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Abstract. For better use of soil particle size distribution (PSD) models and expand the use of large 
database held by national Soil Surveys (Katchinski’s scheme) in China, 12 PSD models were 
proposed as the function of cumulative mass percentage of particles and diameter (mm) for 265 soil 
horizons (Katchinski’s scheme) in a broader soil particle-size ranges, and together with 3 commonly 
used interpolations were validated to estimate the PSDs of USDA system especially particles 
<0.002mm and 0.02mm for other 49 soil horizons. The adjusted coefficient of determination (Adj. R2) 
and the Akaike’s information criterion (AIC) were used to compare the quality of 12 numerical model 
fits. The ExpA and ExpD models with five parameters and Logistic model with four parameters 
showed relatively better performance. Correlation coefficient (r), absolute error (AE, %), and root 
mean square deviation (RMSD) were used to test the validation of the PSD models and interpolations 
on the soil particles <0.002 and 0.02mm, respectively. And it was noteworthy that the RMSDs yielded 
from interpolations were much larger than 12 models. Interpolations did not show any superiority 
towards numerical functions at particles <0.002 mm. Cubic spline interpolation performed worst with 
mean AE of 20% at particles <0.02 mm. This result suggested that the cubic spline interpolation could 
not use to estimate the soil particles <0.02 mm for Sichuan basin soil.  

Introduction 
Soil texture data (soil particle size distribution: PSD) of layers are indispensable and fundamental, 

for other soil data (e.g. soil saturation, saturated hydraulic conductivity) could be deduced from soil 
particle data. There are as yet no universally accepted classification schemes for soil texture [1] and 
soil data are rarely compatible across nations. For example, soil particle size fraction data in China are 
mainly classified by the Katschinski’s scheme, whereas models such as DSSAT adopt the USDA 
system. The need to expand the use of the large database held by many national Soil Surveys is 
obvious.  

The subject of indirect estimation of PSD from sparse particle size data that readily measured has 
been analyzed in the past with kinds of functions, such as weibull [2-4], Logarithm[5], Exponential [1,6], 
power [1] and interpolations [7-8]. In China, interpolation algorithm was often applied to estimate PSD 
from one scheme to another. As a descriptor of soil particle distributions, several things are 
noteworthy about aforementioned methods. For example, most of the studies consider the soils with 
particles<2 mm while the diameter >2 mm is taken as an exception. However, soil particles >2 mm 
have shown ecological significance in the landscape [9], and soil particles >2 mm are widely spread in 
practice in hilly areas like southwest China. The soils with coarse particles (diameter >2 mm) have not 
yet been studied with PSD models by far. For instance, the measured cumulative particle-size <3mm 
was 100% in the work of Rousseva[1]. So the reliability of these PSD models and methods needs to be 
identified in a broader soil particle-size ranges especially in the soils with particles >2 mm.  

The previous results suggested that the performance of the PSD models depended more on the 
texture of the soil sample. Rousseva[1] used two PSD models (exponential and power-law distribution 
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models) to test the effects of texture on their performance. He found that the exponential and 
power-law distribution models could be used to represent the PSDs of fine- and coarse-textured soils, 
respectively. Hwang[4]reported that the performance of most PSD models improved with the increase 
in clay content in soils. All the textures mentioned above mean the sands, silts, and clays except the 
gravels (soils with particles >2 mm) in the texture scheme of USDA. Therefore, it is remained 
unknown that the soil particles >2 mm had any impacts on PSD models. 

Szechwan Basin is one of the four biggest basins of China, and it is also called Red Basin, because 
it holds the greatest concentration of purple soil, the most fertile natural soil in China. Therefore, the 
objectives of this study are (1) to propose and validate various PSD functions and interpolations for 
soils in Szechwan Basin; (2) to compare the performance of the PSD models and interpolations; (3) to 
explore the effects of soil texture (the size ranges) on the performance of the methods. 

