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Abstract: With the wider application of unmanned aerial vehicle (UAV), automatic navigation 
capacity plays an important role. Navigation for UAV is the algorithm that automatically find out 
the obstacle-free, smoothing path from start position to target position. Current most navigation 
algorithms for UAV still have shortcomings including low convergence speed, long traversal time 
and smoothing challenges. EB-RRT* algorithm is proposed in this paper who has three outstanding 
strategies for UAV. Self-avoidance is adopted to improve convergence speed and less memory cost. 
Grid partitioning is applied to shorten the time of finding the nearby vertices. Smoothing turning 
point is introduced to improve the convergence rate of the algorithm and the smoothness of the final 
path. Finally, abundant simulations are carried out to testify the high performances of EB-RRT* 
compared with MB-RRT* and BRRT*. 

Introduction 

Motion planning is the most important problem in UAVs and robotics. It can be defined as the 
process of finding a collision-free path for a UAV from its initial to goal point while avoiding 
collisions with any static obstacles or other agents present in its environment. It has gained 
popularity among researchers due to widespread applications such as in GPS navigation, UAV, 
computer animation, routing, manufacturing and many other aspects of daily life.According to the 
perceived ability, the navigation algorithms for UAV can be divided into local motion planning and 
global motion planning. Using global motion planning, it is need to know all the information of 
environment. But as for local motion planning, the information of environment in the perceptual 
range is enough. Artificial Potential Fields(APF) [1] is a well-known resolution complete algorithm. 
However, APF suffers from the problem of local minima and does not perform well in the 
environment with narrow passages. This discretization of search space makes the algorithm 
computationally expensive for higher dimensional spaces, that is why the application of such 
algorithms like Cell Decomposition methods[2], Delaunay Triangulations[3], Genetic algorithms[4] 
and Particle Swarm Optimization[5] are limited to low dimensional spaces only. Moreover the 
algorithms that combine the set of allowed motions with the graph search method thus generating 
state lattices also suffered from the undesirable effects of discretization. Hence to solve the higher 
dimensional planning problems, the sampling-based algorithms were introduced; the main 
advantage of sampling-based algorithms as compared to other state-of-the-art algorithms is 
avoidance of explicit construction of obstacle configuration space. These algorithms ensure 
probabilistic completeness which implies that as the number of iterations increases to infinity, the 
probability of finding a solution, if one exits, approaches one. 

The sampling-based algorithms have proven to be computationally efficient solution to motion 
planning problems. Arguably, the most well-known sampling-based algorithms include Probabilistic 
Road Maps(PRM) [6] and Rapidly exploring Random Trees(RRT) [7]. However, PRMs tend to be 
inefficient when obstacle geometry is not known beforehand. Therefore, in order to derive efficient 
solutions for motion planning in the practical world, the Rapidly-exploring Random Trees(RRT) 
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algorithms have been extensively explored. Various algorithms enhancing original RRT algorithm 
have been proposed. The Particle RRT algorithm[8] which explicitly considers uncertainty in its 
domain, similar to the operation of a particle filter is proposed by Nik A. Melchior and Reid 
Simmons. S.R. Lindemann introduces RRT-like planners based on exact Voronoi[9] diagram 
computation, as well as sampling-based algorithms which approximate their behavior. One of the 
most remarkable variant of RRT algorithm is RRT*[10], an algorithm which guarantees eventual 
convergence to an optimal path solution, unlike the original RRT algorithm. Just like the RRT 
algorithm, RRT* is able to generate an initial path towards the goal very quickly. It then continues 
to refine this initial path in successive iterations, eventually returning an optimal or near optimal 
path towards the goal as the number of iterations approach infinity. M Jordan presents a simple, 
computationally-efficient, two-tree variant of the RRT* algorithm[10] to improve convergence speed. 
Xu Zhang proposes an extension of RRT* based on a self-learning strategy and a hybrid-biased 
sampling scheme to improve the planning efficiency[12]. Rapidly-exploring random snakes (RRS) 
[13]proposed by K. Baizid is a combination of a modified deformable Active Contours Model and 
the RRT. On this basis, people use these algorithms to solve practical problems. A new method 
based on rapid-growing random trees (RRT) is used to solve the problem of segmented assembly 
path planning[14]. The SRRT guarantees continuity of curvature along the path satisfying any 
upper-bounded curvature constraints[15].  

