
An automatic Algorithm Based on Artificial Neural Network is Applied in Taxi 

Target Prediction 

Zhaosheng WANG
1
 

Ganzhou Teachers college 

Ganzhou, China 

e-mail: 1239331840@qq.com 

Shiyu LI
2
 

Jiangxi University of Science and Techrcolog 

Ganzhou, China 

e-mail: 81798152@qq.com 

 

 
Abstract—This paper describe the solution to the 

ECML/PKDD discovery challenge on taxi destination 

prediction. The work consisted in predicting the destination of 

a taxi based on the beginning of its trajectory, represented as a 

variable-length sequence of GPS points, and diverse associated 

meta-information, such as the departure time, the driver id 

and client information. Contrary to most published 

approaches, this paper uses an almost fully automated 

approach based on neural networks. The architectures we 

tried use multi-layer perceptions, bidirectional recurrent 

neural networks and models inspired from recently introduced 

memory networks. Our approach could easily be adapted to 

other applications in which the goal is to predict a fixed-length 

output from a variable-length sequence. 
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destination; prediction 

I.  INTRODUCTION 

The taxi destination prediction challenge was organized 
by the 2015 ECML/PKDD conference and proposed as a 
Kaggle competition. The last location represents the target, 
and different trajectories have different GPS sequence 
lengths. Metadata associated with a taxi: if the client called 
the taxi by phone, then we have a client ID. If the client 
called the taxi at a taxi stand, then we have a taxi stand ID. 
Otherwise we have no client identification, the taxi ID, the 
time of the beginning of the ride. In the competition setup, 
the testing dataset is composed of 320 partial trajectories, 
which were created from five snapshots taken at different 
timestamps. This testing dataset is actually divided in two 
subsets of equal size: the public and private test sets. The 
public set was used through the competition to compare 
models while the private set was only used at the end of the 
competition for the final leader board. Our approach uses 
very little hand-engineering compared to those published by 
other competitors. It is almost fully automated and based on 
artificial neural networks. 

II. APPROACH 

A. Data Distribution 

The work is to predict the destination of a taxi given a 
prefix of its trajectory. As the dataset is composed of full 
trajectories, we have to generate trajectory prefixes by 
cutting the trajectories in the right way. The provided 
training dataset is composed of more than 1.7 million 

complete trajectories, which gives 83480696 possible 
prefixes. The distribution of the training prefixes should be 
as close as possible as that of the provided testing dataset on 
which we were eventually evaluated. This test set was 
selected by taking five snapshots of the taxi network activity 
at various dates and times. This means that the probability 
that a trajectory appears in the test set is proportional to its 
length and that, for each entire testing trajectory, all its 
possible prefixes had an equal probability of being selected 
in the test set. Therefore, generating a training set with all the 
possible prefixes of all the complete trajectories of the 
original training set provides us with a training set which has 
the same distribution over prefixes as the test set. 

B. MLP Architecture 

A Multi-Layer Perceptron (MLP) is a neural net in which 
each neuron of a given layer is connected to all the neurons 
of the next layer, without any cycle. It takes as input fixed-
size vectors and processes them through one or several 
hidden layers that compute higher level representations of 
the input. Finally the output layer returns the prediction for 
the corresponding inputs. In our case, the input layer receives 
a representation of the taxi’s prefix with associated metadata 
and the output layer predicts the destination of the taxi. We 
used standard hidden layers consisting of a matrix 
multiplication followed by a bias and nonlinearity. The 
nonlinearity we chose to use is the Rectifier Linear Unit [1], 
which simply computes max (0; x). Compared to traditional 
sigmoid-shaped activation functions, the RLU limits the 
gradient vanishing problem as its derivative is always one 
when x is positive. 

C. Destination Clustering and Output Layer 

As the destination we aim to predict is composed of two 
scalar values, it is natural to have two output neurons. 
However, we found that it was difficult to train such a simple 
model because it does not take into account any prior 
information on the distribution of the data. To tackle this 
issue, we integrate prior knowledge of the destinations 
directly in the architecture of the model: instead of predicting 
directly the destination position, we use a predefined set (ci)i 
of a few thousand destination cluster centers and a hidden 
layer that associates a scalar value (pi)to each of these 
clusters. As the network must output a single destination 
position, for our output prediction H, we compute a weighted 
average of the predefined destination cluster centers: 
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Note that this operation is equivalent to a simple linear 
output layer whose weight matrix would be initialized as our 
cluster centers and kept fixed during training. The hidden 
values (pi)i must sum to one so that H corresponds to a 
centroid calculation and thus we compute them using a soft 
max layer: 
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where (Tj)j are the activations of the previous layer. The 
clusters (ci)i were calculated with a mean-shift clustering 
algorithm on the destinations of all the training trajectories, 
returning a set of C = 3392 clusters.  

