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Abstract—The Gnedenko system with multiple delay vacations of 
a repairman is investigated. The well-posedness and the existence 
of the unique positive dynamic solution of the system are proved 
by using  𝑪𝑪𝟎𝟎  -semigroup theory of linear operators in the 
functional analysis. 
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I. INTRODUCTION  
The Gnedenko system is an important system in reliability 

theory. Since the strong practical background of The Gnedenko 
system, many researchers have studied it extensively under 
varying assumptions on the failures and repairs, see [1-5]. The 
repairman leaves for a vacation or does other work when there 
are no failed components for repair in system, which can have 
important influence to performance of system. In [5], the 
authors studied the Gnedenko system with multiple delay 
vacations of a repairman and obtained some reliability 
expressions such as the Laplace transform of the reliability, the 
mean time to the first failure, the availability and the failure 
frequency of the system. In [5], the authors used the dynamic 
solution in calculating the availability and the reliability. But 
they did not discuss the well-posedness and the existence of the 
positive dynamic solution. Motivated by this, we study in this 
paper the well-posedness and the existence of a unique positive 
dynamic solution of the system, by using  𝐶𝐶0 -semigroup theory 
of linear operators. 

Gnedenko system with multiple delay vacations of a 
repairman can be described by the following equations (see [5]). 

    (GS)
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⎪
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⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑑𝑑𝑝𝑝0𝑑𝑑

(𝑡𝑡)
𝑑𝑑𝑡𝑡 = −(𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝜃𝜃)𝑝𝑝0𝑑𝑑(𝑡𝑡) + � 𝑝𝑝0𝑣𝑣(𝑡𝑡,𝑦𝑦)𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦

+∞

0

+� 𝑝𝑝1𝑟𝑟(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

0
                            

 
𝜕𝜕𝑝𝑝1𝑣𝑣(𝑡𝑡,𝑦𝑦)

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝑝𝑝1𝑣𝑣(𝑡𝑡,𝑦𝑦)

𝜕𝜕𝑦𝑦 = −�𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝑟𝑟(𝑦𝑦)�𝑝𝑝0𝑣𝑣(𝑡𝑡,𝑦𝑦)     

𝜕𝜕𝑝𝑝0𝑣𝑣(𝑡𝑡,𝑦𝑦)
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝑝𝑝0𝑣𝑣(𝑡𝑡,𝑦𝑦)
𝜕𝜕𝑦𝑦 = −�𝑁𝑁𝑁𝑁 + 𝑟𝑟(𝑦𝑦)�𝑝𝑝1𝑣𝑣(𝑡𝑡,𝑦𝑦)                

+(𝑁𝑁𝑁𝑁 + 𝑁𝑁1)𝑝𝑝0𝑣𝑣(𝑡𝑡,𝑦𝑦)                  
𝜕𝜕𝑝𝑝1𝑣𝑣(𝑡𝑡, 𝑥𝑥)

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝑝𝑝1𝑟𝑟(𝑡𝑡, 𝑥𝑥)

𝜕𝜕𝑥𝑥 = −�𝑁𝑁𝑁𝑁 + 𝜇𝜇(𝑥𝑥)�𝑝𝑝1𝑟𝑟(𝑡𝑡, 𝑥𝑥)               

𝜕𝜕𝑝𝑝2𝑣𝑣(𝑡𝑡,𝑦𝑦)
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝑝𝑝2𝑣𝑣(𝑡𝑡,𝑦𝑦)
𝜕𝜕𝑦𝑦 = −𝑟𝑟(𝑦𝑦)𝑝𝑝2𝑣𝑣(𝑡𝑡,𝑦𝑦) + 𝑁𝑁𝑁𝑁𝑝𝑝2𝑣𝑣(𝑡𝑡,𝑦𝑦)     

𝜕𝜕𝑝𝑝2𝑟𝑟(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝑝𝑝2𝑟𝑟(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑥𝑥 = −𝜇𝜇(𝑥𝑥)𝑝𝑝2𝑟𝑟(𝑡𝑡, 𝑥𝑥) + 𝑁𝑁𝑁𝑁𝑝𝑝1𝑟𝑟(𝑡𝑡, 𝑥𝑥)      

 

with the boundary conditions 

(𝐵𝐵𝐶𝐶)

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

  𝑝𝑝0(𝑡𝑡, 0) = 𝜃𝜃𝑝𝑝𝑜𝑜𝑑𝑑(𝑡𝑡)                                                                                

