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Abstract—This paper studies the role of external environment in 
the evolution of cooperation. Due to the bounded rationality of 
players, external environment of individuals does matters on the 
evolution. The more the amount of cooperators a player's 
neighborhood has, expectantly, the more confident the player will 
be in its current choice. Based on this point, two updating rules 
on regular lattices are introduced concerning external 
environmental effects. For the first rule, a focal player's payoff is 
affected proportionally with the difference between the number 
of cooperators and that of defectors in its group; in the second 
case, one's payoff is exponentially effected by that difference in its 
neighbors. On account of the external influence to central 
individuals, simulation results show that the external 
environment exerts a significant positive function on the 
increasing of cooperation level in populations. 
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I. INTRODUCTION  
Darwin pointed out that there is no instinct creature for the 

benefit of others in his book “The Origin of Species”. In 
other words, all animals oriented by maximizing self-benefits 
manifest strong selfishness in nature. According to Darwin's 
theory, the essence of evolution is natural competition, then 
natural selection leads to the survival of the fittest. It is a 
widespread field where populations comprise of egocentric 
individuals, however, cooperation phenomena are observed 
frequently in different kinds of communities. This gives rise to 
many studies for the production and maintenance of 
cooperation. In fact, cooperation became the third principle of 
natural evolution out of the other two, gene mutation and 
natural selection [1]. In the study of evolution of 
cooperation[2,3], one of the most typical models is the 
prisoner's dilemma based on its conciseness in form and 
profoundness in reflecting the contradiction between individual 
rationality and collective rationality [4-6].  

By employing the grid network space, the number of 
cooperators increased because of net reciprocity [7]. After the 
seminal paper, a large amount of works are devoted to 
exploring factors of promoting cooperation on lattices, such as, 
punishment and reward [8-10], reputation[11,12], 
weight[13,14], age structure [23], and others (see [16-22]), etc.  

It should be pointed out that, in all above references, the 
total payoff of a player is routinely calculated by the sum of the 
payoffs caused by the pairwise games in relation to all its 
neighbors. That is to say, all neighbors of a player choosing 
cooperation will have no any effect on the confidence of its 

own current status, similarly, it also has no positive or negative 
influence on the belief of the player's own strategy if all its 
neighbors are defectors. Therefore, this paper will attach 
importance to the effects from external environment on the 
evolution of cooperation.  

The paper is organized as follows: firstly, in Section 2 it 
introduces evolving prisoner's dilemma game models in detail 
with linear and exponential external environment. Secondly, 
we are going to present results by simulation so as to account 
for the behaviors of the evolving models in Section 3. Finally, 
we give the discussion with some concluding remarks.  

II. THE EVOLUTIONARY GAME MODEL WITH EXTERNAL 
ENVIRONMENT ON LATTICES 

On a square lattice with periodic boundaries condition, 
every node is occupied by a player. Every player will play a 
prisoner's dilemma (PD) game with each one of its four nearest 
neighbors. For a game pair, that both select cooperation results 
in the fact that each will obtain a reward ; if one player 
chooses to be a cooperator, the other decides to defect, then, the 
defector gets a temptation T , with T R> , while the sucker's 
payoff is S  with S R< . If two defectors meet, they are 
punished with a payoff P  which is lower than R . In general, 
we have the relation among these payoffs such that T R P S> > > . 

For the initial status, each player is arranged as either a 
cooperator ( )C  or a defector ( )D  with equal probability. 
Denote the strategies of a cooperator x  and a defector y  by  

( )1,0 TSx =                                  (1) 

and  

( )0,1 TSy =                                  (2) 

respectively.  

Specifically, in whole paper, we set the payoffs as: 1R= , 
0P S= = , T b= (1 2)b< < , like the typical setting in the paper [15]. 

At every time step, a player x  gets the payoff xp  by playing 
the games with all its neighbors, that is,  

‍
y Ω

x Tp s Asx y
x

= ∑
∈

                                (3) 
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where Ωx  denotes the four nearest neighbors of x . 
Considering the effect for the player x  from its external 
environment, the player's payoff will be multiplied by a 
parameter 1 xε+  to represent the degree of the influence, where 

Λx xε η= ×                                    (4) 

and η  is a random number in the interval [ ]0,1  and Λx  
reflects the different situation of the neighbor's strategies; 

( )Λ 0 Λ 0x x> <  means that the number of cooperators in the 

neighborhood of x  is more (less) than that of defectors. To be 
precise, let ( ) ( )( )n C n D  denote the number of cooperators 
(defectors) in the player x 's neighbors, subsequently, two 
different modes related to the external status are considered as 
follows.  

