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Abstract—This paper studies the computational method of the 

reliability of rectangular orthotropic membrane with four 

edges fixed under stochastic concentrated impact load. Based 

on the explicit equations of deflection response obtained in the 

previous work of our team, the reliability index and failure 

probability of the architectural membrane under concentrated 

impact load are obtained via the advanced first-order second-

moment method(AFOSM). In addition, an experiment on 

stochastic impact load was carried out. Based on the principle 

of least-squares method, the impact speed is fitted to a 

Gaussian distribution with specific mathematical 

characteristics. The data are processed by Monte-Carlo 

method and the results are compared with the theoretical 

results calculated by AFOSM. The variation rules and 

differences of the results obtained by two methods are 

analyzed. This study provides a theoretical reference for the 

vibration control of membrane structures and the research on 

the failure of membrane due to hail and other disasters. 
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I.  INTRODUCTION 

Building membranes act both as structure and as cladding, 
reducing the weight, cost, and environmental impact of the 
construction. Membrane structures have fashionable 
architectural performances as well as a high level of 
structural stability and durability. However, due to its light 
weight and low rigidity, the architectural membrane has the 
characteristics of large deformation, geometric nonlinearity, 
small damping and low natural frequency, making it 
particularly sensitive to the external load. In addition, due to 
the randomness of the load caused by the natural climate, 
stress concentration may occur once the membrane fails or 
tears partly, which may endanger the safety of the entire 
structure. Therefore, studying the reliability of membrane 
structure under the stochastic impact load is of great 
significance to the structural design, construction and 
maintenance. Therefore, to prevent such kinds of engineering 
accidents from happening and reduce the loss membrane 
structure suffers, the related researches are very necessary. 

In 2004, Farid Khan [1] studied the nonlinear behaviour 
of membrane type electromagnetic energy harvester under 
harmonic and random vibrations. In 2007, Jie Li [2] 
researched the equivalent extreme-value event and 
evaluation of the structural system reliability, and proved his 

approach is of satisfactory accuracy and applicable to the 
structural reliability analysis of various structures. In 2008, 
J.W. Fox [3][4] studied the dynamic characteristics and 
dynamic electron load of dielectric elastic membranes. In 
2010, Liu Chang-jiang [5] deduced the governing equations 
of geometric nonlinear free and forced vibration of 
orthotropic rectangular membrane structures. The LPD 
perturbation method and KBM perturbation method were 
used to obtain the analytical solutions of the deflections of 
the membranes without damping and damping. In 2012, P.D. 
Gosling [6] studied a reliability approach for membrane 
structure with numerical simulation. In 2015, Weiju Song [7] 
obtained the functional relation between different structure 
parameters and the natural frequency of the thin plates, 
provide some computational basis for the vibration control 
and dynamic design of stochastic parameter structures. 

In this paper, methods of calculating the reliability of an 
orthotropic rectangular membrane under stochastic 
concentrated impact load are studied and the applicability of 
first-order second-moment method in the calculation of the 
reliability of the membrane structure is proved. According to 
the experiment, a stochastic load model is established via 
least-squares method. Monte-Carlo method is used to 
process the data to get the reliability index and failure 
probability of the membrane structure. The change 
regulations of the reliability under different parameters are 
analyzed with these two methods. Conclusions have some 
practical significance on the vibration control design of the 
membrane structure, which helps to prevent the membrane 
structure from tearing accidently due to the excessive 
response of the vibration deflection resulting from the 
stochastic dynamic load. 

II. CALCULATION METHOD OF RELIABILITY INDEX AND 

FAILURE PROBABILITY 

According to the previous work of our research team, 
the response function of rectangular orthotropic membrane 
under concentrated impact load was obtained via the 
stochastic vibration theory and the perturbation method[8]: 
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And 0 xN  is the pre-tension in the x  direction; 0 yN  is the 

pre-tension in the y direction;   is the density of the 

membrane; h  is the thickness of the membrane; E1 is the 

elastic modulus in the warp direction; E2 is the elastic 
modulus in the weft direction; M  is the mass of impact 

body; v  is the impact velocity。 

A. Advanced first-order second-moment method 

The membrane structure is easily deformed under impact 
load, resulting in laceration in the membrane surface. Due to 
the excessive deflection, a large amount of ponding and dirt 
are formed on the surface of the membrane, which is 
unfavorable to the normal function of the membrane 
structure. Different regions have different regulations for the 
maximum deflection limit of deflection in the design of 
membrane structure. Among them, the regulation in the 
Shanghai area of China [9] stipulate that the maximum 
deflection under the first type of load effect combination 
should not be larger than 1/250 of the span or 1/125 of the 
cantilever length. Therefore, the design of the membrane 
structure treats deflection as a key parameter, the use of the 
maximum deflection value and limit the establishment of 
limit state equation: 

 1 2( , , , )B top nZ w w g x x x    (2) 

Where topw  is the maximum deflection value, Bw  is the 

deflection threshold, ix  is the thn  Basic design variables, g  

is the thn  performance function. The structure fails when 
0Z  . 
Based on the explicit performance function, the 

advanced first-order second-moment method (AFOSM) is 
used to solve the reliability problem. The Taylor series is 
used to expand the function at the most probable failure 
point and keep the first two terms. The failure probability of 
the linear function is used to approximate the failure 
probability of the original nonlinear function and the 
reliability index is calculated. 