𝑝𝑝1𝑟𝑟(𝑡𝑡, 0) = (𝑁𝑁𝑁𝑁 + 𝑁𝑁1)  𝑝𝑝𝑜𝑜𝑑𝑑(𝑡𝑡) + � 𝑝𝑝1𝑣𝑣(𝑡𝑡,𝑦𝑦)𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦
+∞

0
              

+� 𝑝𝑝2𝑟𝑟(𝑡𝑡, 𝑥𝑥)𝜇𝜇(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

0
                                

𝑝𝑝2𝑟𝑟(𝑡𝑡, 0) = � 𝑝𝑝2𝑣𝑣(𝑡𝑡,𝑦𝑦)𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦
+∞

0
                                                     

𝑝𝑝1𝑣𝑣(𝑡𝑡, 0) = 𝑝𝑝2𝑣𝑣(𝑡𝑡, 𝑜𝑜) = 0                                                                   

 

and the initial conditions 

(𝐼𝐼𝐶𝐶) �𝑝𝑝0𝑑𝑑  (0) = 1,                                                                                              
𝑝𝑝0𝑣𝑣 (0, 𝑦𝑦) = 𝑝𝑝1𝑟𝑟(0, 𝑥𝑥) = 𝑝𝑝1𝑣𝑣(0, 𝑦𝑦) = 𝑝𝑝2𝜐𝜐(0,𝑦𝑦) = 𝑝𝑝2𝑟𝑟(𝑜𝑜, 𝑥𝑥) = 0 

Here  p0d(t) gives the probability that at time t all units are 
working, the repairman is preparing to take vacation and the 
system is working; p0v(t, y) gives the probability that at time t 
all units are working, the repairman is in vacation, the system is 
working and the elapsed vacation time lies in [y, y + dy) ; 
p1v(t, y) gives the probability that at time t one unit in the 
system is failed, the repairman is in vacation, the system is 
working and the elapsed vacation time lies in  [y, y + dy) ;  
p1r(t, x)  represents the probability that at time t one unit in the 
system is failed,  the failed unit being repaired, the system is 
working and the elapsed repair time lies in  [x, x + dx) ; 
 p2v(t, y) gives the probability that at time t two units in the 
system are failed, the repairman is in vacation, the system is 
down and the elapsed vacation time lies in  [y, y + dy) ;  
p2r(t, x) represents the probability that at time t wo units in the 
system are failed, the one failed unit being repaired, another 
failed unit is waiting for repair, the system is down and and the 
elapsed repair time lies in  [x, x + dx) ; λ , λ1 , θ  are positive 
constants;  µ(x) is the repair rate function;  r(y) is the vacation 
rate function. 

Throughout the paper we require the following assumption 
for the repair rate function;  µ(x)and the vacation rate function 
r(y).  

General Assumption 1.1: The functions  µ(x)  and r(y)  
: R+ ⟶ R+ are measurable and bounded such that 

µ = lim
x→∞

µ(x), r = lim
y→∞

r(𝑦𝑦) , µ∞ = min(𝜇𝜇, r). 

II. PROBLEM AS AN ABSTRACT CAUCHY PROBLEM 
To apply semigroup theory we transform in this section the 

system (GS), (BC), (IC)  into an abstract Cauchy 
problem[6 , DefΠ. 6.1] on the Banach space(X, ∥. ∥), where  

 X =  ℂ × Ly1 [0 + ∞) × Ly1 [0, +∞) × Lx1 [0, +∞) × Ly1 [0, +∞) 
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          × Lx1 [0, +∞) 

and   ‖p‖ = |Pod| + ‖Pov‖𝐿𝐿𝑦𝑦1 [0+∞) + ‖P1v‖𝐿𝐿𝑦𝑦1 [0+∞) 

                 +‖P1r‖𝐿𝐿𝑥𝑥1 [0,+∞) + ‖P2v‖𝐿𝐿𝑦𝑦1 [0+∞) + ‖P2r‖Lx1[0,+∞), 

p= (p0d, p0v(y), p1v(y), p1r(𝑥𝑥), p2𝑣𝑣(y), p2𝑟𝑟(x))t ∈ 𝑋𝑋. 