In this paper, EB-RRT* algorithm is proposed who has three outstanding strategies for UAV. 
Self-avoidance is adopted to improve convergence speed and less memory cost. Grid partitioning is 
applied to shorten the time of finding the nearby vertices. Smoothing turning point is introduced to 
improve the convergence rate of the algorithm and the smoothness of the final path. Finally, 
abundant simulations are carried out to testify the high performances of EB-RRT* compared with 
MB-RRT* and BRRT*. 

Related Work 

RRT 
Rapidly exploring Random Trees(RRT) algorithm is proposed by S.M. LaValle and J.J. 

Kuffner and it has proven to be computationally efficient solution to motion planning problems. 
Firstly, sample in the obstacle-free space and get an independent and uniformly distributed random 
sample. Then, find the closest vertex to the sample. If the line segment between the node and the 
sample is in the obstacle-free space which means pass the collision test, the sample is inserted to the 
tree. It does not stops iteration until find a collision-free path from its initial to goal point while 
avoiding collisions with any static obstacles. 

Random sampling makes the vertices of the tree cover the entire space with the increase of the 
iteration, which means the algorithm ensure probabilistic completeness. The algorithm do not need 
complex calculations and only need sampling, collision testing and connecting. However, RRT 
algorithm has low convergence speed and spends a lot of iterations to finding the optimal solution. 
Doing nothing after inserting the sample causes the algorithm need many iterations consuming a lot 
of time and memory. 
RRT* 

Algorithm 1 is a slightly modified implementation of RRT*. The RRT* algorithm solves the 
problem that the finial path of RRT algorithm is not optimal. The RRT* algorithm preserves the 
probabilistic integrity of the RRT algorithm and has a faster convergence speed. Following are some 
of the processes employed by RRT*. 
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Fig.1 Fake code of RRT 

Sample: the sample procedure returns an independent and uniformly distributed random 
sample from the obstacle-free space. 

Nearstnode: given a vertex  and tree , the function returns a vertex  

that is closest to  in terms of a given distance function. In this paper, we will use Euclidean 

distance. 

Steer: given two points  and , the function returns a point  such that  is 

closer to  than  is. Throughout the paper, the point  returned by the function 

Steer will be such that  minimizes  while at the same time maintaining 

, for a prespecified . 

Nearnodes: given a vertex  and tree , the function returns a set  of 

vertices such that , where ,   is a constant,  is 

the number of iterations and  is the dimension. 

Collisioncheck: given two points  and , the function returns true if the line segment 

between  and  in . 

But, it still has a lot of problems. Because of the low convergence rate to the optimal solution, 
it spends many time to iterate especially working in complex maps such as channel and maze. 
B-RRT* 

A.H. Qureshi proposed TG-RRT*[16] algorithm that has higher convergence rate than RRT* 
algorithm. B-RRT* uses a slight variation of greedy RRT-Connect heuristic for the connection of 
two trees. Two directional trees employing greedy connect heuristic for the connection of trees dose 
not ensure asymptotic optimality. The hybrid greedy connection heuristic of B-RRT* slows down 
its ability to converge to the optimal solution and also makes it computationally expensive. 
Following are some of the processes employed by B-RRT*. 
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Fig.2 Fake code of B-RRT* 

The algorithm using two directional trees need the extra function to connect them. The 

function calls the nearnodes function to find the closet vertex in the range of  from 

another tree and then connect. 
MB-RRT* 

MB-RRT* algorithm is proposed who has three outstanding strategies for UAV, include lazy 
sampling, self-adaptive step size and down sampling and curve fitting. Some of the processes 
employed by MB-RRT* are shown in Fig.3(a). 