Data and methodology 
Data used  
Particle-size data used in this research focused on cultivated soil and the data were extracted from 

the Second National Soil Survey of China conducted in the 1980s in Sichuan basin. The fraction data 
were classified by Katschinski's schemes [10]. Totally, there were 265 soil horizons from 32 soil series, 
including the representative soil types in Sichuan Basin: yellow soil (classified as Ferrallisols in 
USDA), purple soil (classified as Entisols in USDA), paddy soil (classified as Inceptisol/ Ultisol in 
USDA) and limestone soil (classified as calcareous soil in USDA). Value ranges of the measured 
particle-size distributions are presented in Table 1. The particle-size distribution of the soils 
encompasses a wide range of soil textures (Table 1). And these distributions, containing percentages 
of particles finer than 0.001, 0.005, 0.01, 0.05, 0.25, 1.0 and 3.0 mm, were used to test the suitability 
of PSD models studied in the current study.  
Table 1 Value ranges of measured cumulative PSD of 265 horizons from 32 soil series. 

Particle-size fraction 
mm 

Mean 
% 

Standard deviation 
% 

Minimum 
% 

Maximum 
% 

<0.001 19.64 10.88 1.52 67.37 
<0.005 38.47 14.74 2.80 74.68 
<0.01 49.33 17.26 3.51 87.50 
<0.05 72.55 21.52 4.65 100.00 
<0.25 86.90 17.25 18.11 100.00 

<1 92.60 15.24 23.69 100.00 
<3 94.69 12.10 30.42 100.00 

Table 2 Value ranges of measured cumulative PSD of 49 horizons from 14 soil series. 
Particle-size fraction 

mm 
Mean 

% 
Standard deviation 

% 
Minimum 

% 
Maximum 

% 
<0.001 21.48 10.76 1.01 42.41 
<0.002 29.33 12.85 2.88 50.58 
<0.005 40.40 15.39 8.05 71.50 
<0.02 59.00 15.85 31.51 83.04 
<0.05 73.52 14.80 47.46 92.75 
<0.2 87.11 11.43 50.15 99.52 
<0.25 90.15 9.52 59.08 99.99 

<1 99.97 0.15 99.09 100.00 
<2 100.00 0.00 99.99 100.00 

Another set of data (49 horizons of 11 soil series from Sichuan basin), containing percentages of 
particles <0.001, 0.002, 0.005, 0.02, 0.05, 0.2, 0.25, 1.0 and 2mm was then used to validate the 
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studied PSD models. Table 2 gave the value ranges of the measured PSD used for the validation. This 
set of data contained all the possible size ranges accepted by the Katschinski and USDA systems. 
Percentages of particles <0.002 and 0.02 mm were validated respectively. 

Methods of PSD transformation 
Methods used in the current study included empirical functions and interpolation methods. In the 

present work, cumulative number of particles was related to diameter as most researchers did [1,4].  
Table 3 listed twelve PSD functions needing to be tested in this work. Models with different 

number of fitting parameters and various structures were proposed and tested. Models 1-5 were 
proposed by published works whereas models 6-12 were the equations embedded in OriginPro 8.5. 
We assumed that the PSD follows the corresponding functions in Table 3. This approach was based 
mainly on the similarity between shapes of the PSD and the curves of these models. To find the values 
of the fitting parameters, all models were fit to experimental PSD data (Table 1) using OriginPro 8.5 
as an iterative nonlinear regression procedure.  

Commonly used interpolations including linear interpolation, cubic spline interpolation, piecewise 
cubic Hermite interpolation [8] were also adopted in this study. The interpolations were carried out in 
Matlab 7.12. 
Table 3 PSD models used in this research (x was diameter (mm)). 
Model 

No. Model name Model Parameters 

1 Weibull (W, modified 
from Hwang, 2004) 

)))*exp(1(*)1((*100)( bDaccDF −−−+=  where 
)()( minmaxmin xxxxD −−=  

a, b, c (xmax=3 mm, 
xmin=0.001 mm) 

2 Logarithm (L, Zhuang et 
al., 2001) bxaxF += )ln(*)(  a, b 

3 Exponential (E, Gimenez 
et al.,2001) 

bxcxF −= *)(  c, b 

4 Closed-form exponential 
(F1, Rousseva, 1997) 

1))*exp(*1()100()( −+−+= dmbdaadF n  where 

)1000*(log10 xd =  
a, b, m,n 

5 Closed-form power (F2, 
Rousseva, 1997) 

1))(*1()100()( −+−+= mn dbdaadF  where 

)1000*(log10 xd =  
a, b, m,n 

6 Exponential growth 
(ExpG) b

t
xaxF += )exp(*)(  a, b, t 

7 
Logistic (variant of the 

Hill equation(Barlowa & 
Blake, 1989)) 