To define the system operator  �𝐴𝐴,𝐷𝐷(𝐴𝐴)�  we introduce a 
“maximal operator”  �𝐴𝐴𝑚𝑚,𝐷𝐷(𝐴𝐴𝑚𝑚)� on X  given as 

𝐴𝐴𝑚𝑚 =

⎝

⎜
⎜
⎛

−(𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝜃𝜃)
0
0
0
0
0

   

𝜑𝜑1
𝐷𝐷1

(𝑁𝑁𝑁𝑁 + 𝑁𝑁1)
0
0
0

  

0
0
𝐷𝐷2
0
𝑁𝑁𝑁𝑁
0

  

𝜑𝜑2
0
0
𝐷𝐷3
0
𝑁𝑁𝑁𝑁

  

0
0
0
0
𝐷𝐷4
0

  

0
0
0
0
0
𝐷𝐷5⎠

⎟
⎟
⎞
， 

𝐷𝐷(𝐴𝐴𝑚𝑚) =  ℂ × Wy
1,1[0 + ∞) × Wy

1,1[0, +∞) × 𝑊𝑊x
1,1[0, +∞)

× Wy
1,1[0, +∞) × Wx

1,1[0, +∞) 

where 

𝜑𝜑1:   𝐿𝐿𝑦𝑦1 [0 + ∞)  → C , f → 𝜑𝜑1(𝑓𝑓) = � 𝑟𝑟(𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
+∞

0
            

  𝜑𝜑1:   𝐿𝐿𝑥𝑥1 [0 + ∞) → C, g → 𝜑𝜑2(𝑔𝑔) = ∫ 𝜇𝜇(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥+∞
0 , 

        𝐷𝐷1 ∶ 𝑊𝑊1,1[0 , +∞) → 𝐿𝐿1[0 , +∞),     

  𝑓𝑓 → 𝐷𝐷1(𝑓𝑓) − 𝑑𝑑
𝑑𝑑𝑦𝑦
𝑓𝑓 − �𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝑟𝑟(𝑦𝑦)�𝑓𝑓 , 

        𝐷𝐷2 ∶ 𝑊𝑊1,1[0 , +∞) → 𝐿𝐿1[0 , +∞), 

 𝑓𝑓 → 𝐷𝐷2(𝑓𝑓) = − 𝑑𝑑
𝑑𝑑𝑦𝑦
𝑓𝑓 − �𝑁𝑁𝑁𝑁 + 𝑟𝑟(𝑦𝑦)�𝑓𝑓, 

       𝐷𝐷3 ∶  𝑊𝑊1,1[0 , +∞) → 𝐿𝐿1[0 , +∞) , 

       𝑓𝑓 → 𝐷𝐷3(𝑓𝑓) = − 𝑑𝑑
𝑑𝑑𝑥𝑥
𝑓𝑓 − �𝑁𝑁𝑁𝑁 + 𝜇𝜇(𝑥𝑥)�𝑓𝑓, 

       𝐷𝐷4 ∶  𝑊𝑊1,1[0 , +∞) → 𝐿𝐿1[0 , +∞), 

       𝑓𝑓 → 𝐷𝐷4(𝑓𝑓) = − 𝑑𝑑
𝑑𝑑𝑦𝑦
𝑓𝑓 − 𝑟𝑟(𝑦𝑦)𝑓𝑓, 

      𝐷𝐷5 ∶  𝑊𝑊1,1[0 , +∞)  → 𝐿𝐿1[0 , +∞],  

      𝑓𝑓 → 𝐷𝐷5(𝑓𝑓) = − 𝑑𝑑
𝑑𝑑𝑥𝑥
𝑓𝑓 − 𝜇𝜇(𝑥𝑥)𝑓𝑓, 

To model the boundary conditions(𝐵𝐵𝐶𝐶) we use an abstract 
approach as in [7]. For this purpose we consider the ``boundary 
space'' 𝜕𝜕𝑋𝑋: = 𝐶𝐶2  and then define ``boundary operators'' L and 
Φ as follows. 

𝐿𝐿：𝐷𝐷(𝐴𝐴𝑚𝑚) → 𝜕𝜕𝑋𝑋,       𝐿𝐿

⎝

⎜
⎜
⎛

𝑝𝑝0𝑑𝑑
𝑝𝑝0𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑟𝑟(𝑥𝑥)
𝑝𝑝2𝑣𝑣(𝑦𝑦)
𝑝𝑝2𝑟𝑟(𝑥𝑥)⎠

⎟
⎟
⎞

=

⎝

⎜
⎛

𝑝𝑝0𝑣𝑣(0)
𝑝𝑝1𝑣𝑣(0)
𝑝𝑝1𝑟𝑟(0)
𝑝𝑝2𝑣𝑣(0)
𝑝𝑝2𝑟𝑟(0)⎠

⎟
⎞

 

and ϕ:   x → ∂x  

𝛷𝛷

⎝

⎜
⎜
⎛

𝑝𝑝0𝑑𝑑
𝑝𝑝0𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑟𝑟(𝑥𝑥)
𝑝𝑝2𝑣𝑣(𝑦𝑦)
𝑝𝑝2𝑟𝑟(𝑥𝑥)⎠