 
The design point needs to be calculated by iterative 

calculation, and the mean value of the variable can be used 

as the initial design point 
*x : 
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The sensitivity coefficient of ix
 is as follow: 

 

*

2
*

2

1

( )

cos

( )

i

i i

i

x

i
x x

n

x

i i

g x

x

g x

x



 







  

 
 

 


 (4) 

Reliability index of the structure: 
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The new design point can be calculated iteratively: 

 

* cos
i i ii x x xx    

 (6) 

Substituting the new design points into Eq.4-Eq.6, until 
a stable reliability index and design point are obtained. 

Thus, the probability of failure is: 

 
( 0) ( )fP P Z    

 (7) 

Where ( )  is the cumulative distribution function of a 
standard normal variable. 

B. Monte-Carlo method 

According to the Law of Large Numbers, Monte-Carlo 
method infer the parent's statistical laws by the probability 
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characteristic of sample. When sample data is of large 
quantity, the calculation result is relatively accurate. For the 
fact that there is little research on the reliability of the 
membrane structure currently, Monte-Carlo method can be 
used to calculate its reliability and to verify the effectiveness 
of other methods. 

The probability of safety is calculated as follows: 

 
1s fP P 

 (8) 

The calculation of the limit state equation is based on 
basic design variables. When the structure fails, the 
probability of failure can be obtained: 
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Where fN
 represents the failure times (

0g 
), N  

represent the simulation times. 
Use the ratio of the expectation and standard deviation 

of the performance function to solve the reliability index: 
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 (10) 

Where   is the reliability index, g  is the expectation of 

the performance function, g  is the standard deviation of the 
performance function. 

III. CONCENTRATED IMPACT EXPERIMENT 

A. Experimental Facility 

Concentrated impact experiment was carried aimed at 
studying the dynamic reliability problems of the orthotropic 
rectangular membrane structures under concentrated 
stochastic impact load.  Membrane purchased from a certain 
supplier of architectural membranes, and the material details 
were provided by the manufacturer, which is as shown in 
the Tab.1. Membranes need to be cut, heat bonded and 
punched. 

TABLE I.  SPECIFIC PARAMETERS OF MEMBRANE MATERIAL 

The incidence velocity and reflection velocity of ball are 
obtained by the two-way tachometer, and their difference 
value is impact velocity. The statistics shows that the impact 
velocity approximates Gaussian distribution and could be 
Gaussian fitted, which is consistent with the meteorological 
law of hail in the natural environment. The dynamic 

response of the membrane was measured by a non-contact 
laser displacement sensor, which obtained the displacement, 
velocity and acceleration. Measurement points were C1 point, 
C2 point and C3 point, the distribution of location as shown 
in Fig.2. 

    

 
Figure 1.  The membrane material and experimental facilities 

 
Figure 2.  The membrane specimen and the measure point 

B. Analysis of the Impact Velocity 

The velocity difference value between the incidence 
velocity and the reflection velocity is studied. Experiments 
were performed for 160 times, which obtained sample data 
of 160 impact velocities . Ignore the failed tests, 146 sample 
data remain valid. These sample data were analyzed. 

The least-squares method was used to process the impact 
velocity to obtain the probability density curve. According to 
the characteristic of sample distribution, it can be fitted to a 
Gaussian distribution. Assume its probability density 
function is: 
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Parameters Size Thicken Density 
Elastic modulus 

(warp/weft) 

Value 
1200

800

mm

mm
 

0.72mm  2/0.95kg m
 

1590 /1360MPa
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Where [ ]E v  is the expectation of the stochastic 

variable v , v  is the standard deviation, a  is an 

constant. 
Log terms on both sides: 
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value of Y .The equation becomes: 
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Now use polynomial fitting to determine 0 1 2, ,a a a
 so as to 

obtain the value of [ ]E v , v , a . The regular equations of 
polynomial fitting is: 
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According to coefficient matrix of regular equations, the 
following algebraic equations are obtained: 

   

2

1

0

16 612.375 25034.51 43.4771

612.375 25034.51 1024834.44 1777.32

25034.51 1024834.44 42010507.80 72773.43

a

a

a
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2 1 0584.98, 28.65, 0.35a a a    
 

[ ] 40.7E v 
,

22 2.843   
The probability density function is:  
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Test the stability of the impact velocity in this experiment 
by rounds method. Among the sample data, remove the first 
and last data. This would not affect the result of the test. The 
remaining 144 data were divided into 9 groups with 16 data 
in each group. The values are shown in the Tab.2. 

