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Abstract—The essence of failure for compression-shear 

sliding unstable rock belongs to the fracture of dominant 

fissure. The fracture mechanics model of compression 

shear type dangerous rock is established by combining 

rock failure criterion with fracture strength factor; By 

equivalent stress method, the equivalent stress field of 

the non - parallel section of the main control surface is 

obtained; The failure criterion of compression shear 

type dangerous rock is derived by using the classical D-P 

failure theory. 
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I. INTRODUCTION 

Unstable rock failure is a serious global mountain 
disaster problem with sudden, rapid and destructive 
characteristics. According to incomplete statistics, China's 
mountainous towns, mines, along the main road along the 
dangerous, dangerous, security level potential instability of 
tens of thousands of, only the Three Gorges Reservoir area 
of Chongqing, there are more than 50 thousand towns. 
There are more than 8000 times of instability disasters in 
China every year, and the direct economic loss is about 5 
billion, which seriously threatens people's personal and 
property security. Therefore, the study of the mechanism of 
instability and failure has become the focus of many 
scholars. The most representative ones are, Chen Hongkai 
and so on [1-6] used the fracture mechanics method to 
establish the joint fracture strength factor computation 
method of the main control structure plane crack extension 
direction, combined with the fracture toughness of 
dangerous rock, the stability calculation method of 
dangerous rock is established; Liu Changjun et al [7] 
classify the spatial mass model according to the unstable 
type of dangerous rock mass, the establishment of rock 
anchorage calculation method; Yu Mingming et al [8] 
adopted cantilever beam mechanical model, the stability of 
dangerous rock mass on high slope is calculated and 
analyzed quantitatively; Zhang Yongxing et al [9] studied 
the influence of the tensile stress in the slope and the depth 
of the cavity development on the formation and destruction 
of the weathered weathered rock, and proposed a method to 
predict the controlled failure modes of the weathered 
weathered rock; Zheng Anxing et al [10] will control fissure 
analogy to macroscopic crack, using extended finite element 

method (XFEM), to solve the structural plane propagation 
process of moving discontinuous problems, and explain 
under the load of dangerous rock master structure surface 
fracture behavior; Shi Yucheng and so on [11]according to 
the different rock dynamic displacement field of prestressed 
anchor reinforcement loads, the stress field distributions are 
simulated, reveals the dynamic response and the change rule 
of prestressed anchor cable in rock under seismic action. 
based on the theory of fracture mechanics, it is considered 
that the nature of the failure of the compression shear type 
dangerous rock (Figure 1) is the fracture of the main control 
structural plane [12]. The fracture mechanics model of 
compression shear type dangerous rock is established by 
combining rock failure criterion with fracture strength 
factor; Considering the two cases of no crack water pressure 
stress and fissure water pressure stress in the through 
section of the main structure of the perilous rock, the 
equivalent stress field of the non parallel section of the main 
structure face is obtained by the stress equivalent method; 
The application of Drucker-Prager criterion, shear sliding 
type rock failure criterion is deduced. It is of great 
applicability to explain the failure mechanism of this kind 
of dangerous rock. 

II. A MECHANICAL MODEL OF 

COMPRESSION SHEAR SLIDING DANGEROUS 

ROCK IS ESTABLISHED 

The core problem of the formation and failure 
mechanism of compressive shear type dangerous rock is the 
fracture growth of the main controlled structural plane 
under the combined action of compressive and shear 
stresses. Therefore, the establishment of mechanical model 
(Figure 2), the angle (β) of the main control structure plane 
in the picture, the main control structure of the load are 
mainly rock weight W, seismic force (horizontal seismic 
force Ph and vertical seismic force Pv) and fissure water 
pressure stress Pw, performance control structure surface 
compressive stress the shear stress and (Figure 2). Based on 
the analysis of the model, the model assumptions in plane 
stress condition, rock masses as with edge crack of the 
proposed finite template, fracture mechanics model of 
compressive shear sliding rock. The model takes into 
account the structure of the main control section through the 
effect of fissure water pressure stress (figure 3). In Figure 3, 
AB as the main control plane; The structure of the AO as 
the main control through segment, the length is a; AO main 
control structural face through section, length is a; OB non 
controlled section with main control structure, length is a0; 
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The coordinate origin O point is at the end of the through 
section; Based on the assumption of plane stress, the force 
does not change along the thickness, and the main structure 
of the dangerous rock is subjected to compression, stress 
and shear stress, and presents the composite fracture of 
compression shear (I-II). 
 