⎟
⎟
⎞

=

⎝

⎜
⎛

𝜃𝜃
0

𝑁𝑁𝑁𝑁 + 𝑁𝑁1
0
0

   

0
0
0
0
0

  

0
0
𝜑𝜑1
0
0

  

0
0
0
0
0

  

0
0
0
0
𝜑𝜑1

  

0
0
𝜑𝜑2
0
0 ⎠

⎟
⎞

⎝

⎜
⎜
⎛

𝑝𝑝0𝑑𝑑
𝑝𝑝0𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑣𝑣(𝑦𝑦)
𝑝𝑝1𝑟𝑟(𝑥𝑥)
𝑝𝑝2𝑣𝑣(𝑦𝑦)
𝑝𝑝2𝑟𝑟(𝑥𝑥)⎠

⎟
⎟
⎞

, 

 

If the operator (𝐴𝐴 ,𝐷𝐷(𝐴𝐴)) on X is then defined as 

𝐴𝐴𝑝𝑝 = 𝐴𝐴𝑚𝑚𝑝𝑝,𝐷𝐷(𝐴𝐴) = �𝑝𝑝 ∈ 𝐷𝐷(𝐴𝐴𝑚𝑚)|⇔  𝐿𝐿𝑝𝑝 = 𝛷𝛷𝑝𝑝�, 

then the model of the system (𝐺𝐺𝐺𝐺)  , (𝐵𝐵𝐶𝐶)  and ( IC)  can be 
described equivalently to the abstract Cauchy problem as 
follows. 

�
𝑑𝑑𝑝𝑝(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝐴𝐴𝑝𝑝(𝑡𝑡),   𝑡𝑡 ∈ [0, +∞),          

𝑝𝑝(0) = (1,0,0,0,0,0)𝑇𝑇 ∈ 𝑋𝑋.           
 

III. CHARACTERISTIC EQUATION  
In this section we characterize δ(𝐴𝐴)by the spectrum of a 

scalar 5 × 5-matrix, i.e., or we obtain a characteristic equation 
which relates δ(𝐴𝐴)  to the spectrum of an operator on the 
boundary space ∂X. For this purpose, we apply techniques and 
results from  [8]  . We start from the operator  �𝐴𝐴0,𝐷𝐷(𝐴𝐴0)�  
defined by 

𝐷𝐷(𝐴𝐴0) = {𝑝𝑝 ∈ 𝐷𝐷(𝐴𝐴𝑚𝑚)| 𝐿𝐿𝑝𝑝 = 0},   𝐴𝐴0𝑝𝑝 = 𝐴𝐴𝑚𝑚𝑝𝑝 

The elements in  ker    (𝛾𝛾 − 𝐴𝐴𝑚𝑚)  can be expressed as 
follows 

Lemma 3.1: For γ ∈ (𝐴𝐴0), we have 

p ∈ ker    (𝛾𝛾 − 𝐴𝐴𝑚𝑚)       p =
(p0d, p0v(y), p1v(y), p1r(𝑥𝑥), p2𝑣𝑣(y), p2𝑟𝑟(x))t ∈ 𝐷𝐷(𝐴𝐴𝑚𝑚) with 

 𝑝𝑝0𝑣𝑣(𝑦𝑦) = 𝑎𝑎1𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦−∫ 𝑟𝑟(𝑦𝑦)𝑑𝑑𝑑𝑑+∞
0      ； 

𝑝𝑝1𝑣𝑣(𝑦𝑦) = 𝑎𝑎1
𝑁𝑁𝑁𝑁 + 𝑁𝑁1
𝑁𝑁1

�1 − 𝑒𝑒−𝜆𝜆1𝑦𝑦�𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑦𝑦
0 𝑑𝑑𝑑𝑑

+ 𝑎𝑎2𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 ; 

  𝑝𝑝1𝑟𝑟(𝑥𝑥) = 𝑎𝑎3𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑       𝑥𝑥
0 ;  

  𝑝𝑝2𝑣𝑣(𝑦𝑦) = 𝑎𝑎1
𝜆𝜆1
𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦

0  �(𝑁𝑁𝑁𝑁 + 𝑁𝑁1)�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦� −
                 𝑁𝑁𝑁𝑁�1 − 𝑒𝑒−(𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦��;   

