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Abstract—Dynamic system reliability is one of the topics for 

structure reliability analysis. However, the classical system 

reliability and dynamic system reliability often have multiple 

failure modes which lead to the combinatorial explosion 

problems. In this paper, a new method for analyzing the 

reliability of dynamic system reliability is proposed. Firstly, 

based on the level of load and dynamic condition, the limit 

state function for each failure modes are available. Secondly, 

by introducing the equivalent extreme value event, the 

equivalent performance function for individual limit state 

function is derived. Thirdly, the adaptive RSM is proposed to 

analyze the reliability index of the structure system under 

dynamic condition. Finally, several examples are presented to 

illustrate the accuracy and efficiency of the proposed method.  
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I.  INTRODUCTION 

In structural reliability analysis, the work and studies 
with respect to dynamic system reliability analysis are 
concerning and developed for decades because of the 
complexity and inevitability of randomness both in structural 
system and dynamic load, and a number of probabilistic 
analysis tools have been proposed to quantify dynamic 
system reliability analysis: In system reliability analysis, Ang 
[1] first introduced the idea of fault tree analysis (FTA) into 
structural system reliability analysis and proposed the 
probabilistic network evaluation technique (PENT) 
algorithm for evaluating the comprehensive failure 
probability of structural system. Then Mose [10] combined 
the incremental load approach and limit state analysis 
method for identifying and expressing the main collapse 
modes in structural system reliability analysis. Thoft-
Christensen & Sorensen [13] presented β-unzipping method 
for calculating the probability failure of series and parallel 
structural systems, which the lower-upper bound method is 
applied. Murotsu & Thoft-Christensen [14] modified the 
selection of most significant failure modes by introducing 
joint failure probability, and proposed branch- and bound 
method for estimating the reliability of structural system. 
Feng & Mose [7] introduced definitions for redundancy 
based on ultimate, reserve, and residual strengths in the 
context of structural reliability and optimum design of truss 
structures. As for dynamic aspects, Rice [12] first proposed 

the formulation of the out-crossing theory and it is widely 
developed and applied [4]. However, the major difficulties 
encountered in all these dynamic system reliability methods 
are how to solve the combinatorial explosion problems in 
multiple failure modes and how to tackle the use of 
correlation information of different random events and two-
dimensional joint probability density function (PDF). In 
order to overcome these difficulties, J. Li [9] proposed the 
equivalent extreme value event method for dynamic 
reliability analysis to derive the exact solution with inherent 
total correlation information. 

Response surface method (RSM) is a helpful technique in 
structural reliability analysis where limit state function is 
implicit and numerical methods are needed. In RSM, the 
limit state function is approximated by mathematical 
expression with undetermined coefficients. By fitting the 
response surface to a number of sample points on the limit 
state, the response surface function (RSF) is constructed and 
applied in reliability analysis, such as first-order reliability 
method (FORM) [8] and second-order reliability method 
(SORM) [2]. The selection of the form of RSF has great 
influence on the efficiency and accuracy of RSM, and the 
polynomial form of RSF is commonly used and studied [3, 6, 
11, 15], and Fan [5] proposed an adaptive response surface 
method with cross terms, which the cross terms can be 
rationally considered and improve the efficiency of RSM 
without loss of accuracy.  

In this paper, an adaptive RSM is presented for dynamic 
system reliability analysis. It is organized as follows. In 
Section 2, an equivalent performance function for dynamic 
structural reliability is formulated based on the equivalent 
extreme value event, and an adaptive RSM is presented 
based on the equivalent performance function together with 
its implementation. Then in Section 3, an examples are 
investigated to verify the proposed method. At last some 
conclusion are drawn in Section 4. 

II. ADAPTIVE RESPONSE SURFACE METHOD 

FOR DYNAMIC RELIABILITY ANALYSIS 

A. The equivalent extreme-value event 

For the first-passage problem, if there are multiple limit 
state functions in dynamic reliability analysis, the reliability 
probability can be defined as 
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where Pr{·} is the probability of the random event in the 
bracket; gi(·) is the ith time dependent limit state function; 
X=(X1,X2,…,Xn) is the random vector with n components, 
and Ti is the time duration corresponding to gi(·). 