 
Figure 1. Picture of compression-shear sliding unstable rock; 
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Figure 2. Mechanical model of compression-shear sliding unstable rock 
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Figure 3. Mechanical model of hydrostatic stress fracture acting connective 
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Figure 4. Stress equivalent model of control fissure 

 

III. SOLVING THE EQUIVALENT STRESS FIELD 

AT THE TIP OF THE MAIN CONTROL PLANE 

The stress field at the tip of crack can be obtained by 
superposition principle of compression shear (I-II) sliding 
dangerous rock 

For the I mode, the stress field at the tip of the crack 
(when the compressive stress is negative): 
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For the II type crack tip stress field: 
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The stress fields at the crack tip of I and II modes at the 
end of the through section are superposed: 
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For the non through section, if theta is zero, the formula 
(3) is simplified as: 
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              (4)                     

According to the stress superposition principle, the main 
structural plane stress field is through segment, change 

under normal linear surface stress distribution ( wp ) and 

non superposition effect through segment equivalent stress, 

fracture hydraulic stress assumption ( wp ) in triangular 

distribution (Figure 4). 

Calculation of the hydraulic pressure ( wp ) under the 

action of the main control surface: 

hp ww                                      (5) 

Type: w  is the volume density of fissure water 

(kN/m3); The water filling height in the main control 
structure is h (m); The length of 1/3 through the main 
control section of the structure surface under the natural 
state, and the 2/3 length of the rainstorm state. 

According to equation (5) fracture hydraulic calculations 
should be there is a big error between the testing value and 
theory value, the test values are generally lower than the 
theoretical value, in view of this, the 13 of the fissure water 

pressure model test, the reduction coefficient , according 

to the test data obtained reduction coefficient   formula: 

312

2

11 kakak                             (6) 

Advances in Engineering Research, volume 146

299



                             

Type: 1a  in the form of the main control structure, the 

average opening degree, generally take 0.2 ~ 2.0cm between; 

1k , 2k , 3k respectively, take -0.36, 0.45, 0.57. 

Using formula (6), the stress correction formula of 
dangerous rock fracture is established: 

hp ww                                     (7) 

According to the stress intensity factor Handbook [14], 
the intensity factor formula of the normal distribution stress 
PW of the main structure plane through the lower surface 
and linearly varying with the lower surface: 

hpK ww 68.0                             (8) 

The stress field at the crack tip of the dangerous rock 
can only be affected by the hydraulic pressure of the dam (8) 
by substituting (1): 
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When the non through section (θ) of the main control 
structure is zero, the formula (9) can be simplified as: 
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Under load, the main structure face end point O with 
high stress concentration, there will be damage zone, by 
type (4) is obtained through cross section on stress field are 
different. This paper uses the method of equivalent stress 
distribution, stress assumption on the discontinuous sum 
and the total force and the same, using the equivalent stress 
distribution of force to replace the non through on the 
segment (Figure 4). 

The equivalent stress field of the non penetrating section 
can be obtained by figure 4: 
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By superposition of formula (11) and formula (10), the 
total equivalent stress field at the crack tip under the 

hydraulic pressure of the fracture at the through section is 
obtained: 
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IV. THE FAILURE CRITERION OF INSTABILITY 

UNDER D-P THEORY IS ESTABLISHED 

This paper uses Drucker Prager (Drucker-Prager) 
criterion (D-P criterion). The criterion considers the role of 
hydrostatic pressure, overcomes the weakness of M-C 
standard numerical calculation theory has been difficult, 
rock mechanics at home and abroad and the finite element 
calculation is very big promotion. 

The D-P criterion is extended and generalized on the 
basis of the Mises criterion and the C-M criterion in plastic 
mechanics: 

021  KJaIf                   (13) 
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c  and   are the cohesion (MPa) and internal friction 

angle (°) of rock mass materials. 
The total equivalent stress of formula (12) is replaced by 

(13) x , 
y , xy , tidy up: 
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Type (19), type (20) into the equation (13), tidy up: 
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When pure pressure is applied, K =0, formula (21) 

can be reduced to: 
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In pure shear, K =0, formula (21) can be reduced to: 
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In all the formulas, the values of a  and K  are 

obtained by laboratory tests. The cohesive force ( c ) and the 

internal friction angle (


) of rock mass are obtained; The 
length of the non penetrating section of the main control 
surface of the a0 is obtained by field measurements; 

K
= cK

 and K
= cK

 fracture toughness of rock type 
I and type II for single side cracks are obtained by 

experiment; The fracture toughness of the wK = wcK  
main control surface is only affected by the fracture water 
pressure, and is measured by the actual situation at the site. 
The failure criterion of unstable rock mass is established by 
using (16). The formula is simple and the parameters are 
easy to obtain, so it can be used as a criterion for the failure 
of the compression shear type dangerous rock. 
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V. CONCLUSION 

Firstly, based on the theory of linear elastic fracture 
mechanics, a fracture mechanics model of compression 
shear sliding dangerous rock body is established; By using 
stress equivalent method, the expressions of equivalent 
stress field of the main structure face are obtained.  

Secondly, the Drucker-Prager (Drucker-Prager) criterion, 
failure criterion of compression shear sliding rock is 
established; Considering the two cases, the differential 
equations of the failure criterion of unstable rock under two 
conditions are obtained.  

Thirdly, The criterion of failure to establish is based on 
the premise that the main control structure faces zero along 
the direction of theta, and there are some differences. 
Therefore, the established criteria need to be further studied 
and perfected to compensate for the lack of the criterion of 
instability failure. 
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