(1) Linear Model: ( ) ( )

( )
Λ

Ω

n C n Dx
lin xn

−
= ,  

(2) Exponent Model: ( ) ( )( )Λ 1exp
x n C n DE −= − ,  

where  is a positive constant; ( )Ωxn  denotes the total 

number of neighbors of the player x , in fact, in the current 

setting on the lattice, we know that ( )Ωxn  is also a constant 

such that ( )Ω 4xn = . 

 
FIGURE I. (A) AND (B) SHOW THE EFFECTS OF LINEAR MODEL 

AND EXPONENT MODEL BY DEPICTING Λ
x

 WITH THE CHANGE 
OF ( ) ( )n C n D− , RESPECTIVELY; (B) IS A CASE BY USING THE 

PARAMETER E  WITH eE = . 

As it is shown, Figure. 1 is generated by the difference 
between the quantities of cooperators and defectors in one's 
neighborhood. For the above two models, provided that 
n nC D= , there is no external effect for a focal player's payoff. 
Figure. 1(b) shows the magnitude of effects by the external 
environment when n nC D>  is more than that when n nC D<  , 
which has a different property from the linear case showed in 
Figure. 1(a) . When the majority are cooperators in the 
neighbors of a player, the effect is positive; furthermore, 
whether a player is a cooperator or not, the more cooperators 
the player's neighborhood has, the more positive effect the 
player obtains.  

In accordance with the above setting, the fitness of a player 
x  is  

( )1U Px x xε= +                                 (5) 

After one game round, the player x  decides the strategy 
using in the next step, and he/she will follow the strategy of a 
randomly selected neighbor y  with the probability  

( )
1

1 exp /U U Kx y
ω =

 + − 
                          (6) 

where K  is uncertainly of selection [25]. In the following 
part, we set the value K  as 0.1.  

In the paper [26], Λx  in xε  is a random number in [ ]1,1− , 
which means the effect of external environments for the player 
x  is random despite whether the neighbors' cooperation 
aspiration is strong or not. Whereas, the current setting of Λx  
is different from that in the paper [26]; and it is clearly that, for 
this setting of Λx  with the strategy updating rule, the higher 
the number of cooperators one's neighborhood has, the more 
confidence the player has in its current choice.  

III. THE RESULTS OF MONTE CARLO'S SIMULATIONS 
We simulate the two models in Section 2 with the different 

parameter b varying from 1.1 to 1.9. All individuals 
simultaneously update their strategy with Eq. (6); as the 
iteration moves forward, we record the frequencies of different 
types of players by averaging 50 times initialization.  

First of all, under different mechanisms, we observe the 
change of the level of cooperation with the increase of time 
steps for different temptation parameters. In order to compare 
the different mechanisms, Figure. 2(a) shows the case without 
external effects, that is, the fitness of a player equals its payoff; 
with the increasing of the temptation value b , the level of 
cooperation in populations decreased significantly. In fact, 
when 1.9b= , the cooperation level remains at around 0.5 in all 
cases, and the whole population consists of an equal amount of 
cooperators and defectors at last, like Nowak's discovery [24] 
with the best neighbor imitation rule. In Figure. 2(b), the lines 
denote the linear model with different parameters b , which are 
in contrast with the cases of Figure .2 (a), and for the case with 

1.9b= , we can find that defectors will quickly disappear, the 
cooperators in populations take over almost all nodes as the 
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time increasing. 

 
FIGURE II. FRACTION OF COOPERATORS AS A FUNCTION OF TIME 
STEP FOR DIFFERENT TEMPTATION VALUES B FROM 1.1 TO 1.9. (A) 

DESCRIBES THE CASE WITHOUT EXTERNAL EFFECTS; (B) IS 
DRAWN FOR THE LINEAR MODEL; (C) SHOWS THE EXPONENT 

MODEL WITH E=E. THE LATTICE SIZE M IS 50, AND THE 
UNCERTAINTY OF STRATEGY ADOPTION K  IS 0.1. 

 

FIGURE III. EVOLUTIONARY SNAPSHOTS FOR THE LINEAR MODEL 
WITH 1.05b = , K = 0.1 . FROM LEFT TO RIGHT, THE TIME STEPS 

ARE 10, 20 AND 100, RESPECTIVELY. COOPERATORS AND 
DEFECTORS ARE COLORED GRAY AND BLACK RESPECTIVELY. 

