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Abstract. The limit equilibrium theory is employed to analyze the bottom stability of foundation pit, 
a method that is used to calculate stability coefficient of resisting upheaval in accordance with 
deterministic mass property and sliding mode. The deterministic model for the analysis of bottom 
stability that can adapt to different types of slip surface is established by applying the motion-unit 
method to limit equilibrium theory and taking into account the strength reduction principle. Given the 
randomness of soil mechanical properties at the pit bottom and the failure of intensity parameter to 
meet the randomness of constraint conditions, the reliability analysis method for chance constraint is 
set up. The calculation and comparison between circular sliding surface and Prandtl's sliding surface 
offers an analysis of the influence of circle center position of different sliding surfaces, load of pit 
bottom and bracing load on the insertion ratio of supporting structure and the control of confidence 
level of random constraint function on insertion ratio. The above-mentioned analysis thoughts and 
methods are achieved through an engineering example 

Introduction 
While heavily determining the safety, deformation and displacement of supporting structure, the 

insertion length of supporting structure is also in direct relation to the cost control of foundation pit 
engineering. There are two modes for the specifications of insertion depth of supporting structure in 
the Technical Specification for Retaining and Protection of Building Foundation Excavations 
(JGJ120-99)[1]: one is the control over the cantilever- and single point-bearing support pile (wall) 
through the overturning resistant stability with the pile (wall) bottom as the fulcrum; the other is the 
control over cement earth-retaining wall and multiple point-bracing support line (wall) through the 
circular sliding stability at the bottom of supporting structure. JIANG Hong-wei (1997)[2] obtained the 
anisotropic undrained shear strength through the Sekiguchi-Ohta anisotropic constitutive equation 
and calculated the insertion depth for anti-upheave of foundation pit by taking the last support as the 
circle center and through the circular sliding at the bottom of the pile (wall). In light of the 
reinforcement effect of soft soil at the pit bottom, HU Zhan-fei (2001)[3] subjected foundation soil 
layer togeneralizing homogeneous processing by means of weighted mean. By taking the current 
excavation face as the center of circular arc that goes through the bottom of supporting structure, the 
author applied the limit equilibrium method to analyze the stability coefficient at different insertion 
depth and proposed the value-taking method of insertion depth according to the different surrounding 
environment of foundation pit and the corresponding protection demands. On the basis of the upper 
limit analysis theory of plastic mechanics, ZOU Guang-dian (2004)[4] proceeded from the slip surface 
of Prandtl-Reisser solution of ultimate bearing capacity of foundation to establish the basic failure 
mode and introduced the Mohr-Coulomb Yielding Criteria to obtain the flow rule and calculate the  
harmonious velocity field of plastic zone, thus acquiring the ultimate bearing capacity of deep 
foundation pit base and finally the base upheaval resistance coefficient at the deep foundation pit. 
Based on the concept of disturbance degree and taking into consideration the disturbance degree 

International Forum on Energy, Environment Science and Materials (IFEESM 2017) 

Copyright © 2018, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Engineering Research, volume 120

1798



 

 

changes caused by the variation of soil mass state,  stress path, porosity ratio and water content, 
WANG Jing-chun(2005)[5] took the slip surface of Prandtl-Reisser solution as the sliding failure 
pattern of bottom soil and analyzed the influence of the changes in disturbance degree of bottom soil 
in the process of excavation on the security of insertion depth of supporting structure. HU Zhi-ping 
(2006)[6] simulated the process of foundation pit excavation with elastoplastic finite element program, 
calculating stress state of a soil element before and after foundation pit excavation(depth of different 
enclosure walls into earth) and limiting condition function at cell node and artificially selecting the 
starting and end point of the maximally possible plane of upheaval fracture at the bottom. The 
Dijkstra method[7] is employed to find the shape and location of potential plane of fracture prone to 
upheaval fracture in the foundation pit soil and calculate the corresponding stability coefficient at 
different insertion depth. WANG Hong-xin(2007)[8] calculated, analyzed and verified the limitations 
of different limit equilibrium method at different sliding surfaces on the basis of probing into the 
different failure types of the bottom soil. In accordance with the numerical simulation analysis 
method, CHENG Qi (2007)[9] thought that the underground diaphragm wall display obvious kicking 
changes at the insertion ratio of 0.5 and there is a Mohr-coulomb plasticity point at the corner of wall. 
At the insertion ratio of 1.17 or 0.83 and with all wall toes entering hard plastic sticky soil, there is no 
salient difference in the maximal horizontal displacement of underground diaphragm wall and basic 
same form between horizontal displacement curve and measured curve. 

