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Abstract. Based on the study of artificial neural network, the neural model was established for the 
prediction of germanium extraction from zinc oxide dust by microwave calcination-sulphuric acid 
leaching. Microwave heating temperature, liquid-solid ratio, leaching time, initial concentration of 
sulphuric acid and leaching temperature were the significant factors for the process. The results 
indicated that the neural network prediction model was reliable, the forecast and actual values fitted 
well. The model could be used to predict the regeneration experiments with high credibility and 
practical significance. The accuracy of convergence of the model has reached 10-5. 

Introduction 
The neural network technology as a new technology of artificial intelligence is one of the frontier 
research direction of the rapid development of the international. The neural network is widely used in 
neurons are connected to each other into the complex network system, reflects a kind of human brain 
nervous system simplification, abstraction and simulation. With the development of research, neural 
networks have been widely used in telecommunications [1,2], biomedical engineering [3 ,4], chemical 
engineering [5 6,7], automatic control[8,9,10], and expert systems[11 ,12,13]. 

Neural network is a dynamic network system by a large number of neurons interconnected by 
highly nonlinear, adaptive, strong self-learning and self-organizing ability and massive parallelism 
and fault tolerance, so it has many traditional signal and information processing technology and not 
the advantage [14]. 

In the present study, a neural model was established for the predicting the leaching ratios of Ge 
extraction from ZnO dust through microwave calcination-sulphuric acid leaching process.  

Establishment of neural network model 
The effects of microwave roasting- sulphuric acid leaching process on germanium (Ge) extraction 
from zinc oxide smoke (ZnO) contain microwave heating temperature (A, °C), liquid-solid ratio (B, 
mL/g), leaching time (C,h), initial concentration of sulphuric acid (D, mol/L) and leaching 
temperature (E,°C). So the input of the prediction model for the micro distribution of microwave 
heating temperature (A), liquid-solid ratio (B), leaching time (C), initial concentration of sulphuric 
acid (D) and leaching temperature (E), the range of control input, each test under the condition of 
germanium leaching ration (Y, %) as the output of the prediction model. Table 1 showed the input and 
output data. 
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Table 1 Experimental results of microwave calcination-sulphuric acid leaching 

Run 

Microwave 
heating 

temperature 
(A, °C) 

liquid-solid 
ratio (B, 
mL/g) 

Leaching 
time (C, h) 

Initial 
concentration 
of sulphuric 

acid (D, 
mol/L) 

Leaching 
temperature 

(E, °C) 

Leaching 
ratios 
(Y, %) 

1 310 8 4 12.6 80 50.86 
2 290 6 3 9.5 70 52.75 
3 290 6 3 9.5 70 56.5 
4 270 8 4 12.6 60 55.28 
5 310 4 2 12.6 80 56.16 
6 310 4 2 12.6 60 57.15 
7 290 6 3 9.5 70 56.08 
8 330 6 3 9.5 70 57.41 
9 310 8 4 6.3 80 72.61 

10 310 4 4 6.3 80 68.89 
11 270 4 2 6.3 60 70.22 
12 310 8 2 6.3 60 70.87 
13 310 8 2 12.6 60 74.66 
14 270 4 4 6.3 80 70.81 
15 310 8 2 6.3 80 75.24 
16 270 8 2 12.6 60 71.82 
17 270 8 2 12.6 80 52.41 
18 290 6 3 9.5 70 53.84 
19 250 6 3 9.5 70 51.22 
20 270 4 4 12.6 80 52.00 
21 310 4 2 6.3 60 50.68 
22 270 4 2 12.6 60 51.02 
23 290 10 3 9.5 70 50.23 
24 310 8 4 12.6 60 52.33 
25 290 6 3 9.5 70 62.62 
26 290 6 3 9.5 90 63.13 
27 290 6 5 9.5 70 65.66 
28 270 4 4 6.3 60 67.86 
29 270 8 2 6.3 80 65.68 
30 290 6 3 15.8 70 69.67 
31 270 4 2 12.6 80 74.64 
32 310 8 2 12.6 80 70.28 
33 310 4 4 6.3 60 60.12 
34 270 8 2 6.3 60 56.24 
35 270 4 4 12.6 60 33.11 
36 290 2 3 9.5 70 75.35 
37 310 8 4 6.3 60 68.32 
38 290 6 3 9.5 70 78.2 
39 270 4 2 6.3 80 38.64 

Results and discussion 
The data in Table 1 were taken as the training samples of the neural network prediction model. In 
network training process, network weights and threshold of the network were obtained through 10 
iterations. The training convergence curve of the neural network prediction model was shown in 
Figure 1. From the figure 1, it found that the convergence precision was 0.00001, which achieved the 
goal. 
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Fig.1 Iterative convergence curve of the anti-predicted model  

 
Figure 2 showed  the leaching rate of germanium value curve and the actual 3D graph for microwave 
heating temperature (270~350°C), liquid-solid ratio (4~10 mL/g), leaching time (1~5 h), initial 
concentration of sulphuric acid (6~12 mol/L)and leaching temperature (60~80°C). 
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Fig.2 Comparisons between actual and predicted results of Ge extraction 

 
As seen from the Figure 2, the prediction results of the prediction model are basically consistent with 

the actual values. In summary, microwave heating temperature, liquid-solid ratio and initial 
concentration of sulphuric had great effects on the leaching rate of germanium. It could be concluded 
that the model had a good adaptability and accuracy. Therefore, it was feasible to use this neural 
network model to predict the leaching percentages of Ge from ZnO dust by microwave 
calcination-sulphuric acid leaching. 

Conclusions 
The neural network model was established for predicting the leaching percentages of Ge from ZnO 
dust through microwave calcination-sulphuric acid leaching process. Through the network training 
and verification for this model, it showed that the predicted values coincided well with the 
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experimental values. And the convergence accuracy for this model reached 0.00001. Therefore this 
model could be used to predict the production conditions required for different production purposes in 
the process of Ge recovery, which could help to reduce the groping process and the production cost. 
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