  +𝑎𝑎2𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦� + 𝑎𝑎4𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦

0   ; 

 𝑝𝑝2𝑟𝑟(𝑥𝑥) = 𝑎𝑎3𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥
0 �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥� + 𝑎𝑎5𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥

0   ; 

Using [8, 𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝑎𝑎1.2]  the domain D(𝐴𝐴𝑚𝑚) of the maximal 
operator 𝐴𝐴𝑚𝑚  decomposes as  

D(𝐴𝐴𝑚𝑚) = D(𝐴𝐴0)⨁ker (γ − 𝐴𝐴𝑚𝑚). 

Moreover, since L  is surjective, L|ker (𝛾𝛾−𝐴𝐴𝑚𝑚): (𝛾𝛾 − 𝐴𝐴𝑚𝑚) →
𝜕𝜕𝑋𝑋 is invertible for each γ ∈ ρ(𝐴𝐴0) , see[8, 𝐿𝐿𝑒𝑒𝐿𝐿𝐿𝐿𝑎𝑎1.2] . We 
denote its inverse by  
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𝐷𝐷𝛾𝛾 ≔ �𝐿𝐿|𝑘𝑘𝑘𝑘𝑟𝑟(𝛾𝛾−𝐴𝐴𝑚𝑚)�
−1:𝜕𝜕𝑋𝑋 ⟶ 𝑘𝑘𝑒𝑒𝑟𝑟(𝛾𝛾 − 𝐴𝐴𝑚𝑚) 

and call it ``Dirichlet operator''. 

We can give the explicit form of Dγas follows. 

Lemma 3.2: For each   γ ∈ ρ(A0), the Dirichlet operator 
Dγ has the form 

𝐷𝐷𝛾𝛾 =

⎝

⎜
⎜
⎛

𝐷𝐷11
𝐷𝐷21
𝐷𝐷31

0
𝐷𝐷51

0

   

0
0
𝐷𝐷32

0
𝐷𝐷52

0

  

𝐷𝐷13
0
0
𝐷𝐷43

0
𝐷𝐷63

  

0
0
0
0
𝐷𝐷54

0

  

0
0
0
0
0
𝐷𝐷65

  

⎠

⎟
⎟
⎞

, 

where 

𝐷𝐷11 =
1

𝛾𝛾 + 𝑁𝑁𝑁𝑁 + 𝑁𝑁1+𝜃𝜃
� 𝑟𝑟(𝑦𝑦)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑 𝑦𝑦

0  𝑑𝑑𝑦𝑦 ; 
+∞

0
 

𝐷𝐷13 =
1

𝛾𝛾 + 𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝜃𝜃
� 𝜇𝜇(𝑥𝑥)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥

0  ; 
+∞

0
 

𝐷𝐷21 = 𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 ; 

𝐷𝐷31 =
𝑁𝑁𝑁𝑁 + 𝑁𝑁1
𝑁𝑁1

�1 − 𝑒𝑒−𝜆𝜆1𝑦𝑦�𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 ; 

𝐷𝐷32 = 𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 ; 

𝐷𝐷43 = 𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥
0 ; 

𝐷𝐷51 =
1
𝑁𝑁1
�(𝑁𝑁𝑁𝑁 + 𝑁𝑁1)�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦� − 𝑁𝑁𝑁𝑁�1 − 𝑒𝑒−(𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦��   

× 𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0                                                             

𝐷𝐷52 = �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦�𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0     ;  𝐷𝐷54 = 𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦

0 ;     

 𝐷𝐷63 = �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥�𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥
0  ; 𝐷𝐷65 = 𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥

0    ; 

For γ ∈ ρ(𝐴𝐴0), the operator  Φ𝐷𝐷𝛾𝛾  can be represented by 
the 5× 5-matrix 

𝜙𝜙𝐷𝐷𝛾𝛾 =

⎝

⎜
⎛

𝑎𝑎11
0
𝑎𝑎31
0
𝑎𝑎51

   

0
0
𝑎𝑎32
0
𝑎𝑎52

  

𝑎𝑎13
0
𝑎𝑎33
0
0

  

0
0
0
0
𝑎𝑎54

  

0
0
𝑎𝑎35
0
0

  