The aforesaid literature and research achievements indicate that: (1) The analytical solution method 
of the insertion depth (insertion ratio) of supporting structure is solved by the ultimate balance theory 
of sliding stability (upper limit analysis method in literature[4] is essentially the limit equilibrium 
solution of plastic zone velocity field); (2) There are two modes for the establishment of slip boundary 
of limit equilibrium theory: one is the sliding arc with the last cross arm pivot or current excavation 
face as the the circle center and the distance between circle center and wall tow; the other one is 
sliding surface hypothesis based on certain bearing capacity theory with the slip surface going through 
the wall tow; (3) When the numerical analysis method is adopted, the fracture plane with the minimal 
stability coefficient is calculated as the maximally possible plane of fracture. However, it is also noted 
that the aforesaid research achievements also have their shortcomings: (1) The solution based on limit 
equilibrium theory is carried out on condition of foundation soil as the homogeneous material; (2) As 
the “deterministic” assumption is employed for slip boundary, the result might not be the “minimum 
value”; (3) There is a lack of uniform evaluation criteria in numerical calculation method. 

Based on the above-mentioned research results and deficiencies, this paper proposes to describe the 
sliding safety of foundation pit bottom with motion-unit method. 

“Deterministic” Model of Motion-unit Method 
Unit-motion Analysis [10] 
After the objects of study are dispersed to motion units, the core of unit motion is shear plasticity 

sliding of moving interface. According to its relative location, the moving interface can fall into 
external boundary and internal boundary; if the known conditions of moving boundary are taken into 
consideration, it is divided into known movable boundary and unknown movable boundary. 
According to the fundamental assumption of motion-unit method, if a certain motion unit causes unit 
virtual displacement of unit boundary under the effect of certain disturbance factors, the adjacent unit 
will be subjected to the corresponding displacement; however, there is no relative normal 
displacement on the common border of random adjacent units. Therefore, the vector field of dispersed 
motion-unit displacement can be expressed as: 

{ } { }nn vuvuvu ,,,,,, 2211 L=δ
 

                                                                                  (1) 
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In this formula, ui and vi stand for the component of unit i displacement vector in the direction of x 
and y. If two random adjacent units i and j are taken and suppose there is a common border. between 
these two adjacent units,their relative displacement vectors in the direction of x and y are ui、j and vi、j 
respectively. 

jijijiji vvvuuu −=−= ,, ,                                                                             (2) 

Suppose li
γ and mi

γ are the direction cosine of included angle between the exterior normal of unit i 
on the common border γ  and the coordinate axis x and y and lj

γ and mj
γ the direction cosine of 

included angle between the exterior normal of on the common border.and the coordinate axis x and y. 
According to the assumption that the common border has no normal displacement, there is : 

0=+++ j
j

i
i

j
j

i
i mvmvlulu γγγγ                                                                             (3) 

Given the known movable boundary ζ  and the basic concept of displacement method, suppose 
lki

ζ and mki
ζ are the direction cosine of the included angle between the given unit displacement of 

unit k on the known movable border ζ  and the coordinate axis x and y. If the given unit virtual 
displacement on the known movement trend direction is taken as the known quantity, there is: 

1=+ ik
ik

ik
ik mvlu ζζ                                                                             (4) 

In this formula, uki and vki stand for the displacement component of the displacement component of 
unit k on the known movable boundary ζ  in the direction of x and y. 

Such displacement constraint equations as formula (3) and (4) are derived from all the motion units 
in the assumed plastic zone discrete range according to the known movable boundary and unknown 
movable boundary; finally, the overall discrete motion equations are presented as: 

[ ]{ } { } 0=′+ δδvuK                                                                             (5) 

In which, [Kuv] is the motion matrix of unit displacement, among which, each element is presented 
by the exterior normal direction cosine of unit boundary; {δ} is the unknown vector consisting of unit 
displacement to be obtained; {δ′} is the constant progression vector that is obtained from zero element 
and virtual displacement with unit known movable boundary.  

