
 EB-RRT* based Navigation Algorithm for UAV

Dai Hongliang, Liu Qinglin

Zhejiang transportation research institute, Hangzhou Zhejiang 310023 China

Keywords: RRT; UAV; navigation algorithm; convergence speed
Abstract: With the wider application of unmanned aerial vehicle (UAV), automatic navigation
capacity plays an important role. Navigation for UAV is the algorithm that automatically find out
the obstacle-free, smoothing path from start position to target position. Current most navigation
algorithms for UAV still have shortcomings including low convergence speed, long traversal time
and smoothing challenges. EB-RRT* algorithm is proposed in this paper who has three outstanding
strategies for UAV. Self-avoidance is adopted to improve convergence speed and less memory cost.
Grid partitioning is applied to shorten the time of finding the nearby vertices. Smoothing turning
point is introduced to improve the convergence rate of the algorithm and the smoothness of the final
path. Finally, abundant simulations are carried out to testify the high performances of EB-RRT*
compared with MB-RRT* and BRRT*.

Introduction

Motion planning is the most important problem in UAVs and robotics. It can be defined as the
process of finding a collision-free path for a UAV from its initial to goal point while avoiding
collisions with any static obstacles or other agents present in its environment. It has gained
popularity among researchers due to widespread applications such as in GPS navigation, UAV,
computer animation, routing, manufacturing and many other aspects of daily life.According to the
perceived ability, the navigation algorithms for UAV can be divided into local motion planning and
global motion planning. Using global motion planning, it is need to know all the information of
environment. But as for local motion planning, the information of environment in the perceptual
range is enough. Artificial Potential Fields(APF) [1] is a well-known resolution complete algorithm.
However, APF suffers from the problem of local minima and does not perform well in the
environment with narrow passages. This discretization of search space makes the algorithm
computationally expensive for higher dimensional spaces, that is why the application of such
algorithms like Cell Decomposition methods[2], Delaunay Triangulations[3], Genetic algorithms[4]
and Particle Swarm Optimization[5] are limited to low dimensional spaces only. Moreover the
algorithms that combine the set of allowed motions with the graph search method thus generating
state lattices also suffered from the undesirable effects of discretization. Hence to solve the higher
dimensional planning problems, the sampling-based algorithms were introduced; the main
advantage of sampling-based algorithms as compared to other state-of-the-art algorithms is
avoidance of explicit construction of obstacle configuration space. These algorithms ensure
probabilistic completeness which implies that as the number of iterations increases to infinity, the
probability of finding a solution, if one exits, approaches one.

The sampling-based algorithms have proven to be computationally efficient solution to motion
planning problems. Arguably, the most well-known sampling-based algorithms include Probabilistic
Road Maps(PRM) [6] and Rapidly exploring Random Trees(RRT) [7]. However, PRMs tend to be
inefficient when obstacle geometry is not known beforehand. Therefore, in order to derive efficient
solutions for motion planning in the practical world, the Rapidly-exploring Random Trees(RRT)

International Forum on Energy, Environment Science and Materials (IFEESM 2017)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 120

1313

algorithms have been extensively explored. Various algorithms enhancing original RRT algorithm
have been proposed. The Particle RRT algorithm[8] which explicitly considers uncertainty in its
domain, similar to the operation of a particle filter is proposed by Nik A. Melchior and Reid
Simmons. S.R. Lindemann introduces RRT-like planners based on exact Voronoi[9] diagram
computation, as well as sampling-based algorithms which approximate their behavior. One of the
most remarkable variant of RRT algorithm is RRT*[10], an algorithm which guarantees eventual
convergence to an optimal path solution, unlike the original RRT algorithm. Just like the RRT
algorithm, RRT* is able to generate an initial path towards the goal very quickly. It then continues
to refine this initial path in successive iterations, eventually returning an optimal or near optimal
path towards the goal as the number of iterations approach infinity. M Jordan presents a simple,
computationally-efficient, two-tree variant of the RRT* algorithm[10] to improve convergence speed.
Xu Zhang proposes an extension of RRT* based on a self-learning strategy and a hybrid-biased
sampling scheme to improve the planning efficiency[12]. Rapidly-exploring random snakes (RRS)
[13]proposed by K. Baizid is a combination of a modified deformable Active Contours Model and
the RRT. On this basis, people use these algorithms to solve practical problems. A new method
based on rapid-growing random trees (RRT) is used to solve the problem of segmented assembly
path planning[14]. The SRRT guarantees continuity of curvature along the path satisfying any
upper-bounded curvature constraints[15].