pcx
abaxF

)(1
)(

+
−

+=  a, b, c, p 

8 Exponential associate 
(ExpA) c

m
xb

t
xaxF +

−
−+

−
−= ))exp(1(*))exp(1(*)(  a, b, c, t, m 

9 Exponential decay (ExpD) c
m

xb
t
xaxF +

−
+

−
= )exp(*)exp(*)(  a, b, c, t, m 

10 Three-parameter 
exponential (Exp3P) )exp()(

cx
baxF
+

+=  a, b, c 

11 Rational (R4) 
ax

bcxF
+

+=)(  a, b, c 

12 Exponential within 
OriginPro8.5 (Exp) )*exp(*)( xcabxF +=  a, b, c 

Model responses exploration 
The adjusted coefficient of determination (Adj.R2) was used as a relative measure of the 

goodness-of-fit of the proposed PSD models for each soil horizon in Table 1. In addition, Akaike’s 
information criterion (AIC)[11] that imposes penalties for additional fitting parameters was adopted to 
compare the quality of model fits. A model with a lower value of AIC is considered to be a better 
model (Akaike, 1974).Correlation coefficient (r), absolute error (AE, %), and root mean square 
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deviation (RMSD)[12] were used to test the validation of the PSD models and interpolations on the soil 
particles <0.002 and 0.02mm based on the soils in Table 2. Correlation coefficients were calculated to 
examine the relationships among measured and estimated PSD by the proposed methods. 

Results and discussion 
Identification of PSD models 
Fig.1 identified the suitability of the tested models to estimate percentages of particles< 0.001, 

0.005, 0.01, 0.05, 0.25, 1.0 and 3.0 mm. Values of Adj.R2 for the PSD models tested for all soils 
ranged from 0.65 to 1.0. Models with two parameters (L and E) and model F2 (with four parameters) 
showed lowest Adj.R2 values, indicating that they were less accurate than others. Logistic and F1 
models with four parameters performed similarly better, and ExpA and ExpD models with five 
parameters had the highest Adj.R2 values. The model of W fitted relatively well, as well as Exp3P 
model. The performances of models of ExpG, R4 and Exp were similar and showed relatively bad 
fitting. However, results of AIC and Adj.R2 were not always identical. For example, the F2 model 
revealed relatively bad fitting in Adj.R2, but its performance as determined by AIC was good. The 
ExpA model and ExpD model with five parameters showed relatively better performance than other 
models due to AIC values. Overall, the ExpA and ExpD models with five fitting parameters showed 
better performance, according to the Adj.R2 and AIC values.  

 
Fig.1 Box plot for Adj.R2 and AIC percentiles as criterions for assessing the performance of twelve 
models for soils in Table 1.  

Impact of soil texture on PSD models  
Fig.2 identifies the suitability of the studied models to predict percentages of particles <0.001, 

0.005, 0.01, 0.05, 0.25, 1 and 3 mm. And correlations between estimated and measured values were 
also shown. Obviously, models of ExpD and ExpA and Logistic model described cumulative PSD of 
diverse texture better, while L model and E model overestimated the percentages of particles <0.001, 
3 mm and underestimated particles <0.05, 0.25mm, respectively. W model overestimated the 
percentages of particles<0.005, 1 mm but underestimated particles <0.05, 0.25 mm. ExpG and Exp 
models overestimated the percentages of particles<0.001, 0.05, 0.25 mm but underestimated those 
<0.01, 3 mm. F2 model overestimated the percentage of particles<3 mm and F1 model overestimated 
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a little that<1 mm. Other models of Logistic, R4 and Exp3P described cumulative PSD of all the 
texture relatively well. The performance of a PSD model may vary with particle sizes of soils [4]. In 
this study, only ExpA, ExpD, Exp3P, F1 and R4 models showed better fitting at higher clay (<0.001 
mm) content (20%), indicating that these models should be used for soils with clay (<0.001 mm) 
content over 20%. 

Fig.2 Percentages estimated by various models used in this study VS. measured percentages of 
particles<0.001, 0.005, 0.01, 0.05, 0.25, 1, 3 mm with soils in Sichuan basin. 