The solution of equation (5) generates the displacement of all motion units on x and y under the 
disturbance of unit virtual displacement on the known movable boundary. The relative tangential 
displacement along the common border γ of two random adjacent units i and j is obtained from 
formula (6): 
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In this formula, ilγ

r
 and imγ

r  are the direction cosine of the included angle between the tangent line 
of unit i on common border γ and the coordinate axis x and y respectively. According to the property 
of us

i,j, especially if its value is higher or lower than 0, it is possible to judge the relative tangential 
displacement of the two adjacent units i and j and determine the effect direction of the frictional force 
that acts on the common border γ.  

Unit Static Analysis  
According to the principle of unit static equilibrium, the physical power that acts on random motion 

unit i and the normal and tangential concentration on the boundary constitute the equilibrium force 
system: 
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In this formula, Ni

αx  and Ni
αy stand for the component of normal force on the motion unit i 

boundary in the direction of x and y; Ti
αx and Ti

αy represent the component of tangential force on the 
motion unit i boundary in the direction of x and y; Wi

x and Wi
y stand for the component of the physical 

power of unit i in the direction of x and y, and η refers to the numbers of boundary of motion unit i.  
For the geotechnical materials, suppose that the normal stress and tangential stress on the common 

border γ  between random motion unit i and adjacent motion unit j all meet the Coulomb's shear 
strength principle and the exerting degree of tangential force on the shearing surface that is similar to 
Bishop sub-section method of slope is adopted. The tangential force Tα on the boundary surface can 
be expressed as[10~11]: 

KLcNLT f )tan( ααααααα ϕτ +==                                                                                   (8) 

In this formula, cα and ϕα are the shearing strength parameter of boundary rock mass; Lα is the 
length of common border γ of the αth boundary of unit i; Nα is the normal force of common border γ of 
the αth boundary of unit i; K is the stability coefficient and the exerting degree of interfacial strength. 

It can be seen from formula (8) that there is only one, either the tangential force or the normal force 
on the random boundary of motion unit, that is independent. From the perspective of problem solution, 
suppose Nγ, the normal force on the boundary, is the independent unknown variable with formula (8) 
substituted in (7) and equilibrium equation established for each unit of the discrete motion unit field, 
it is possible to obtain the equations with normal force as the unknown variable on the motion unit 
boundary:  

[ ]{ } { } 0=+ QNK N                                                                             (9) 

In this formula, [KN] refers to the static force matrix of motion unit, whose elements are determined 
by the frictional coefficient of the boundary surface and movable boundary surface between motion 
units and possess the characteristic of asymmetry; {N} is the unknown column vector consisting of 
normal force that acts on the boundary between motion units and movable boundary surface; {Q} is 
the column vector of known normal force, which is jointly determined by the physical power of unit 
and binding power of boundary. 

Formula (9) implies the strength development degree that is allowed by the engineering, or the 
stability coefficient K, which is obtained through the iterative computations of formula (9). 

Chance-constrained Programming Model of Motion-unit Method 
The Concept of Chance-constrained Programming 
The analytical thought of Chance-constrained programming theory[11~12] takes into account the 

random variables contained in constraint conditions, allowing the safety evaluation decision made, to 
some extent, not to meet the constraint conditions. However, this decision should make the 
probability of the satisfaction of constraint condition no less than a certain confidence level ρ. 
Therefore, motion unit cannot satisfy the problem described[11]. The corresponding multi-objective 
chance-constrained programming model can be expressed as: 
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                                                                           (10) 

In this formula, fi(x,ξ) is the multi-objective and gi(x,ξ) the random constraint function; among 
which, f1(x) refers to the displacement function of motion unit, determined by formula (5); f2(x) refers 
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to the boundary force function of motion unit, determined by formula (9); x is a n-sphere decision 
vector of multi-objective function fi(x,δ) or random constraint function gi(x,ξ). For formula (5), 
decision-making vector is the coordinate of motion unit, namely, x=(x1, y1, . . ., xn, yn). For formula (9), 
decision vector is the boundary force of motion unit, namely, x=(N1

1x, N1
1y, N1

2x, N1
2y,. . ., N1

 x, 
N1

 y, . . ., Ni
1x, Ni

1y, . . ., Nm
x, Nm

y). ξ is a random vector; Pr{·} stands for the probability for the 
satisfaction of an event in {·}. ρj and βi are the confidence level of the jth and ith objective; f'i and g'j 
refer to the minimum value of objective function fi(x,δ) and random constraint function gj(x,δ) at the 
probability level of at least βi and ρj. 