⎠

⎟
⎞

                      

where  

𝑎𝑎11 = 𝜃𝜃
𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1+𝜃𝜃

∫ 𝑟𝑟(𝑦𝑦)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑 𝑦𝑦
0 𝑑𝑑𝑦𝑦  ;+∞

0  

       𝑎𝑎13 = 𝜃𝜃
𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1+𝜃𝜃

∫ 𝜇𝜇(𝑥𝑥)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥
0  𝑑𝑑𝑥𝑥  ;     +∞

0  

 𝑎𝑎31 = 𝜆𝜆𝜆𝜆+𝜆𝜆1
𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1+𝜃𝜃

∫ 𝑟𝑟(𝑦𝑦)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑 𝑦𝑦
0  𝑑𝑑𝑦𝑦 ++∞

0

                  (𝜆𝜆𝜆𝜆+𝜆𝜆1)
𝜆𝜆1

∫ 𝑟𝑟(𝑦𝑦)�1 − 𝑒𝑒−𝜆𝜆1𝑦𝑦�𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 𝑑𝑑𝑦𝑦+∞

0 ; 

       𝑎𝑎32 = ∫ 𝑟𝑟(𝑦𝑦)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑦𝑦−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 𝑑𝑑𝑦𝑦              +∞

0  

     𝑎𝑎33 =
𝑁𝑁𝑁𝑁 + 𝑁𝑁1

𝛾𝛾 + 𝑁𝑁𝑁𝑁 + 𝑁𝑁1 + 𝜃𝜃
� 𝜇𝜇(𝑥𝑥)𝑒𝑒−(𝛾𝛾+𝜆𝜆𝜆𝜆)𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥

0

+∞

0
 𝑑𝑑𝑥𝑥 

+∫ 𝜇𝜇(𝑥𝑥)�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑥𝑥�𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑥𝑥
0

+∞
0  𝑑𝑑𝑥𝑥 ;  

 𝑎𝑎35 = � 𝜇𝜇(𝑥𝑥)
+∞

0
 𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑 𝑥𝑥

0  𝑑𝑑𝑥𝑥; 

 𝑎𝑎51 =
𝑁𝑁𝑁𝑁 + 𝑁𝑁1
𝑁𝑁1

� �1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦�𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0 𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦

+∞

0
 

−  
𝑁𝑁𝑁𝑁
𝑁𝑁1

� 𝑟𝑟(𝑦𝑦)(1 − 𝑒𝑒−(𝜆𝜆𝜆𝜆+𝜆𝜆1)𝑦𝑦)𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝜇𝜇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0

+∞

0
𝑑𝑑𝑦𝑦 

   𝑎𝑎52 =  � 𝑟𝑟(𝑦𝑦)
+∞

0
�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆𝑦𝑦�𝑒𝑒−𝛾𝛾𝑦𝑦−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦

0  𝑑𝑑𝑦𝑦     ; 

   𝑎𝑎54 =  ∫ 𝑟𝑟(𝑦𝑦)𝑒𝑒−𝛾𝛾𝑥𝑥−∫ 𝑟𝑟(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦
0

+∞
0  𝑑𝑑𝑦𝑦;  

The Following result, which can be found in [9] , plays 
important role for us to prove the well-posedness of the system. 

Lemma 3.3(The characteristic equation): If γ ∈ p(𝐴𝐴0) and 
there exists 𝛾𝛾0 ∈ C such that 1 ∉ σ(Φ𝐷𝐷𝑟𝑟), then 

γ ∈ σ(A) ⟺ 1 ∈ σ�Φ𝐷𝐷𝛾𝛾�. 

IV. WELL-POSEDNESS OF THE SYSTEM 
Our main goal in this section is to prove the well-posedness 

of the system. From this we obtain  the existence of a unique 
positive dynamic solution of the system. We first prove that the 
operator A generates a positive contraction C0  -semigroup 
�𝑇𝑇(𝑡𝑡)�

𝑡𝑡≥0
. For this purpose we will check that operator A 

fulfills all the conditions in the Phillips’ theorem, see 
[10, Thm. C−Π1.2] . The following lemma shows the 
surjectivity of  𝛾𝛾 − 𝐴𝐴 for  𝛾𝛾 > 0. 

Lemma 4.1: If  𝛾𝛾 ∈ 𝑅𝑅 , 𝛾𝛾 > 0 , then 𝛾𝛾 ∈ 𝑝𝑝(𝐴𝐴).  ,  

Proof: Let  𝛾𝛾 ∈ 𝑅𝑅  , 𝛾𝛾 > 0. Then all the entries ofΦDγare 
positive and using only elementary calculations one can show 
that both column sums are strictly less than 1. Hence, ∥ 𝛷𝛷𝐷𝐷7 ∥
< 1 and thus 1 ∉ 𝜎𝜎(𝛷𝛷𝐷𝐷7). Using Lemma 3.3 we conclude that 
∈ 𝑝𝑝(𝐴𝐴) .  