In this paper, EB-RRT* algorithm is proposed who has three outstanding strategies for UAV.
Self-avoidance is adopted to improve convergence speed and less memory cost. Grid partitioning is
applied to shorten the time of finding the nearby vertices. Smoothing turning point is introduced to
improve the convergence rate of the algorithm and the smoothness of the final path. Finally,
abundant simulations are carried out to testify the high performances of EB-RRT* compared with
MB-RRT* and BRRT*.

Related Work

RRT
Rapidly exploring Random Trees(RRT) algorithm is proposed by S.M. LaValle and J.J.

Kuffner and it has proven to be computationally efficient solution to motion planning problems.
Firstly, sample in the obstacle-free space and get an independent and uniformly distributed random
sample. Then, find the closest vertex to the sample. If the line segment between the node and the
sample is in the obstacle-free space which means pass the collision test, the sample is inserted to the
tree. It does not stops iteration until find a collision-free path from its initial to goal point while
avoiding collisions with any static obstacles.

Random sampling makes the vertices of the tree cover the entire space with the increase of the
iteration, which means the algorithm ensure probabilistic completeness. The algorithm do not need
complex calculations and only need sampling, collision testing and connecting. However, RRT
algorithm has low convergence speed and spends a lot of iterations to finding the optimal solution.
Doing nothing after inserting the sample causes the algorithm need many iterations consuming a lot
of time and memory.
RRT*

Algorithm 1 is a slightly modified implementation of RRT*. The RRT* algorithm solves the
problem that the finial path of RRT algorithm is not optimal. The RRT* algorithm preserves the
probabilistic integrity of the RRT algorithm and has a faster convergence speed. Following are some
of the processes employed by RRT*.

Advances in Engineering Research, volume 120

1314

Fig.1 Fake code of RRT

Sample: the sample procedure returns an independent and uniformly distributed random
sample from the obstacle-free space.

Nearstnode: given a vertex and tree , the function returns a vertex

that is closest to in terms of a given distance function. In this paper, we will use Euclidean

distance.

Steer: given two points and , the function returns a point such that is

closer to than is. Throughout the paper, the point returned by the function

Steer will be such that minimizes while at the same time maintaining

, for a prespecified .

Nearnodes: given a vertex and tree , the function returns a set of

vertices such that , where , is a constant, is

the number of iterations and is the dimension.

Collisioncheck: given two points and , the function returns true if the line segment

between and in .

But, it still has a lot of problems. Because of the low convergence rate to the optimal solution,
it spends many time to iterate especially working in complex maps such as channel and maze.
B-RRT*

A.H. Qureshi proposed TG-RRT*[16] algorithm that has higher convergence rate than RRT*
algorithm. B-RRT* uses a slight variation of greedy RRT-Connect heuristic for the connection of
two trees. Two directional trees employing greedy connect heuristic for the connection of trees dose
not ensure asymptotic optimality. The hybrid greedy connection heuristic of B-RRT* slows down
its ability to converge to the optimal solution and also makes it computationally expensive.
Following are some of the processes employed by B-RRT*.

Advances in Engineering Research, volume 120

1315

Fig.2 Fake code of B-RRT*

The algorithm using two directional trees need the extra function to connect them. The

function calls the nearnodes function to find the closet vertex in the range of from

another tree and then connect.
MB-RRT*

MB-RRT* algorithm is proposed who has three outstanding strategies for UAV, include lazy
sampling, self-adaptive step size and down sampling and curve fitting. Some of the processes
employed by MB-RRT* are shown in Fig.3(a).

Lazy sampling is adopted to improve convergence speed and less memory cost. In the light of

, self-adaptive step size algorithm is applied to solve navigation limitation

near obstacles and improve initial solutions’ quality and speed. Down sampling and curve fitting
improve the smoothness of the final path.

EB-RRT* algorithm

Main idea
Although self-adaptive step size and lazy sampling shorten the sampling time and reduce

sampling vertices effectively on the basis of B-RRT*, there are still some room for improvement.
We introduce EB-RRT* algorithm that adopts self-avoidance, grid partitioning and smoothing

turning point for new vertex, near vertices and final path.