Introducing the equivalent extreme-value event [9], (1) 
can be rewritten as 
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where geq(·) is the equivalent limit state function, namely 
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where T= (T1,…,Tm). 
Therefore, the multiple limit state functions in dynamic 

system reliability are translated into one equivalent limit 
state function, which can be approximated by RSF 
efficiently. 

B. Adaptive response surface method 

Based on the quadratic polynomial response surface 
method (RSM), the equivalent limit state function geq(X, T) 
can be approximated by 
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where a0, bi, ci and dij are the 1+2n+n(n-1)/2 undetermined 
coefficients, which can be evaluated by a set of linear 
equations through the selecting sample points. 

However, not all the cross terms for each pair of (Xi, Xj) 
are certainly necessary in practice. Introducing an indication 
function I(Xi, Xj T) for the cooperative effects between Xi 
and Xj, say 
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which can be determined according to [5], and (4) is 
rewritten further as 



2

0

1 1

1

( , )

( , , )

n n

e q i i i i

i i

i j i j i j

i j n

g a b X c X

I X X d X X

 

  

  



 



X T

T

 

Due to involving cross terms rationally, (6) is named as 
the adaptive RSM. Based on (6), the dynamic system 
reliability index β can be obtained easily by Monte Carlo 
simulation (MCS). 

C. Numerical implementation 

The procedure of the proposed method is as follows: 

1) The initial iterative analysis 

a) Set k=0, and xc= (x1,c, x2,c,…, xn,c) =µx, in which xc 

is the reference point and µx is the mean value of X.  

b) By selecting sample points along the axes xi as the 

point at xc and points with coordinates xi
(0)

= xi,c±fkσi, 

(if k=0, then fk=3, else fk=1), in which σi is the 

standard deviation of variable Xi. And evaluate the 

function values of geq(X, T) at these sample points, 

2n+1 linear equations can be obtained. 

c) By selecting sample points at (xi,c+fkσi, xj,c+fkσj, xij,c), 

(1≤i<j≤n), in which xij,c is a sub-vector of xc 

without the corresponding coordinates of Xi and Xj. 

And evaluate the function values of geq(X, T) at 

these sample points, n(n-1)/2 equations can be 

obtained. 

d) According to reference [5], Δg ij
 (0)

 can be evaluated 

using the results of sub-step (a) and (b), reads: 
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and xi,1= xi,c+fkσi and xj,1= xj,c+fkσj. Then the 
indication functions I

(0)
(Xi, Xj) (1≤i<j≤n) can be 

determined by 
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where ε is a specific positive value and ε=0.001 in 
this work. 

e) If I
(0)

(Xi, Xj)
(0)

=1, the cross term of Xi and Xj is 
existed in (6). Then the undetermined coefficients 
a0, bi, ci and dij can be obtained by solving the 
resulting simultaneous equations in sub-step (b) 
and (c), and yields the initial response surface, 

noted as g
__

eq
(0)

(X,T), and the reliability index β
(0)

 of 

g
__

eq
(0)

(X,T) can be obtained by the first-order 
reliability method(FORM), together with the 
design point x

*(0)
. 

f) Set k=1, and select a new center point XM
(1)

 for the 

1st iteration using the linear interpolation 


( ) * ( 1 )

* ( 1 )

( , )
( )

( , ) ( , )

k k x

M x k

x

g

g g




  


X

μ T
x μ x

μ T x T
  

g) Let xc= xM
(1)

. Being similar with the process of k=0, 
I

(1)
(Xi, Xj, T), β

(1)
 and x

*(1)
are available easily. 