Selection of the Constraint Conditions of Objective Function 
In accordance with the total stress analysis method, the random vectors in formula (10) should 

include: (1) ci, the cohesion of geomaterials and ϕi, the internal friction angle; among which, 
i=1,2,…,s and s is the number of foundation soil layer influencing the pit bottom sliding; (2) 
interfacial mechanical parameter of geomaterials and concrete material, adhesive strength cai, friction 
coefficient µai, among which, i=1,2,…,t; t is the number of foundation soil layer influencing the pit 
bottom sliding and contacting the concrete material. Given the method of compensation similar to 
formula (8), the random vector ξ is changed to ξ'=(ci/K, ϕi/K, cai/K, ϕai/K). For the displacement of 
motion unit, the stability state at the bottom of foundation pit, in strict sense, is that the normal 
displacement of motion unit is zero along the excavation face, namely, the minimum value f'1 of 
objective function f1(x, ξ') should be made uiζ=0 at the probability level of at least β1. For the 
boundary force of motion unit, the stability state at the bottom of foundation pit, in strict sense, has 
two representation methods:first, suppose the current operation condition is excavation state and there 
is no corresponding external load at the bottom surface, the minimum value f'2 of objective function 
f2(x, ξ') should be made Niζ=0 at the probability level of at least β2; second, suppose there is upheaval 
at the pit bottom and there is a need to exert certain equilibrium external force to maintain the 
equilibrium state at the pit bottom, the minimum value f'2 of objective function f2(x, ξ') should be 
made Niζ=Pi at the probability level of at least β2. The constraint condition of objective function can 
be expressed as: 

11r }0)({P βξ ≥≤′,xf                                                                         (11a) 

22r })(0{P βξ ≥≤′≤ iPf ,x                                                                         (11b) 
If the certain slip boundary at the bottom of foundation pit is chosen and the stability coefficient 

obtained K＜1, it shows that the motion units on the slip boundary are in a state of sliding instability. 
When the stability coefficient K=1, it shows that the motion units on the slip boundary are in the limit 
equilibrium state; when the stability coefficient 1≤K＜Fs (Fs is safety factor), it means that the motion 
units are in a state of stability but still have not reached the safety state needed by the design; when the 
stability coefficient K≥Fs, it reflects that the motion units on the slip boundary are in the state of 
stability and meet the safety demands.  

If the bottom of foundation pit and supporting structure are regarded as the boundary of a certain 
unit with the designed boundary action Pi exerted (such as the horizontal supporting force or the force 
of anchors of back-up coat at the bottom of foundation pit and supporting structure). If the stability 
coefficient calculated K＜1, it shows that the motion unit on the slip boundary and the boundary 
action have already been in the state of instability of sliding; when the stability coefficient K=1, it 
indicates that after the boundary action Pi has been exerted, the motion units on the slip boundary are 
in the state of limit equilibrium; when the stability coefficient 1≤K＜Fs (Fs is the safety coefficient), it 
means that the boundary force Pi has already guaranteed the stability state of motion unit but failed to 
reach the safety state needed by the design; when the stability coefficient K≥Fs, it indicates that under 
the intervention of boundary action Pi selected, the overall state of motion unit is so stable that it can 
meet the safety demands. 

The evaluation of probability level β1 and β2. With higher β1, the potential sliding surface 
determined by f1(x, ξ') is the most dangerous at the insertion depth of certain building envelope and 
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the limiting condition of safety degree, sliding surface that has the highest confidence level; with 
certain β1 but higher β2, the boundary force needed by the most dangerous slip surface, which is 
determined by f1(x, ξ') at the insertion depth of certain building envelope and limiting condition of 
safety degree, has the highest confidence level. 

Selection of Random Constraint Function and Determination of Constraint Conditions 
Researches have shown that[14~15], the stability of random constraint functions comes in two 

aspects: first, the slip boundary model is taken as the constraint function; second, the medium 
mechanics parameter of sliding surface is taken as the random variable and a certain form of limit 
equilibrium theory as the constraint function. For easier comparison, the former is defined as the 
deterministic type[1~9] and the latter the random variable.  