 

FIGURE IV. EVOLUTIONARY SNAPSHOTS FOR THE EXPONENT 
MODEL WITH 1.05b = , 0.1K =  AND E e= . FROM LEFT TO RIGHT 

FIGURE, THE TIME STEPS ARE 10, 20 AND 100, RESPECTIVELY. 
COOPERATORS AND DEFECTORS ARE COLORED GRAY AND 

BLACK RESPECTIVELY. 

 
FIGURE V. FRACTION OF COOPERATORS IN STABLE STATUS AS A 

FUNCTION OF THE PARAMETER E . THE PICTURE SHOWS THE 
RESULTS OF EVOLUTION OF DIFFERENT PARAMETERS IN THE 
EXPONENT MODEL. ALL THE RESULTS ARE OBTAINED WITH 

1.05b= , 0.1K= .  

Furthermore, the magnitude of cooperators remarkably 
enlarged from initial states for all the values of b . It should be 
pointed out that, for the linear model, when the cooperators of a 
player's neighborhood hold a majority, the player has a positive 
impact on its payoff, and on the contrary, the player 
experiences a negative circumstance. Averagely, although it 
seems that the linear model leads to that the expected value of 
Λx  is zero, the external circumstance effects really produce 
positive results as it is shown in Figure. 2(b). In Figure. 2(c), 
the lines represent the case of exponent model with different 
values of b , regardless of the size of b , all the frequencies of 
cooperation increase eventually near to 100%. This shows that 
the positive impact of the external environment is greater than 
the negative, and shows that the external environment like the 
exponent model would be apt to improve the level of 
cooperation of the population. Figure. 2(b) and Figure. 2(c) 
reveal that when we are considering of the external influences, 
both the linear model and the exponent model contribute 
effectively to enhance the number of the cooperators in groups.  

Figure. 3 and Figure. 4 show quite a few snapshots for the 
evolution of games with the linear model and the exponential 
model, respectively. When the temptation b  is small, the detail 
of the early stages of the evolutionary process is different 
between the linear model and the exponent model. The amount 
of cooperators for the linear model in the early stages is more 
than that for the exponential case, which demonstrates the 
diversity of evolution, though, with time going, these 
cooperators' domains gradually merge and become the only 
dominated in the stable states. 

For these two models on the lattice, if a player is 
surrounded by two cooperators and two defectors, the player's 
fitness is just its payoff. Provided that the player is a cooperator, 
the node will be easily replaced by a defector. Nonetheless, the 
macroscopic result tells us the external environment plays a 
significant effect, even for the tiny difference between the 
number of cooperators and that of defectors in one's neighbors, 
which makes many defectors replaced by cooperators. 

Finally, Figure. 5 dipicts how the level of the cooperation 
affected by the external environment under these the 
mechanism when changing the parameter of the exponent 
model. The line in Figure. 5 implies if the factor E  satisfies 
that 0 1E< < , the level of cooperation in the population is 
rapidly declined under the influence of the external 
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environment; while the factor 1E> , the cooperators will 
occupy the whole population. This result illustrates the 
exponent model can improve the cooperative level of the 
population within a large range. The threshold of E  with 1E=  
shows the critical state whether the population comprising of 
defectors or cooperators in steady status. 

IV. SUMMARY 
We introduce two new models of evolutionary prisoner's 

games, taking into account that each player in a group is 
affected by its external environment. In a grid, each individual 
will be influenced by its neighbors in the processing of 
prisoner's dilemma games. Then, the fitness of a player 
depends both on the payoff and its external circumstance.  

In concern of the diversity of external environment, two 
types of effects are considered: the linear or the exponent case, 
which is in dependence of the quantity difference between 
cooperators and defectors in the neighborhood of a player. The 
models remarkably improve the percentage of cooperation in 
populations, which is very different from the case without the 
considerations of external environments. For the linear model, 
there is no defector in the population with b  within a certain 
range. In the exponent case, cooperators will quickly occupy 
the population even when the temptation parameter is in a large 
range. The evolution snapshots of the linear model and the 
exponent model illustrate their game processing: the 
cooperators will form clusters against the defectors as shown in 
many references, however, the details in the early stages 
between these models are different. Finally, we discuss the 
evolution of cooperation under different parameters of the 
exponential model: the critical threshold for whether it 
improves the cooperation level or not is found.  

Cooperation is of great significance for the development of 
nature and society. The contribution of this paper is to illustrate 
the external circumstance can produce cooperation in 
populations by simulating the environment which might 
happen in real life. 
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