2) Delineating the existence of bivariate component 

function 

According to the results of step (1), if both I
(0)

(Xi, 
Xj, T) and I

(1)
(Xi, Xj,T) are equal to 0, then I(Xi, Xj)=0, 

otherwise there exists cross terms of Xi and Xj in (6). 

3) Subsequent iterative analysis 

i) If |β
(k)
 β

(k-1)
|/ | β

(k-1)
 |≤ε3 (ε3=10

-3
 ), go to sub-step 

vi); or else, go to sub-step ii). 

ii) Set k=k+1, and xc= XM
(k)

, which is determined by 

Eq. (10). 

iii) Selecting 2n+1 sample points along the axes of xi 

which are located at xc and with coordinates xi
(k)

= 

xi,c±fkσi, and evaluate the function values of geq(X, 

T) at these sample points. 

iv) If I(Xi, Xj)=1 for k≥2, select an additional point 

(xi,c+fkσi, xj,c+fkσj, xij,c) and evaluate its function 

value of geq(X, T). 

v) Evaluate the undetermined coefficients a0, bi, ci 

and dij by solving the resulting simultaneous 

equations in sub-step (iii) and (iv), and yields the 

kth response surface, namely g
__

eq
(k)

(X,T). Then the 

corresponding reliability index β
(k)

 can be obtained 

by FORM, together with the corresponding design 

point X
*(k)

. And go to sub-step i). 

vi) Estimate the failure probability associated with g
__

eq
(k)

(X,T) using Monte Carlo simulation (MCS). 

III. NUMERICAL EXAMPLES: IDEAL ELASTIC-

PLASTIC ONE-BAY EIGHT-STORY FRAME 

In order to demonstrate the performance of this method, 
the dynamic system reliability of a one bay eight-story ideal 
elastic-plastic steel frame structure is investigated, which is 
constituted by beam elements. The geometrical properties of 

the structure and beam cross section are shown in Figure 1 
and Figure 2. The initial Young’s modulus E, the ultimate 
stress of all sections f and the amplification coefficient of 
ground acceleration A are taken as random variables, and 
their statistics are listed in Table 1. And the Tafat stochastic 
ground motion model is used. 

The reliabilities agianst the ith inter-story drift can be 
described as 
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where Xi(i=1,2,…,8 ) is the inter-story drift between the (i-
1)th story and the ith story, hi being the corrseponding 
height, ϕB being the threshold of the inter-story drift angle. 
In this example, ϕB is defined as 1/50 for safety under the 
seldom occured earthquake. Besides, the dynamic system 
reliability can be defined as 
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and the equivalent limit state function geq(f, A, E, T) can be 
described as 
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where T=(T1, T2,…, T8). 
By delineating all the cross terms, the results showed 

that I
(0)

(f, A, T)= I
(1)

(f, A, T)= I
(0)

(f, E, T)= I
(1)

(f, E, T)=0. 
Then the response surface function can be written as 
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After 8 iterations the convergent result can be obtained, 
and the final reliability index β is 3.0436. The value of β 
obtained by Monte Carlo simulation of 1000000 sample size 
is 2.8018. 

TABLE I.  STATISTICS OF RANDOM VARIABLES 

Variable Distribution 
Mean 

value 

Standard 

deviation 

f(Mpa) Normal 400 40 

A Normal 1 0.3 

E(Mpa) normal 2.0e05 2.0e04 
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Figure 1.  Geometrical properties of beam cross section. 

 

Figure 2.  Geometrical properties of the structure. 

IV. CONCLUSION 

Structural dynamic reliability analysis has been a 
significant subject in the area of structural reliability analysis. 
In this work, an adaptive RSM for dynamic reliability 
analysis is proposed by combining the equivalent extreme 
value event with delineating the existence of cross terms, 
which the cross terms in a quadratic response surface 
function can be rationally considered, and better balancing 
the accuracy and efficiency of the iterative RSM. Then the 
MCS is applied to obtain the final reliability index β. A 
multi-story steel frame example is investigated to 
demonstrate the effectiveness of the proposed method. 
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