Advances in Engineering Research, volume 120

1316

Fig.3 Fake code of MB-RRT* and EB-RRT*

Self-avoidance
The EB-RRT* and MB-RRT* works in exactly the same manner as the original RRT*

algorithm in its initial phases. It starts with sampling in the collision-free space and gets a random

vertex , then searches for the closest vertex to it and grows forward the direction of

. Self-adaptive step size adopted by MB-RRT* make the step size maintain

 near the obstacle, but can’t avoid that a lot of vertices are abandoned because the

step size is larger than the distance to the obstacle. It occurred in the maps that there are many
obstacles frequently.

Following are growth processes of MB-RRT* and EB-RRT* near the obstacle. The possibility
that the minimum step size is larger than the distance to the obstacle is shown in Fig.4(a). In the
same situation, the surrounding environment is divided into 9 grid regions, labeled 1, 2, 3, 4, 5, 6, 7,

8, 9, respectively. The is in the grid regions of 5. The function AddInform return the

information from other 8 regions and then distinguish them between the obstacle area and the
non-obstacle area. The regions of 2 and 3 are obstacle areas and others are non-obstacle areas as
shown in Fig.4(b). the function ChooseDirection samples in the non-obstacle areas as the new
random vertex.

Advances in Engineering Research, volume 120

1317

Fig.4 Growth processes of MB-RRT* and EB-RRT* near the obstacle in 2-D map

Obviously, this method also applies to complex 3-D environments that just the number of grid
regions is increased to 27. However, we found that the time to distinguish non-obstacle areas with
obstacle areas in complex 3-D environments using this self-avoidance method is longer. So, we use

another method which is computationally small. First, find the nearest obstacle from

and calculate the distance . Similarly, calculate the distance between and

. Then, calculate the direction of based on:

the step size is selected . Fig.5 shows the growth processes of MB-RRT* and

EB-RRT* in complex 3-D environments.

Fig.5 Growth processes of MB-RRT* and EB-RRT* near the obstacle in 3-D map

Self-avoidance make EB-RRT* algorithm explores larger range around obstacle and enhances
the obstacle avoidance ability. So it can reduce the number of iterations and shorten running time
effectively.

 Grid partitioning

Each time a new vertex is inserted, it needs to find a set of where the distance

Advances in Engineering Research, volume 120

1318

between and the vertex is smaller than through the function NearNodes and then determine

whether the need for track correction for all vertices. During the process, it will traverse all the old
vertices that have been inserted to the tree. But, with the expansion of the search space, the number
of vertices and the traversal time is increasing.

The cell decomposition algorithm[18] proposed by Ahmad Abbadi and Vaclav Prenosil can
divide the entire map space into obstacle and non-obstacle areas. But for shortening the loading
time required to initialize the map information, we divide the 3-D map into grids, regardless of the

obstacle information. The map with length , width and height is divided into

grids. The length of the grid is , the width is and the height is .

So

After inserting the new vertex , it only needs to traverse the old vertices in the area where

the vertex is located and no more than 7 areas around it. In order to ensure that all the vertices

whose Euclidean distance is less than are within these 8 areas,

Because

So that

Smoothing turning point
Smoothing turning point breakpoints also is including down sampling and curve fitting. Down

sampling of MB-RRT* makes the final path point as little as possible. But, this situation will occur

in Fig6(a). There is a vertex that it can be connected to the goal point without collision and do

not need to go through . The length of the final path is shorter than before as shown in

Fig.6(b).

Advances in Engineering Research, volume 120

1319

Fig.6 Down sampling of MB-RRT* and EB-RRT*

Following are the fake codes of down sampling as shown in Fig.7. Based on MB-RRT*, the

down sampling algorithm used by EB-RRT* has traversed to determine whether the existence of

that it is connected with the starting point or goal point without collision before deleting vertices.

Fig.7 Fake code of down sampling of EB-RRT*

Curve fitting of EB-RRT* has own way to select two endpoints and two control point to
calculate the Bezier curve. Fig.8 shows the process and the blue curve is the third-order Bezier

curve. is the turning point, the line and . Then the points on

the curve are calculated according to cubic Bezier curve equation

Where

Advances in Engineering Research, volume 120

1320

p0

xi-1

xi

xi+1

p1

p2
p3

Fig.8 Curve fitting

Analysis

Probabilistic completeness
In any configuration space. An algorithm is said to be probabilistically complete if the

probability of finding a path solution, if ones exist, approaches one as the number of samples taken
from the configuration space reaches infinity. It is known that RRT is a probabilistically complete
algorithm, as its optimal variant RRT*. The MB-RRT* algorithm preserves the probabilistic
completeness of the RRT* algorithm. Since our proposed EB-RRT* algorithm performs the random
sampling function exactly like the aforementioned algorithms and is merely a efficient version of
MB- RRT*, it can be reasonably proffered that it also inherits the probabilistic completeness
property of MB-RRT*.
Asymptotic optimality

