure 5 presents the influence of interest rate on optimal 
investment strategies. It shows that as interest rate increases, 
investment in risky assets is not suitable. Therefore, the pension 
fund managers are advised to increase investment in the riskless 
asset to hedge risk. 

 Figure 6 presents the effect varying the degree of risk- 
aversion 𝛾𝛾. The optimal investment strategy is sensitive to the 
level of risk aversion. Results provide that for a given time 
horizon the proportion invested in risk assets increase with risk 
aversion. Unsurprisingly, the higher risk assets yield high returns. 
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FIGURE I. EVOLUTION OF PRICE OVERTIME 

 
FIGURE II. OPTIMAL INVESTMENT STRATEGIES OVERTIME 

 
FIGURE III. INFLUENCE OF VOLATILITY 𝜎𝜎 ON STOCK 

 
FIGURE IV. EFFECT OF MEAN REVERSION 𝛽𝛽 ON STOCK 

 
FIGURE V. IMPACT OF INTEREST RATE 𝑟𝑟 ON STOCK 

 
FIGURE VI. IMPACT OF RISK-AVERSION 𝛾𝛾 ON STOCK 

V. CONCLUSION 
This paper devoted to examining the optimal investment 

strategies for a DC pension fund in the stochastic environment. 
The pension fund is a risk-averse and uses the power utility 
function. The pension fund manager is allowed to invest capital 
in the bank account, stock, and real estate securities and aim to 
maximize her utility from terminal wealth in a complete market 
setting where the interest rate dynamics evolve according to the 
Hull-White interest model. We derived the optimal investment 
policies and the value function for our problem. The dynamic 
programming approach was employed to obtain closed-form 
expressions for the optimal investment strategies under the 
power utility function. Results show that the price of risk assets 
and optimal investment strategies increases with time.  

ACKNOWLEDGEMENT 
This study is supported by the National Natural Science 

Foundation of China under Project No: 11071029. 

REFERENCES 
[1] Devolder, P., Janssen, J., and Manca, R, “On certain integrals of Optimal 

Control of a Defined Contribution Pension Scheme.  John Wiley and Sons, 
Inc., 2013.  

[2] Boulier, J.-F., Huang, S., and Taillard, G., “Optimal management under 
stochastic interest rates: the case of a protected defined contribution 
pension fund,” Insurance: Mathematics and Economics, vol. 28, no. 2, pp. 
173 – 189, 2001. 

[3] Ma, Q.-P., “On optimal pension management in a stochastic framework 
with exponential utility,” Insurance: Mathematics and Economics, vol. 49, 
no. 1, pp. 61 – 69, 2011. 

[4] Battocchio, P. and Menoncin, F., “Optimal pension management in a 
stochastic framework,” Insurance: Mathematics and Economics, vol. 34,  
no. 1, pp. 79 – 95, 2004. 

Advances in Intelligent Systems Research, volume 153

243



[5] Josa-Fombellida, R. and Rincn-Zapatero, J. P., “Optimal asset allocation 
for aggregated defined benefit pension funds with stochastic interest rates,” 
European Journal of Operational Research, vol. 201, no. 1, pp. 211 – 221, 
2010. 

[6] Deelstra, G., Grasselli, M., and Koehl, P.-F., “Optimal investment 
strategies in the presence of a minimum guarantee,” Insurance: 
Mathematics and Economics, vol. 33, no. 1, pp. 189 – 207, 2003. 

[7] Wei Han, N. and Wei Hung, M., “Optimal asset allocation for dc pension 
plans under inflation,” Insurance: Mathematics and Economics, vol. 51, 
no. 1, pp. 172 – 181, 2012.  

[8] Zhang, C. and Rong, X., “Optimal investment strategies for dc pension 
with stochastic salary under the affine interest rate model,” Discrete 
Dynamics in Nature and Society, vol. 2013, 2013. 

[9] Zhang, C.-b., Rong, X.-m., Zhao, h., and Hou, R.-j., “Optimal investment 
for the defined-contribution pension with stochastic salary under a cev 
model,” Applied Mathematics-A Journal of Chinese Universities, vol. 28, 
no. 2, pp. 187–203, Jun 2013. 

[10] Guan, G. and Liang, Z., “Optimal management of dc pension plan in a 
stochastic interest rate and stochastic volatility framework,” Insurance: 
Mathematics and Economics, vol. 57, pp. 58–66, 2014.  

[11] Vigna, E. and Haberman, S., “Optimal investment strategy for defined 
contribution pension schemes,” Insurance: Mathematics and Economics, 
vol. 28, no. 2, pp. 233 – 262, 2001. 

[12] Haberman, S. and Vigna, E., “Optimal investment strategies and risk 
measures in defined contribution pension schemes,” Insurance: 
Mathematics and Economics, vol. 31, no. 1, pp. 35 – 69. 

[13] Gao, J., “Optimal portfolios for dc pension plans under a cev model,” 
Insurance: Mathematics and Economics, vol. 44, no. 3, pp. 479 – 490, 
2009. 

[14] Vigna, E., “On efficiency of mean–variance based  portfolio selection in 
defined contribution pension schemes,” Quantitative finance, vol. 14, no. 
2, pp. 237–258, 2014. 

[15] Musiela, M. and Rutkowski, M., “Martingale methods in financial 
modeling, (2005).” 

Advances in Intelligent Systems Research, volume 153

244


	A. The Financial Market
	B. Contributions
	C. The Wealth Process and Management
	III. The Optimization Program
	A. The Value Function and the Hamilton-Jacob-Bellman (HJB) Equation
	B.  Explicit Solution for the Utility Function
	A. Results
	References





