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Abstract. In this paper, a new lattice model of traffic flow with the consideration of the 
aggressive-driving behavior is investigated by Xiaoqin-Li et al. The model is studied by using linear 
and nonlinear analysis method. A thermodynamic theory is transformed to describe the phase 
transition and critical phenomenon. The time-dependent Ginzburg-Landau (TDGL) equation is 
derived of near the critical point.  

Introduction 

Recently, many studies attraction to the density wave investigation for the lattice models[1-4]. 
The jamming transitions have the properties very similar to the conventional phase transition. The 
TDGL equation can describe the non-equilibrium phase transition. Now, few lattice models could 
deduce the TDGL equation. It is necessary to construct the traffic flow models by which one can 
derive the TDGL equation since the thermodynamic theory of jamming transition can be formulated 
by the TDGL equation. The lattice models can not describe the complex phenomena resulted by the 
driver's aggressive characteristics that they didn’t include this factor.   
 

Car-following model and linear stability analysis 

In real traffic, most of aggressive drivers adjusts them speed by estimating the impending 
traffic information of the next-nearest car. In view of the above reason, a new lattice model of 
traffic flow with the consideration of the aggressive-driving behavior(for short, DAE) is presented 
by Xiaoqin-Li et al[5]. The motion equation is given as follows: 
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The optimal velocity function )( jV ρ  is adopted as below [6]: 
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For convenience of analysis, Eq.(1) and Eq.(2) can be rewritten: 
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where ))(( 2
2 tVpk jc +′−= ρτρ . 

Therefore, we can derive the TDGL equation from Eq.(4), which could describe traffic jams in 
terms of a kink density wave. Then, linear stability analysis can be conducted for DAE.  

Suppose )(ty j to be small deviations from the steady-state solution cρ : 

              )()( tyt jcj += ρρ .                          (5)    

By inserting Eq.(5) into Eq.(4), and expanding )exp( ztikjAy j += , L++= 2
21 )()( ikzikzz  , 

then the first- and second-order terms of ik  are: 
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For small disturbances with long wavelengths, the uniform traffic flow is stable in the 
condition that 
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TDGL equation 

 
The slow scales for space variable j and time variable t are introduced, and the slow variables 

X and T are set  as follows[5]: 

    )( btjX += ε , tT 3ε= ,  10 <<< ε .                      (8) 

The density )(tjρ  is defined as ),()( TXRt cj ερρ +=           (9) 

By inserting Eqs. (8)-(9) into Eq. (4), and expanding to the fifth-order of ε . We obtain the 
expression: 
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Now, we study the traffic flow near critical point cτετ )1( 2+= . By taking Vb c ′−= 2ρ , the 

senond- and third-order terms of ε  from Eq. (10) is eliminated. Thus leads to the simplified 
equation as following 
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In order to derive the TDGL equation, we should define 
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By transforming X and T to variables Xx 1−= ε  and Tt 3−= ε , and taking ),(),( TXRtxS ε= , 

Eq. (11) is rewritten as follows: 
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By adding term S
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23 ∂  to both the left- and right-hand sides and performing Galilean 

transformation tt =1  and t
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We define the thermodynamic potentials: 
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By rewritten Eq. (13) with Eq. (14), the TDGL equation is derived 
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where S
S

δ
δ )(Φ  indicates the function derivative. The TDGL Eq. (16) has two steady-state 

solutions except for a trivial solution 0=S : one is the uniform solution: 
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and the other is the kink solution 
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Summary 

 We have obtained the neutral stability line and the critical point by using the liner stability theory 
for the DAE. The TDGL equation has been derived to describe traffic behavior near the critical 
point by applying the reductive perturbation method.  
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