Asymptotic optimality is defined as follows: let be the optimal solution of the motion

planning, is the optimal path length by algorithm after iterations, the algorithm should

satisfy the following equation:

It is known that RRT* and MB-RRT* ensure optimality when the number of iterations are
increased to infinity. Since there is no extra connection heuristic required for connection of the two
trees and the two trees are generated exactly as the tree generated in the original RRT* algorithm, it
can be reasonably proposed that the EB-RRT* algorithm inherits the asymptotic optimality property
of MB-RRT*.
Computational complexity

When calling the function of sample, collisioncheck, optimaizeVertices and connect, the
running time does not depend on the number of iterations. The function AutoStepSteer in MB-RRT*

spends to run. The function Steer used in EB-RRT* requires constant time like both in

RRT* and EB-RRT*. Only when the new vertex fails the collision test, EB-RRT* will call the

function of AddInform, ChooseDirection and Toward, all of which requires constant time. And the

function of AreaNearNodes takes approximately of the function NearNodes.

Advances in Engineering Research, volume 120

1321

 is the probability of the old vertex in the obstacle. So there is a constant and an equation

Simulation

This 2-D simulation is performed on the QT software in the Ubuntu system and the 3-D is on
the ROS platform. Table 1 shows the hardware configuration used in this lab.

Table 1 Experimental hardware
Type Parameter

Processor Intel(R)Core(TM)i3-2310M 2.10GHz*4

System version Ubuntu 14.04LTS

RAM 5.7G

Experimental map
There are 6 2-D maps with different difficulty by placing different obstacles and 3 3-D maps

for verifying the algorithm. The experimental environment of the 2-D is 800*600. Following are the
tables of experiment map parameters.

Table 2 Experiment 2-D map parameters
 Parameter

Map
Start coordinate Goal coordinate

Number of

obstructions
Duty cycle

Map1 (400,300) (700,300) 1 84/1200

Map2 (50,50) (750,550) 4 204/1200

Map3 (100,500) (750,300) 2 158/1200

Map4 (50,500) (750,150) 23 247/1200

Map5 (150,70) (150,560) 6 311/1200

Map6 (70,120) (470,270) 1 175/1200

Table 3 Experiment 3-D map parameters
Parameter

Map

Start

coordinate/m

Goal

coordinate/m

Number of

obstructions

Size of

space/m3

Number of

grids

Map1 (6,4,4) (14,22,6) 17078 20*25*10 8

Map2 (1,1,1) (7,4,0.2) 64090 9*9*2.5 45

Map3 (2,9,3) (14,2,1) 59798 15*15*6 50

Conclusions and analysis
 2-D map
Fig.9 to Fig14 show the solution for the first time in 2-D maps, the left of which is EB-RRT*

Advances in Engineering Research, volume 120

1322

and the right is MB-RRT*. When running the EB-RRT*, the and are both 100, so that

the map is divided into 48 grids to shorten traversal time.

The black part of the figure is the obstacle area, the blue part is starting point and the

tree whose root is it, the green part is goal point and the tree , the red part is the

initial path of the current optimal solution, the gray line is the path after down-sampling, and the
dark red curve is the final path.

Fig.9 Performance in Map1

Fig.10 Performance in Map2

Fig.11 Performance in Map3

Advances in Engineering Research, volume 120

1323

Fig.12 Performance in Map4

Fig.13 Performance in Map5

Fig.14 Performance in Map6

EB-RRT* growth in the vicinity of obstacles is relatively intensive from the Fig.9 to 14, which
means that during a lot of iterations, a lot of vertices are abandoned because the step size is larger

than the distance to the obstacle in MB-RRT* and the overhead of searching for is

meaningless. However, self-avoidance used by EB-RRT* can guarantee that a new vertex can be
inserted to a certain extent that improves the efficiency of finding feasible solutions. Smoothing
turning point effectively solves the problem that the final curve is not feasible.

Table 4 depicts the exact data of EB-RRT*, MB-RRT* and B-RRT* running on the Map1 to
Map6 in 2-D maps.