C. Maximum of Deflection Response 

The advanced first-order second-moment method 
(AFOSM) and the Monte-Carlo method(MCS) are used to 
process the experimental model and the load model. The 

simulation times of MCS is 1000. The failure probability and 
reliability index under different deflection thresholds are 
obtained as shown in Tab.3. This table shows that the 
probability of failure calculated by AFOSM is very close to 
that of MCS. Meanwhile, the Monte-Carlo method itself is a 
simulation method by generating large numbers of random 
numbers for calculation. The result is undoubtedly very 
accurate, which proves that AFOSM can be well applied to 
the calculation of the dynamic reliability of rectangular 
orthotropic membrane. 

TABLE II.  THE SIGN TABLE IN ROUNDS METHOD 

Mean in 
group 

41.61 40.07 40.67 40.38 41.05 

Sign + - - - + 

Mean in 
group 

40.83 40.91 40.41 40.55  

Sign + + - -  

IV. PARAMETER ANALYSIS 

This chapter mainly uses the theory and the numerical 
simulation method to study the reliability index and failure 
probabilityβ of the membrane calculated via first-second 
second-moment method and the Monte-Carlo method, whose 
simulation times are 1000 and 200 with the deflection 
threshold is 0.250mm while the pretension force and mass of 
ball varying. And the influences of these two parameters on 
the structural failure and the differences among different 
methods are obtained. 

A. Effect of Pretension Force 

Fig.3 and Fig.4 show the change regulation of reliability 
under different pretension forces. As can be seen from the 
figures, the results obtained by AFOSM are in good 
agreement with those obtained by the Monte-Carlo method 
with 1000 simulation times. The results of the Monte-Carlo 
method with 200 simulation times show a certain degree of 
volatility caused by the lack of simulation times. The 
reliability index increased almost linearly with the increase 
of pre-tension in the early stage, but declined again at 
7040kN. Although increasing the pre-tension could reduce 
the amplitude of the vibration, the natural frequency is also 
changed, which leads to the case that pretension incensement 
is not large, the latitudinal-longitudinal coupling effect on 
the structure is dominant in reliability control. Therefore, 
when the maximum deflection of the structure approaches 
the threshold, it is necessary to increase the pretension to get 
it out of the dangerous range near the threshold. 
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Figure 3.  Relationship between probability of failure and pretension force. 

 

Figure 4.  Relationship between reliability index β and pretension force. 

TABLE III.  THE PROBABILITY OF FAILURE AND RELIABILITY INDEX Β 

Threshold 

(mm) 

Probability of Failure (%) Reliability Index β 

FOSM MCS FOSM MCS 

0.230 91.19 92.30 -1.3525 -1.4255 

0.235 73.85 74.60 -0.6386 -0.6620 

0.240 47.00 48.10 0.0754 0.0476 

0.245 21.49 22.30 0.7895 0.7621 

0.250 6.63 6.30 1.5036 1.5301 

0.255 1.33 1.10 2.2178 2.2904 

0.260 0.17 0.30 2.9321 2.7478 

0.265 0.013 0.1 3.6465 3.0902 

 
 

B. Effect of Impact Mass 

Fig.5 and Fig.6 show the change regulation of reliability 
under different mass of impact body. It can be seen from the 
figure that the reliability index decreases linearly with the 
increase of the ball mass, and when the ball mass is less 
than0.24g, the number of failure times simulated by the MCS 
method is 0, that is, the reliability index is infinity, the 
structure is in an absolute safe state. Although the result 
calculated by the AFOSM can be expressed as a numerical 
value but not zero or infinity, the probability of failure in this 
case is a quite small value, so that the structure can be 
regarded as being safe. Therefore, when calculating the load 
for membrane structure design, increasing the design value 
of load by multiplying coefficients etc. is very advantageous 
for structural safety. 

 
Figure 5.  Relationship between probability of failure and pretension force. 

 
Figure 6.  Relationship between reliability index β and pretension force. 
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V. CONCLUSION 

In this paper, based on the first transgression criterion, 
the failure probability and dynamic reliability index of 
membrane structures are solved by applying the advanced 
first-order second-moment method. In addition, the dynamic 
reliability of stochastic vibration is studied experimentally, 
and the theoretical model is validated by theoretical and 
experimental comparison. The influence of parameters such 
as pretension and impact body mass on dynamic reliability is 
also discussed. The main conclusions are as follows: 

(1) The advanced first-order second-moment method 
(AFOSM) is able to calculate the dynamic reliability of the 
membrane structure accurately. 

(2) The membrane reliability generally increases linearly 
with the incensement of pretension force. However, due to 
the change of natural frequency, the pretension force 
increases slightly, which may reduce the reliability of the 
structure. When the maximum deflection of the structure 
approaches the threshold, it is necessary to increase the 
pretension to get it out of the dangerous range near the 
threshold. 

(3) The membrane reliability decreases linearly with the 
incensement of impact body mass. When designing the load, 
increasing the design value of load by multiplying the 
coefficient can effectively improve the structural reliability. 

(4) This theoretical and experimental study expands 
membrane vibration studies and provides references for the 
theoretical study of the reliability of membrane structures. 
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