Lazy sampling is adopted to improve convergence speed and less memory cost. In the light of 

, self-adaptive step size algorithm is applied to solve navigation limitation 

near obstacles and improve initial solutions’ quality and speed. Down sampling and curve fitting 
improve the smoothness of the final path. 

EB-RRT* algorithm 

Main idea 
Although self-adaptive step size and lazy sampling shorten the sampling time and reduce 

sampling vertices effectively on the basis of B-RRT*, there are still some room for improvement. 
We introduce EB-RRT* algorithm that adopts self-avoidance, grid partitioning and smoothing 

turning point for new vertex, near vertices and final path. 
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Fig.3 Fake code of MB-RRT* and EB-RRT* 

Self-avoidance 
The EB-RRT* and MB-RRT* works in exactly the same manner as the original RRT* 

algorithm in its initial phases. It starts with sampling in the collision-free space and gets a random 

vertex , then searches for the closest vertex  to it and grows forward the direction of 

. Self-adaptive step size adopted by MB-RRT* make the step size maintain 

 near the obstacle, but can’t avoid that a lot of vertices are abandoned because the 

step size is larger than the distance to the obstacle. It occurred in the maps that there are many 
obstacles frequently. 

Following are growth processes of MB-RRT* and EB-RRT* near the obstacle. The possibility 
that the minimum step size is larger than the distance to the obstacle is shown in Fig.4(a). In the 
same situation, the surrounding environment is divided into 9 grid regions, labeled 1, 2, 3, 4, 5, 6, 7, 

8, 9, respectively. The  is in the grid regions of 5. The function AddInform return the 

information from other 8 regions and then distinguish them between the obstacle area and the 
non-obstacle area. The regions of 2 and 3 are obstacle areas and others are non-obstacle areas as 
shown in Fig.4(b). the function ChooseDirection samples in the non-obstacle areas as the new 
random vertex. 
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Fig.4 Growth processes of MB-RRT* and EB-RRT* near the obstacle in 2-D map 

Obviously, this method also applies to complex 3-D environments that just the number of grid 
regions is increased to 27. However, we found that the time to distinguish non-obstacle areas with 
obstacle areas in complex 3-D environments using this self-avoidance method is longer. So, we use 

another method which is computationally small. First, find the nearest obstacle  from  

and calculate the distance . Similarly, calculate the distance  between  and 

. Then, calculate the direction of  based on: 

 

the step size is selected . Fig.5 shows the growth processes of MB-RRT* and 

EB-RRT* in complex 3-D environments. 

 
Fig.5 Growth processes of MB-RRT* and EB-RRT* near the obstacle in 3-D map 

Self-avoidance make EB-RRT* algorithm explores larger range around obstacle and enhances 
the obstacle avoidance ability. So it can reduce the number of iterations and shorten running time 
effectively. 

  Grid partitioning 

Each time a new vertex  is inserted, it needs to find a set of  where the distance 
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between  and the vertex is smaller than  through the function NearNodes and then determine 

whether the need for track correction for all vertices. During the process, it will traverse all the old 
vertices that have been inserted to the tree. But, with the expansion of the search space, the number 
of vertices and the traversal time is increasing.  

The cell decomposition algorithm[18] proposed by Ahmad Abbadi and Vaclav Prenosil can 
divide the entire map space into obstacle and non-obstacle areas. But for shortening the loading 
time required to initialize the map information, we divide the 3-D map into grids, regardless of the 

obstacle information. The map with length , width  and height  is divided into  

grids. The length of the grid is , the width is  and the height is . 