The random constrain function gi(x,ξ) has three forms[13]. When the medium mechanics parameters 
of sliding surface is seen as the random variable, the polynomial can be selected as the random 
constraint function, which is expressed by the Coulomb law[14~15]. With the mean value of shear 
strength parameter in the direct shearing test of soil as random vector, the probability and statistics 
theory is employed to define the ratio of a sample value of shear strength parameter in the direct 
shearing test against other mean values as ratio of average λi=ai/E{a}; among which, ai refers to any 
of the sample value of shear strength parameter in the direct shearing test and E{a} the corresponding 
sample average. As there is marked difference in drainage function between direct shearing test and 
triaxial shear test, the shear strength of triaxial shear test is seen as the true value. Therefore, the mean 
ratio of direct shear test λi and the shear strength of triaxial shear test τui are regarded as the random 
vector ξ, then the random constrain condition is: 

{ } iuiiiiicic ρτϕλσλ ϕ ≥≤+ tanPr                                                                           (12) 

In this formula, λci and λϕi are the mean ratio of direct shear test ci and ϕi. σi is the normal stress on 
the sliding surface under the condition of a certain sliding surface model; ρi is the probability level of 
the existence of random constraint condition. The value of probability level ρi reflects the trust degree 
of calculator in the shear strength of triaxial shear test. As the stipulation of literature [1] suggests, ρi 
has a higher value. 

Solution of Chance-constrained Programming Model 

Equivalent Forms of Chance Constraint 
According to the solving approach[13~14] of chance-constrained programming, the random variable 

contained in chance constraint is thought to meet a certain random model and converted to its 
equivalent form for solution. For the random constraint conditional expression (12) selected, suppose 
the ci, ϕi andτui are mutually independent normal random variables, there is the function 

uiiiiicii cy τϕλσλξ ϕ −+= tan)(  
Which is also the normal random variable. At the same time, there is  

( ) )()(tan)()( uiiiiicii EEcEyE τϕλσλξ ϕ −+=
 

( ) )()(tan)()( 222
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In this formula, E(·) and V(·) stand for expected deviation and variance respectively. 

As the function y(ξ) is the normal random variable, the chance constraint formula (12) after its 
standardization is equivalent to 

( ) ( ){ } iiii yVyE ρξξη ≥−≤ )()(Pr                                                                           (13) 

In this formula, ηi is the standard normal distribution function and formula (13) stands. If and only 
if ( ) ( ))()()(1

iii yVyE ξξρ −≤Φ−  
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There is the equivalent form of random constraint condition formula (12) 
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Computing Method 
In accordance with the aforesaid chance constraint analysis method of motion unit, the genetic 

algorithm contains the following computing steps: 
(1) determine the potential sliding surface, subject the motion field to mesh discretization and mark 

out n motion units according to the determination method of a certain sliding surface; 
(2) apply the virtual disturbance displacement ∆i of certain forms to a motion unit and adopt 

formula (5) to calculate the unit displacement of motion unit field; 
(3) employ formula (9) to calculate normal force Nαi  and tangential force Tαi on the unit interface; 
(4) randomly generate random variables according to the probability distribution of parameter, test 

the feasibility of chance constraint formula (12) and take it as the initial chromosome in the genetic 
process; 

(5) subject chromosomes to cross-footing and variation calculation and test the feasibility of its 
offspring with formula (12); 

(6) rotate the roulette to select chromosome until the circulation coefficient that can meet the 
stability coefficient iteration is found.  

 
Table 1  normal distribution of mechanics parameter of soil 

Computation Parameter 
Formation name depth(m) Severity (kN/m3) Modulus of 

Compression(MPa) Cohesive Force(kPa) Internal Friction 
Angle(º) 

miscellaneous fill 2.6 N (18.6, 1.32) N (8, 0.25) N (5, 0.02) N (22, 1.96) 
silty clay 4.7 N (19.7, 0.15) N (8, 0.03) N (32.5, 0.5)4 N (16, 0.20) 
clay 11.2 N (19.30, .25) N (8.67, 0.17) N (37.5, 0.5)7 N (20, 0.78) 
clay 15.6 N (18.5, 0.16) N (9.28, 0.07) N (35, 0.61) N (21.5, 0.25) 

limestone --- N (26.8, 0.02) N (2.25×104, 10.95) N (1.45×103, 22.46) N (47.5, 0.48) 
 