Table 4 Experimental results for computing optimal path solution in 2-D maps
Index ALG Map1 Map2 Map3 Map4 Map5 Map6

Iterative

number

B-RRT* 428 769 4486 444 2254 1508

MB-RRT* 227 686 3385 357 1954 1372

EB-RRT* 253 277 762 231 368 837

Path length

B-RRT* 937.909 1585.740 2253.670 1074.460 1409.880 2247.960

MB-RRT* 872.330 1405.990 1917.230 995.762 1194.630 1803.050

EB-RRT* 797.748 1446.190 1981.190 957.998 1177.300 1828.210

Advances in Engineering Research, volume 120

1324

Time/s

B-RRT* 0.232896 0.376302 8.940450 0.178626 1.311880 1.543880

MB-RRT* 0.079537 0.249050 4.827820 0.116184 1.182490 0.719947

EB-RRT* 0.092506 0.106442 0.494353 0.072950 0.114690 0.682838

Time/s for

1000iterations

B-RRT* 949.847 1408.51 1012.3

MB-RRT* 1183.75 1405.97 910.462

EB-RRT* 997.991 1403.11 2379.57 935.454 1201.5 1828.21

Time/s for

2000iterations

B-RRT* 926.793 1408.51 1010.51 1634.46 1813.99

MB-RRT* 1157.45 1405.97 910.462 1194.63 1658.58

EB-RRT* 994.669 1403.11 2379.57 908.876 1201.5 1746.8

Time/s for

3000iterations

B-RRT* 925.313 1408.51 1010.51 1609.03 1808.14

MB-RRT* 1127.27 1405.97 910.462 1194.63 1649.67

EB-RRT* 985.066 1403.11 2379.57 908.876 1201.5 1573.09

Time/s for

4000iterations

B-RRT* 920.801 1407.71 1010.51 1044.45 1805.16

MB-RRT* 1126.62 1405.97 2268.35 910.462 1080.66 1649.67

EB-RRT* 984.182 1403.11 2379.57 908.876 1201.5 1567.64

Fig.15 to 17 are the histograms of the iterative number, path length and time for the first

feasible solution according to the Table 4. It is obviously that the number of iterations and the time
of EB-RRT*are much smaller than those of MB-RRT* and B-RRT*.

Fig.15 Iterative number for the first feasible solution

Fig.16 Path length for the first feasible solution Fig.17 Time for the first feasible solution

3-D map
Fig.18 to Fig.20 show the solution for the first time in 3-D maps, the left of which is EB-RRT*

and the right is MB-RRT*. The white part of the figure is the obstacle area, the black part is the

Advances in Engineering Research, volume 120

1325

non-obstacle area, the blue part is starting point and the tree whose root is it, the

orange part is goal point and the tree , the yellow line is the path after down-sampling,

and the red curve is the final path.

Fig.18 Performance in Map1

 v

Fig.19 Performance in Map1

Fig.20 Performance in Map1

Because of the self-avoidance, the number of nodes of EB-RRT* is less than MB-RRT* from
the performances in Map1 to Map3.

Table 5 depicts the exact data of EB-RRT* and MB-RRT* running on the Map1 to Map3 in
3-D maps.

Table 5 Experimental results for computing optimal path solution in 3-D maps
Map ALG Index First time

Map1

MB-RRT*

Iteration 299 500 1000 1500

Time/s 0.349922 0.628029 2.486304 5.063244

Path length/cm 2010.445135 2005.03937 2003.30776 2000.097335

EB-RRT*

Iteration 212 500 1000 1500

Time/s 0.225663 0.517994 1.368203 2.932502

Path length/cm 2004.131785 2004.028015 2001.173385 2000.866655

Advances in Engineering Research, volume 120

1326

Map2

MB-RRT*

Iteration 671 1000 1500 2000

Time/s 1.399038 2.303930 5.518727 7.430588

Path length/cm 733.553761 727.844566 716.675316 712.924559

EB-RRT*

Iteration 599 1000 1500 2000

time/s 2.399083 3.379559 4.216219 6.428026

Path length/cm 717.090288 712.392299 705.622081 701.508011

Map3

MB-RRT*

Iteration 1142 2000 2500 3000

Time/s 5.070364 13.512511 19.525062 26.755054

Path length/cm 1417.855103 1412.680359 1411.090919 1410.016504

EB-RRT*

Iteration 778 2000 2500 3000

Time/s 13.876751 17.081206 20.590168 24.491691

Path length/cm 1417.230194 1416.904486 1413.268311 1409.403931

In this three 3-D maps, EB-RRT* and MB-RRT*’s data of path length are almost the same and
realistic. Although the time for the first feasible solution of EB-RRT* is longer than MB-RRT*, the

iteration is smaller. Assuming that the time required for MB-RRT* is , then the time for