So  
 

 

 

After inserting the new vertex , it only needs to traverse the old vertices in the area where 

the vertex is located and no more than 7 areas around it. In order to ensure that all the vertices 

whose Euclidean distance is less than  are within these 8 areas,  
 

Because  
 

 

So that 
 

 

 

Smoothing turning point 
Smoothing turning point breakpoints also is including down sampling and curve fitting. Down 

sampling of MB-RRT* makes the final path point as little as possible. But, this situation will occur 

in Fig6(a). There is a vertex  that it can be connected to the goal point without collision and do 

not need to go through . The length of the final path is shorter than before as shown in 

Fig.6(b). 
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Fig.6 Down sampling of MB-RRT* and EB-RRT* 

Following are the fake codes of down sampling as shown in Fig.7. Based on MB-RRT*, the 

down sampling algorithm used by EB-RRT* has traversed to determine whether the existence of  

that it is connected with the starting point or goal point without collision before deleting vertices. 

 

Fig.7 Fake code of down sampling of EB-RRT* 

Curve fitting of EB-RRT* has own way to select two endpoints and two control point to 
calculate the Bezier curve. Fig.8 shows the process and the blue curve is the third-order Bezier 

curve.  is the turning point, the line  and . Then the points on 

the curve are calculated according to cubic Bezier curve equation  
 

Where  
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Fig.8 Curve fitting 

Analysis 

Probabilistic completeness 
In any configuration space. An algorithm is said to be probabilistically complete if the 

probability of finding a path solution, if ones exist, approaches one as the number of samples taken 
from the configuration space reaches infinity. It is known that RRT is a probabilistically complete 
algorithm, as its optimal variant RRT*. The MB-RRT* algorithm preserves the probabilistic 
completeness of the RRT* algorithm. Since our proposed EB-RRT* algorithm performs the random 
sampling function exactly like the aforementioned algorithms and is merely a efficient version of 
MB- RRT*, it can be reasonably proffered that it also inherits the probabilistic completeness 
property of MB-RRT*. 
Asymptotic optimality 

Asymptotic optimality is defined as follows: let  be the optimal solution of the motion 

planning,  is the optimal path length by  algorithm after  iterations, the algorithm should 

satisfy the following equation: 
 

It is known that RRT* and MB-RRT* ensure optimality when the number of iterations are 
increased to infinity. Since there is no extra connection heuristic required for connection of the two 
trees and the two trees are generated exactly as the tree generated in the original RRT* algorithm, it 
can be reasonably proposed that the EB-RRT* algorithm inherits the asymptotic optimality property 
of MB-RRT*. 
Computational complexity 

When calling the function of sample, collisioncheck, optimaizeVertices and connect, the 
running time does not depend on the number of iterations. The function AutoStepSteer in MB-RRT* 

spends  to run. The function Steer used in EB-RRT* requires constant time like both in 

RRT* and EB-RRT*. Only when the new vertex  fails the collision test, EB-RRT* will call the 

function of AddInform, ChooseDirection and Toward, all of which requires constant time. And the 

function of AreaNearNodes takes approximately  of the function NearNodes. 
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 is the probability of the old vertex  in the obstacle. So there is a constant  and an equation  
 

Simulation 

This 2-D simulation is performed on the QT software in the Ubuntu system and the 3-D is on 
the ROS platform. Table 1 shows the hardware configuration used in this lab. 

Table 1 Experimental hardware 
Type Parameter 

Processor Intel(R)Core(TM)i3-2310M 2.10GHz*4 

System version Ubuntu 14.04LTS 

RAM 5.7G 

 

Experimental map 
There are 6 2-D maps with different difficulty by placing different obstacles and 3 3-D maps 

for verifying the algorithm. The experimental environment of the 2-D is 800*600. Following are the 
tables of experiment map parameters. 

Table 2 Experiment 2-D map parameters 
 Parameter 

Map 
Start coordinate Goal coordinate 

Number of 

obstructions 
Duty cycle   

Map1 (400,300) (700,300) 1 84/1200 

Map2 (50,50) (750,550) 4 204/1200 

Map3 (100,500) (750,300) 2 158/1200 

Map4 (50,500) (750,150) 23 247/1200 

Map5 (150,70) (150,560) 6 311/1200 

Map6 (70,120) (470,270) 1 175/1200 

 