Table 4 showed the results of the suitability of studied models and interpolations based on soils in 
Table 2. The discrepancy in terms of RMSD between the measurements and the estimates derived 
from studied methods was in the range of 0.02-0.25 for particles<0.002mm and 0.03-0.97 for 
particles<0.02mm, respectively. And it was noteworthy that the RMSDs yielded from interpolations 
were much larger than models in Table 3 both at particles<0.002 and 0.02mm. While the correlation 
coefficient (r) between measured and estimated mass percentage changed between 0.913 (F2 model) 
and 0.990 (R4 model) for particles <0.002mm and between 0.88 (Cubic interpolation) and 0.987 (W 
model) for particles finer than 0.02 mm, respectively. Mean absolute error (MAE, %) of studied 
methods at particles finer than 0.002 mm varied from 1.58 % (Logistic model) to 7.53% (E model) 
and MAEs at particles finer than 0.02 mm varied from 2.09% (W model) to 21.11% (Cubic 
interpolation). All the three statistic error indices suggested that the interpolations did not show 
advantage, especially Cubic linear interpolation, in estimating PSDs for soils in Sichuan Basin. 

Fig.3 showed the percentiles of absolute error (AE, %) at particles <0.002 and 0.02 mm, 
respectively. Models of Logistic, ExpA and ExpD showed smaller AE at particles <0.002 mm, <6%. 
Whereas models of E and F2 indicated much larger AE, maximum values of AE were about 14%. At 
particles<0.002 mm, interpolations did not show any superiority towards functions. Whereas at 
particles<0.02 mm, piecewise cubic Hermite interpolation had lowest AE, followed by models of W, 
Logistic, F1, ExpA and ExpD. 
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Table 4 Validation results of the studied models at particles <0.002 and 0.02mm. 

 
Diameter  

(mm) 

Models 

W L E F1 F2 ExpG Logistic ExpA ExpD Exp3P R4 Exp Linear Cubic Hermite 

MAE <0.002 2.91 2.43 7.53 2.32 5.04 3.45 1.58 1.99 1.99 2.95 2.54 3.45 3.27 2.96 2.65 

 <0.02 2.09 5.22 5.99 2.41 3.84 5.93 2.17 2.79 2.80 3.66 6.34 5.93 7.61 21.11 2.56 
                 

RMSD <0.002 0.04 0.03 0.08 0.03 0.06 0.04 0.02 0.02 0.02 0.04 0.03 0.04 0.23 0.24 0.25 

 <0.02 0.03 0.06 0.07 0.03 0.05 0.07 0.03 0.04 0.04 0.05 0.08 0.07 0.49 0.97 0.61 
                 

r <0.002 0.98 0.99 0.97 0.97 0.91 0.95 0.99 0.99 0.99 0.97 0.99 0.95 0.97 0.97 0.98 

 <0.02 0.99 0.97 0.97 0.98 0.96 0.98 0.99 0.97 0.97 0.98 0.95 0.98 0.98 0.88 0.98 

 
Fig.3 Box plot for absolute error (%) percentiles as criterions for assessing the performance of the 
studied methods for soils in Table 2 at particles < 0.002 mm (A) and <0.02 mm (B), respectively. 

Conclusions 
Twelve numerical models were proposed as the function of cumulative mass percentage of 

particles and diameter (mm) from Soil Survey of China in Sichuan basin, to estimate 0.002, 0.02 and 
2.0 mm (convert the Katchinski’s scheme to USDA system). The ExpA model and ExpD model with 
five parameters, as well as Logistic model with four parameters, showed relatively better performance 
according to Adj.R2 and AIC values. By comparing the measured and estimated percentages of 
particles <0.001, 0.005, 0.01, 0.05, 0.25, 1 and 3 mm, the proposed models of ExpD, ExpA and 
Logistic described cumulative PSD of diverse texture better.  

Three commonly used interpolations were tested together with the twelve models. In terms of 
RMSD, MAE, and correlation coefficient (r), studied models and interpolations had been tested at 
particles <0.002mm and 0.02mm, respectively. And it was noteworthy that the RMSDs yielded from 
interpolations were much larger than models both at particles <0.002mm 0.02mm. Interpolations did 
not show any superiority towards numerical functions at particles <0.002mm. Cubic spline 
interpolation performed worst with MAE of 20% at particles <0.02 mm. This result suggested that the 
cubic spline interpolation could not use to estimate the soil particles <0.02 mm for Sichuan basin. 
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