EB-RRT* is , is a constant which is the time to find the nearest

obstacle and calculate the coordinate of . So, as the number of iterations increases, EB-RRT*

will take less time than MB-RRT*. The data in Table 5 also demonstrate it.
The line charts of time and path length in the case of the same number of iterations are shown

in Fig.21 to Fig.23 according to the Table 5.

Fig.21 Time and path length in Map1

Fig.22 Time and path length in Map2

Advances in Engineering Research, volume 120

1327

Fig.23 Time and path length in Map3

Conclusions and future work

UAV automatic navigation capacity is an essential function with wider application of UAV, so
this paper presents a detailed comparative analysis of performance of our proposed EB-RRT*
algorithm with the existing algorithms MB-RRT* and B-RRT*. Three novel strategies are brought
up for speeding up convergence rate and navigation accuracy for UAV. First of all, self-avoidance is
adopted to improve convergence speed and less memory cost. And then grid partitioning is applied
to shorten the time of finding the nearby vertices. Finally smoothing turning point improves the
convergence rate of the algorithm and the smoothness of the final path. Hence, we anticipate
employing EB-RRT* for online motion planning of animated characters in complex 3-D
environments.

Acknowledgement

The authors would like to thank you for the support of foundation research project of Zhejiang
province for research institute titled Bridge quality and security detection research and applications
based on UAV（2016F50047）. This work was supported by a grant from the National Natural
Science Foundation of China (No. 61502423), Zhejiang Provincial Natural Science Foundation
(Y14F020092).

References

[1] KP Valavanis. Advance in unmanned aerial vehicles[M]. State of art and road to autonomy,
2007.

[2] A De, J Caves. Human-automation collaborative RRT for UAV mission path planning[M].
Massachusetts Institute of Technology, 2010.

[3] HH Triharminto., AS Prabuwono. UAV Dynamic Path Planning for Intercepting of a Moving
Target: A Review[J]. Communications in Computer and Information Science, 2013,
376:206-219.

[4] JH Holland. Adaptation in natural and artificial systems[M]. MIT Press, 1992.
[5] Roberge V., Tarbouchi M., Labonte G. Comparison of Parallel Genetic Algorithm and Particle

Swarm Optimization for Real Time UAV Path Planning[J]. IEEE Transactions on Industrial
Informatics, 2013, 9(1):132-141.

[6] L Kavraki., P Svestka. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces[J]. IEEE Transactions on Robotics & Automations, 1996, 12(4):566-580.

[7] SM Lavalle., JJ Kuffner. Randomized Kinodynamic Planning[J]. IEEE International
Conference on Robotics & Automation, 1999, 1(5):473-479.

[8] SR Lindemann., SM LaValle. Incrementally reducing dispersion by increasing voronoi bias in

Advances in Engineering Research, volume 120

1328

rrts[J]. IEEE International Conference on Robotics & Automation, 2004, 4(4):3251-3257.
[9] Xiong J, Hu Y, Wu B, et al. Minimum-cost rapid-growing random trees for segmented

assembly path planning[J]. The International Journal of Advanced Manufacturing Technology,
2015, 77(5):1043-1055.

[10] Yang K. An efficient Spline-based RRT path planner for non-holonomic robots in cluttered
environments[C]// International Conference on Unmanned Aircraft Systems. 2013:288-297.

[11] AH Qureshi., S Mumtaz., KF Iqbal., Y Ayaz. Triangular geometry based optimal motion
planning using RRT*-motion planner[J]. IEEE International Workshop on Advanced Motion
Control, 2014, 380-385.

[12] Jordan M, Perez A. Optimal Bidirectional Rapidly-Exploring Random Trees[J]. 2013.
[13] Abbadi A, Prenosil V. Collided Path Replanning in Dynamic Environments Using RRT and

Cell Decomposition Algorithms[M]// Modelling and Simulation for Autonomous Systems.
Springer International Publishing, 2015:131-143.

Advances in Engineering Research, volume 120

1329