Lemma 4.2: 𝐴𝐴:𝐷𝐷(𝐴𝐴) → 𝑅𝑅(𝐴𝐴) ⊂ 𝑋𝑋    is a closed linear 
operator and 𝐷𝐷(𝐴𝐴)  is dense in X. 

If X′ denotes the dual space of X ,  then  

𝑋𝑋′ = 𝐶𝐶 × (𝐿𝐿𝑦𝑦∞[0, +∞))2 × 𝐿𝐿𝑥𝑥∞[0, +∞) × 𝐿𝐿𝑦𝑦∞[0, +∞) ×
𝐿𝐿𝑥𝑥∞[0, +∞). 

It is obvious that X′is a Banach space endowed with the 
norm 
‖𝑞𝑞‖ = max( |𝑞𝑞0𝑑𝑑|, ‖𝑞𝑞0𝑣𝑣‖𝐿𝐿𝑦𝑦∞[0,+∞), ‖𝑞𝑞1𝑣𝑣‖𝐿𝐿𝑦𝑦∞[0,+∞), ‖𝑞𝑞1𝑟𝑟‖𝐿𝐿𝑥𝑥∞[0,+∞), 

                  ‖𝑞𝑞2𝑣𝑣‖𝐿𝐿𝑦𝑦∞[0,+∞), ‖𝑞𝑞2𝑟𝑟‖𝐿𝐿𝑥𝑥∞[0,+∞)) 

where q = (𝑞𝑞0𝑑𝑑,𝑞𝑞0𝑣𝑣(𝑦𝑦), 𝑞𝑞1𝑣𝑣(𝑦𝑦),𝑞𝑞1𝑟𝑟(𝑥𝑥),𝑞𝑞2𝑣𝑣(𝑦𝑦),𝑞𝑞2𝑟𝑟(𝑥𝑥))𝑡𝑡 ∈ 𝑋𝑋′. 

Lemma 4.3: The operator �A, D(A)�   is dispersive. 

Proof: For p= (𝑝𝑝0𝑑𝑑 ,𝑝𝑝0𝑣𝑣(𝑦𝑦),𝑝𝑝1𝑣𝑣(𝑦𝑦),𝑝𝑝1𝑟𝑟(𝑥𝑥),𝑝𝑝2𝑣𝑣(𝑦𝑦),𝑝𝑝2𝑟𝑟(𝑥𝑥))𝑡𝑡 ∈
𝑋𝑋,  we define  
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𝑞𝑞 = (𝑞𝑞0𝑑𝑑,𝑞𝑞0𝑣𝑣(𝑦𝑦), 𝑞𝑞1𝑣𝑣(𝑦𝑦),𝑞𝑞1𝑟𝑟(𝑥𝑥),𝑞𝑞2𝑣𝑣(𝑦𝑦),𝑞𝑞2𝑟𝑟(𝑥𝑥))𝑡𝑡 ∈ 𝑋𝑋′, 

where 

𝑞𝑞𝑜𝑜𝑑𝑑 = ‖𝑝𝑝‖𝑠𝑠𝑔𝑔𝑠𝑠+(𝑝𝑝𝑜𝑜𝑑𝑑) ;  𝑞𝑞𝑖𝑖𝑣𝑣(𝑦𝑦) = ‖𝑝𝑝‖𝑠𝑠𝑔𝑔𝑠𝑠+𝑝𝑝𝑖𝑖𝑣𝑣(𝑦𝑦)  ,  

           𝑖𝑖 = 𝑜𝑜, 1,2 ;  
 𝑞𝑞𝑗𝑗𝑟𝑟(𝑥𝑥) = ‖𝑝𝑝‖𝑠𝑠𝑔𝑔𝑠𝑠+𝑝𝑝𝑗𝑗𝑟𝑟(𝑦𝑦) , 𝑗𝑗 = 12 ; 

𝑠𝑠𝑔𝑔𝑠𝑠+(𝑝𝑝𝑜𝑜𝑑𝑑) = �1 ,     𝑝𝑝𝑜𝑜𝑑𝑑 > 0
0 ,     𝑝𝑝𝑜𝑜𝑑𝑑  ≤ 0  ;   