Table 3 Experiment 3-D map parameters 
Parameter 

Map 

Start 

coordinate/m 

Goal 

coordinate/m 

Number of 

obstructions 

Size of 

space/m3 

Number of 

grids 

Map1 (6,4,4) (14,22,6) 17078 20*25*10 8 

Map2 (1,1,1) (7,4,0.2) 64090 9*9*2.5 45 

Map3 (2,9,3) (14,2,1) 59798 15*15*6 50 

 

Conclusions and analysis 
 2-D map 
Fig.9 to Fig14 show the solution for the first time in 2-D maps, the left of which is EB-RRT* 
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and the right is MB-RRT*. When running the EB-RRT*, the  and  are both 100, so that 

the map is divided into 48 grids to shorten traversal time. 

The black part of the figure is the obstacle area, the blue part is starting point  and the 

tree  whose root is it, the green part is goal point  and the tree , the red part is the 

initial path of the current optimal solution, the gray line is the path after down-sampling, and the 
dark red curve is the final path. 

 

 

Fig.9 Performance in Map1 

 

Fig.10 Performance in Map2 

 

Fig.11 Performance in Map3 
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Fig.12 Performance in Map4 

 
Fig.13 Performance in Map5 

 
Fig.14 Performance in Map6 

EB-RRT* growth in the vicinity of obstacles is relatively intensive from the Fig.9 to 14, which 
means that during a lot of iterations, a lot of vertices are abandoned because the step size is larger 

than the distance to the obstacle in MB-RRT* and the overhead of searching for  is 

meaningless. However, self-avoidance used by EB-RRT* can guarantee that a new vertex can be 
inserted to a certain extent that improves the efficiency of finding feasible solutions. Smoothing 
turning point effectively solves the problem that the final curve is not feasible. 

Table 4 depicts the exact data of EB-RRT*, MB-RRT* and B-RRT* running on the Map1 to 
Map6 in 2-D maps.  

Table 4 Experimental results for computing optimal path solution in 2-D maps 
Index ALG Map1 Map2 Map3 Map4 Map5 Map6 

Iterative 

number  

B-RRT* 428 769 4486 444 2254 1508 

MB-RRT* 227 686 3385 357 1954 1372 

EB-RRT* 253 277 762 231 368 837 

 

Path length  

B-RRT* 937.909 1585.740 2253.670 1074.460 1409.880 2247.960 

MB-RRT* 872.330 1405.990 1917.230 995.762 1194.630 1803.050 

EB-RRT* 797.748 1446.190 1981.190 957.998 1177.300 1828.210 
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Time/s 

B-RRT* 0.232896 0.376302 8.940450 0.178626 1.311880 1.543880 

MB-RRT* 0.079537 0.249050 4.827820 0.116184 1.182490 0.719947 

EB-RRT* 0.092506 0.106442 0.494353 0.072950 0.114690 0.682838 

Time/s for 

1000iterations 

B-RRT* 949.847 1408.51  1012.3   

MB-RRT* 1183.75 1405.97  910.462   

EB-RRT* 997.991 1403.11 2379.57 935.454 1201.5 1828.21 

Time/s for 

2000iterations 

B-RRT* 926.793 1408.51  1010.51 1634.46 1813.99 

MB-RRT* 1157.45 1405.97  910.462 1194.63 1658.58 

EB-RRT* 994.669 1403.11 2379.57 908.876 1201.5 1746.8 

Time/s for 

3000iterations 

B-RRT* 925.313 1408.51  1010.51 1609.03 1808.14 

MB-RRT* 1127.27 1405.97  910.462 1194.63 1649.67 

EB-RRT* 985.066 1403.11 2379.57 908.876 1201.5 1573.09 

Time/s for 

4000iterations  

B-RRT* 920.801 1407.71  1010.51 1044.45 1805.16 

MB-RRT* 1126.62 1405.97 2268.35 910.462 1080.66 1649.67 

EB-RRT* 984.182 1403.11 2379.57 908.876 1201.5 1567.64 

 
Fig.15 to 17 are the histograms of the iterative number, path length and time for the first 

feasible solution according to the Table 4. It is obviously that the number of iterations and the time 
of EB-RRT*are much smaller than those of MB-RRT* and B-RRT*.  

