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Abstract. The impulsive control of a finance system is investigated in this paper, and the finance 
system can be asymptotically controlled to the origin by using impulsive control. Based on the new 
comparison theorem of impulsive system, this paper obtains some sufficient for the stabilization of 
the finance system via impulsive control with varying impulsive intervals, A numerical simulation 
illustrates the effectiveness of the proposed result. 

Introduction 
The chaotic financial system is a complex nonlinear system, which has some interesting phenomena, 
such as the limit cycle, stable periodic orbits, quasi periodic attractor, and chaotic attractor. After the 
system enters the chaotic state, the stable periodic orbit turns into an unstable periodic orbit, and how 
to turn the chaotic motion of the system into a regular motion is the purpose of chaos control. The 
pulse control systems have been considered by a number of authors [1-4]. The recent, impulse control 
is also widely used to control chaotic systems [5-7]. 

Gao qin et al.[8] formulated  a financial model, studied the chaos and bifurcations problems of this 
financial model, and got some good results. In this paper, we study the stability of this chaotic 
financial model by using the pulse control method, and obtain the sufficient conditions for asymptotic 
stability of the financial system. The results show that some beneficial adjustments can be made to the 
operation of the market economy. 

The pulse stability of the financial model 

Gao qin et al.[8] discussed  a financial model, shown as following. 
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Where 0a ≥ is the saving amount, b 0≥  is the cost per investment, and 0c ≥  is the elasticity of 
demand of commercial markets. Chaos is found through numerical simulation (Fig. 1). 

 
Fig.1  chaotic attractor: 4, 0.1, 1.a b c= = =  
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Let  * * *( , , )x y z   is a steady-state  of  the system (1) and * * *
1 2 3, ,X x x X y y X z z= − = − = − , 

1 2 2( , , )TX X X X= , the system (1)  can become 
                                                            ( ).X AX X= +Φ                                                          (2) 
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We add  impulsive control to the system (2)  
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Then the pulse system (3) is asymptotically stable, where 1| |M max X= . (Particularly, 
when P I= , 1 2 1λ λ= = ) 

Proof: Suppose ( , ) , ,T
iV t X X PX t t P I= ≠ ≠ , we have 
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[14] are satisfied. By the lemma 1, the stability of pulse system (3) is contained in the following 
comparison system. 
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Now let's consider the conditions in lemma 2 [9], because 
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Then, the condition (2)  in the lemma  2 [9] are satisfied. 
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Hence, the condition (3)  in the lemma  2 [9] are also satisfied. Then the pulse system (3) is 
asymptotically stable. 

Theorem 2.  If 
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Then the  trivial solution of the system (3)  is asymptotical stable. 
Proof:   From the previous hypothesis, we have 

.

2

1

( )( , ) [ 2 ] ( ) ( )
( )

K tg t q M t t
K t

λω ω λ
λ

= + + =   

Hence  
1 12

1
1

( )( ) ( 2 )( ) ln
( )

k

k

t k
k kt

k

K tt dt q M t t
K t

ll
l

+ +
+= + − +∫   

And ( )K t  is non-increasing function, so 1( )ln 0
( )

k

k

K t
K t

+ ≤ , hence 

1 2
1

1

( ) ( 2 )( )k

k

t

k kt
t dt q M t tλλ

λ
+

+≤ + −∫   

By using equation (2), we have  
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By the lemma 2 [9], the  trivial solution of the system (3)  is asymptotical stable. 

Numerical Simulation 
For the system (1),  when 4, 0.1, 1a b c= = = , chaos is found through numerical simulation (Fig. 1).  

Take the  equilibrium point 0
1(0, ,0)P
b

 of the system (1), then 
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We have 1 2 3( , , ) 0.58k max k k k= = − , and using the Theorem 2, then 
210 ( (1 ) / 0.029, 2.3ln k q

p
τ ξ ξ≤ = ≤ − + = =  

The result of numerical simulation is as shown in Fig. 2. 

 
Fig. 2 When 4, 0.1, 1a b c= = = ,the equilibrium 0

1(0, ,0)P
b

 of system (1) is asymptotically stable. 

Conclusion 
The impulsive control of a finance system is investigated in this paper, and the finance system can be 
asymptotically controlled to the equilibrium point by using impulsive control. This paper obtains 
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some sufficient for the stabilization of the finance system via impulsive control with varying 
impulsive intervals. This method can control chaotic motion effectively, can turn chaotic irregular 
motion into regular motion, and achieve the purpose of chaos control. In the actual commercial 
market, through our control, to some extent, we can effectively regulate the rapid and healthy 
development of economy. 
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