    𝑠𝑠𝑔𝑔𝑠𝑠+𝑝𝑝𝑖𝑖𝑣𝑣(𝑦𝑦) = � 1 ,     𝑝𝑝𝑖𝑖𝑣𝑣(𝑦𝑦) > 0
0 ,     𝑝𝑝𝑖𝑖𝑣𝑣 (𝑦𝑦) ≤ 0,    𝑖𝑖 = 0,1,2 ; 

𝑠𝑠𝑔𝑔𝑠𝑠+𝑝𝑝𝑗𝑗𝑟𝑟(𝑥𝑥) = �
1 ,     𝑝𝑝𝑗𝑗𝑟𝑟(𝑥𝑥) > 0
0 ,     𝑝𝑝𝑗𝑗𝑟𝑟(𝑥𝑥) ≤ 0,     𝑗𝑗 = 1,2 ; 

Noting the boundary condition, it is not difficult to prove 
that〈𝐴𝐴𝑝𝑝, 𝑞𝑞〉 ≤ 0. By[6, p. 49]   we obtain that �𝐴𝐴,𝐷𝐷(𝐴𝐴)�  is a 
dispersive operator. 

From Lemma 4.1- 4.3 we see that all the conditions in 
Phillips' theorem (see[𝟏𝟏𝟎𝟎,𝐓𝐓𝐓𝐓𝐓𝐓.𝐂𝐂−𝚷𝚷𝟏𝟏.𝟐𝟐]  ) are fulfilled and 
thus we obtain the following result. 

Theorem 4.4: The operator �𝐴𝐴,𝐷𝐷(𝐴𝐴)� generates a positive 
contraction C0-semigroup�T(t)�

t≥0
. 

From Theorem 4.4 and [6, Cor.II.6.9] we can characterize 
the well-Posedness of (𝐴𝐴𝐶𝐶𝐴𝐴)  as follows. 

Theorem 4.5: The associated abstract Cauchy problem  
(ACP) is well-posed. 

From Theorem 4.5 and [6, Prop. II. 6.2]  we can state our 
main result. 

Theorem 4.6: The system  (R), (BC) and (IC) has a unique 
positive dynamic solution  

p(t) = (p0d, p0v(t, y), p1v(t, y), p1r(t, x), p2v(t, y), p2r(t, x))t ∈ X  
which satisfies  ‖p(t)‖ = 1, t ∈ [0, +∞). 

ACKNOWLEDGMENT 
This work was supported by the National Natural Science 
Foundation of China (No.11361057) and the National Natural 
Science Foundation of Xinjiang Uighur Autonomous Region 
(No. 2014211A002). 

REFERENCES 
[1] Gnedenko, B.V.: Some theorems on standbys. In: Proc. Fifth Berkeley 

Sympos. Mathematical Statistics and Probability, Berkeley, Calif., 
1965/66. Physical Sciences, University California Press, Berkeley 1967, 
vol. III,  pp. 285–291.  

[2] Subramanian, R.: Availability of a Gnedenko system. IEEE Trans. 
Reliab. , 1977, 26,  pp. 302–303. 

[3] Cao, J.: Availability and failure frequency of a Gnedenko system. Ann. 
Oper. Res. , 1990,24, pp.  55–68. 

[4] Cao, J., Yue, D.: The Gnedenko system attended by a repairman with 
single vacations. J. Shandong  Univ. Nat. Sci., 2008, 43(6), pp. 77–82. 

[5] Guo, W. L., Wu, Q. T., The Gnedenko system attended by a repairman 
with multiple delay vacations,  Shandong  Jianzhu Univ. Nat. Sci. 2009, 
24(4), 342–345. 

[6]  Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution 
Equations. Graduate Texts in Mathematics, 194, Springer-Verlag, 2000. 

[7] Casarino V., Engel K.-J., R. Nagel and Nickel G. (2003) A semigroup 
approach to boundary feedback systems. Integr. Equ. Oper. Theory, 47, 
289–306. 

[8] Greiner G. (1987) Perturbing the boundary conditions of a generator.  
Houston J. Math., 13, 213–229.  

[9] Haji A. and Radl A. (2007) A semigroup approach to queueing systems. 
Semigroup Forum, 75, 610–624. 

[10] Nagel R. (1986) One-parameter Semigroups of Positive Operators. 
Springer-Verlag. 

Advances in Intelligent Systems Research, volume 153

348


	I. Introduction
	II. Problem as an Abstract Cauchy Problem
	III. Characteristic Equation
	IV. Well-Posedness of the System
	Acknowledgment
	References