 

Fig.15 Iterative number for the first feasible solution 

 

Fig.16 Path length for the first feasible solution   Fig.17 Time for the first feasible solution 

 
3-D map 
Fig.18 to Fig.20 show the solution for the first time in 3-D maps, the left of which is EB-RRT* 

and the right is MB-RRT*. The white part of the figure is the obstacle area, the black part is the 
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non-obstacle area, the blue part is starting point  and the tree  whose root is it, the 

orange part is goal point  and the tree , the yellow line is the path after down-sampling, 

and the red curve is the final path. 

   

Fig.18 Performance in Map1 

 v  

Fig.19 Performance in Map1 

   

Fig.20 Performance in Map1 

Because of the self-avoidance, the number of nodes of EB-RRT* is less than MB-RRT* from 
the performances in Map1 to Map3. 

Table 5 depicts the exact data of EB-RRT* and MB-RRT* running on the Map1 to Map3 in 
3-D maps. 

Table 5 Experimental results for computing optimal path solution in 3-D maps 
Map ALG Index First time    

 

 

Map1 

 

MB-RRT* 

Iteration 299 500 1000 1500 

Time/s 0.349922 0.628029 2.486304 5.063244 

Path length/cm 2010.445135 2005.03937 2003.30776 2000.097335 

 

EB-RRT* 

Iteration 212 500 1000 1500 

Time/s 0.225663 0.517994 1.368203 2.932502 

Path length/cm 2004.131785 2004.028015 2001.173385 2000.866655 
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Map2 

 

MB-RRT* 

Iteration 671 1000 1500 2000 

Time/s 1.399038 2.303930 5.518727 7.430588 

Path length/cm 733.553761 727.844566 716.675316 712.924559 

 

EB-RRT* 

Iteration 599 1000 1500 2000 

time/s 2.399083 3.379559 4.216219 6.428026 

Path length/cm 717.090288 712.392299 705.622081 701.508011 

 

 

Map3 

 

MB-RRT* 

Iteration 1142 2000 2500 3000 

Time/s 5.070364 13.512511 19.525062 26.755054 

Path length/cm 1417.855103 1412.680359 1411.090919 1410.016504 

 

EB-RRT* 

Iteration 778 2000 2500 3000 

Time/s 13.876751 17.081206 20.590168 24.491691 

Path length/cm 1417.230194 1416.904486 1413.268311 1409.403931 

In this three 3-D maps, EB-RRT* and MB-RRT*’s data of path length are almost the same and 
realistic. Although the time for the first feasible solution of EB-RRT* is longer than MB-RRT*, the 

iteration is smaller. Assuming that the time required for MB-RRT* is , then the time for 

EB-RRT* is ,  is a constant which is the time to find the nearest 

obstacle and calculate the coordinate of . So, as the number of iterations increases, EB-RRT* 

will take less time than MB-RRT*. The data in Table 5 also demonstrate it.  
The line charts of time and path length in the case of the same number of iterations are shown 

in Fig.21 to Fig.23 according to the Table 5. 

 
Fig.21 Time and path length in Map1 

 
Fig.22 Time and path length in Map2 

Advances in Engineering Research, volume 120

1327



 
Fig.23 Time and path length in Map3 

Conclusions and future work 

UAV automatic navigation capacity is an essential function with wider application of UAV, so 
this paper presents a detailed comparative analysis of performance of our proposed EB-RRT* 
algorithm with the existing algorithms MB-RRT* and B-RRT*. Three novel strategies are brought 
up for speeding up convergence rate and navigation accuracy for UAV. First of all, self-avoidance is 
adopted to improve convergence speed and less memory cost. And then grid partitioning is applied 
to shorten the time of finding the nearby vertices. Finally smoothing turning point improves the 
convergence rate of the algorithm and the smoothness of the final path. Hence, we anticipate 
employing EB-RRT* for online motion planning of animated characters in complex 3-D 
environments.  
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