D. Cost Computation and Training Algorithm 

The evaluation cost of the competition is the mean 

Haversine distance, which is defined as follows ( x


 is the 

longitude of point x, x
  is its latitude, and R is the radius of 

the Earth): 
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Where A(x,y) is defined as: 
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Our models did not learn very well when trained directly 

on the Haversine distance function and thus, we used the 
simpler equirectangular distance instead, which is a very 
good approximation at the scale of the city of Porto:  
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We used stochastic gradient descent (SGD) with 
momentum to minimise the mean equirectangular distance 
between our predictions and the actual destination points. 
We set a fixed learning rate of 0.01, a momentum of 0.8and a 
batchsize of 350. 

III. ALTERNATIVE APPROACHES 

The models that we are going to present in this section 
did not perform as well for our specific destination task on 
the competition test set but we believe that they can provide 
interesting insights for other problems involving fixed-length 
outputs and variable-length inputs. 

A. Recurrent Neural Networks 

As stated previously, a MLP is constrained by its fixed-
length input, which prevents us from fully exploiting the 
entire trajectory prefix. Therefore we naturally considered 
recurrent neural net (RNN) architectures, which can read all 
the GPS points one by one, updating a fixed-length internal 
state with the same transition matrix at each time step. The 
last internal state of the RNN is expected to summarize the 
prefix with relevant features for the specific task. Such 
recurrent architectures are difficult to train due in particular 
to the problem of vanishing and exploding gradients [3]. 
This problem is partially solved with long short-term 
memory units [4], which are crucial components in many 
state of the art architectures for tasks including handwriting 
recognition [5], speech recognition [6], image captioning or 
machine translation. We implemented and trained a LSTM 
RNN that reads the trajectory one GPS point at a time from 
the beginning to the end of each input prefix. We considered 
a variant in which the input of the RNN is not anymore a 
single GPS point but a window of 4 successive GPS points 
of the prefix. The window shifts along the prefix by one 
point at each RNN time step. 

B. Memory Networks 

Memory networks have been recently introduced as an 
architecture that can exploit an external database by 
retrieving and storing relevant information for each 
prediction. The encoders are the same as those of our 
previous architectures except that we stop at the hidden layer 
instead of predicting an output. This results into fixed-length 
representations in the same vector space so that they can be 
easily compared. Then we compute similarities by taking the 
dot products of the prefix representation with all the 
candidate representations. Finally we normalize these m 
similarity values with a soft max and use the resulting 
probabilities to weigh the destinations of the corresponding 
candidates. In other words, the final destination prediction of 
the prefix is the centroid of the candidate destinations 
weighted by the soft max probabilities. 

IV. EXPERIMENTAL RESULTS 

A. Custom Validation Set 

We obtained these new testing and validation sets by 
extracting random portions of the original training set. The 
validation dataset is used to early-stop our training 
algorithms for each model based on the best validation score, 
while the testing dataset is used to compare our different 
trained models. 
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B. Results 

The testing scores of our various models on our custom 
testing dataset are as well as on the competition ones. The 
different hyper parameters of each model have been tuned. 
The results prove that embeddings and clusters significantly 
improve our models. The importance of embeddings can also 
be confirmed by visualizing them. 2D T-SNE projections for 
two of these embeddings and clear patterns can be observed, 
proving that quarters of hour and weeks of the year are 
important features for the prediction. All the models we have 
explored are very computationally intensive and we thus had 
to train them on GPUs to avoid weeks of training. Our 
competition winning model is the least intensive and can be 
trained in half a day on GPU. On the other hand, our 
recurrent and memory networks are much slower and we 
believe that we could reach even better scores by training 
them longer. 

V. CONCLUSION 

We introduced an almost fully-automated neural network 
approach to predict the destination of a taxi based on the 
beginning of its trajectory and associated metadata. Our best 
model uses a recurrent bidirectional neural network to 
encode the prefix, several embeddings to encode the 
metadata and destination clusters to generate the output. One 
potential limitation of our clustering-based output layer is 
that the final prediction can only fall in the convex hull of the 
clusters. A potential solution would be to learn the clusters as 
parameters of the network and initialize them either 
randomly or from the mean-shift clusters. Concerning the 
memory network, one could consider more sophisticated 
ways to extract candidates, such as using an hand-engineered 
similarity measure or even the similarity measure learnt by 
the memory network. In this latter case, the learnt similarity 

should be used to extract only a proportion of the candidates 
in order let a chance to candidates with poor similarities to 
be selected. Furthermore, instead of using the dot product to 
compare prefix and candidate representations, more complex 
functions could be used. 
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