Table 2  normal distribution parameter of average value radio 
Computation Parameter 

Formation name λc λϕ τu 

① miscellaneous fill N(0.68, 0.09) N(0.63, 0.07) N(29.2, 0.63) 
② silty clay N(0.79, 0.04) N(0.84, 0.04) N(35.7, 0.79) 
③ clay N(0.82, 0.05) N(0.77, 0.06) N(43.5, 0.82) 
④ clay N(0.87, 0.07) N(0.82, 0.09) N(40.9, 0.91) 

Computational Analysis of Examples 

Calculation Parameters and Calculation Model 
Take the subway station as an example. The foundation pit of station has an excavation depth of 

18.4 m and width of 18.7m. The cast-in-situ bored pile building envelope with the clear spacing of 
0.6m and diameter of 0.8m is adopted with the lateral bracing set at the excavation depth of 1.0m, 
8.6m and 15.6m. In light of the construction load on the ground outside pit, q=30kN/m. Standard 
strength partial factor γk=1.3 is taken as the strength reduction factor Fs. Suppose that the physical 
mechanical property of the field foundation is conformed to normal distribution, Table 1 lists the 
normal distribution parameter N(χ,σ2) of the soil of field foundation, in which, χ is the mean value 
and σ2 is the variance. Table 2 presents the normal distribution parameter of (λci、λϕi),the average 
value ratio of shear strength parameter after reduction, and the triaxial shear strength τui (due to the 
small frictional angle in the triaxial shear test, the triaxial shear strength is taken asτui=cui). In formula 
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(12), the probability level βi and ρi are made 95%. The crossover probability Pc and mutation 
probability Pm of genetic computation are 0.28 and 0.18 respectively.  

Two computation modes are employed for comparison. The first is the smooth sliding method[1] 
(Fig. 1). Suppose that the last supporting point O is the fixed point, then the O is the circle center of 
slip circle. In fact, the slip circle center might exist at a certain place[5~6] between the last supporting 
point O and pit bottom O’ , which is expressed as ξ with 0≤ξ≤2.8m. First, the position of shear 
opening A on the sliding surface at the pit bottom is determined according to the arc center and 
controlled by the foundation pit width B0, the possible sliding arc radius should be R=ξ+Dp≤B0 after 
the sliding center has been chosen. The second is the slip surface of Prandtl-Reisser Solution[4] (Fig. 
2). The position of shearing opening A on the sliding surface at the pit bottom is determined by 
Ls

[10~11]
. 
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Computational Analysis 
For the method of circular sliding surface, the sliding arc central angle ∆AOC is divided into 6 

equal parts. BC and CD, the Prandtl-Reisser log spiral, are equally divided into three sections and 
each circular sliding surface or log spiral slip surface all simplified into straight lines, thus setting up 
the motion unit field. The method of circular sliding surface generates different ξ value at different 
insertion ratio. In Prandtl-Reisser method, the O' point (ξ=0) at the pit bottom is taken as the rotation 
center of sliding soil mass. Therefore, the maximal insertion ratio is 0.74 for the aforesaid foundation 
pit.  
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Fig.1  Module of circular sliding surface 
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Fig.2  Module of Prandtl’ sliding surface 

 
If formula (11a) is taken as the constraint condition of objective function, the relationship between 

the insertion ratio of circular slipping method and stability coefficient, as shown in Fig. 3, can be 
obtained. Similar to the rules of literature [8], the stability coefficient displays non-linear decreasing 
increase as ξ reduces at the insertion ratio of less than 0.6. The difference is that at the insertion ratio 
of more than 0.6, with ξ increasing, the stability coefficient transforms from parabolic growth to 
approximate linear growth. Besides, at the same insertion ratio, the lower ξ is usually accompanied by 
higher stability coefficient because despite the same insertion ratio, the lower ξ usually gives rise to 
the smaller volume of sliding soil mass and smaller soil mass load on O'C surface. Fig. 4 presents the 
relationship between the failure probability of circular slide and the location of circle center. 
Therefore, it can be seen that: (1) regardless of the insertion ratio, higher position of the circle center, 
or higher ξ, is accompanied by higher failure probability; (2) as the insertion ratio increases and the 
position of circle center rises (ξ increases), the decline degree of failure probability gradually tapers. 
Similarly, the comparison of circular slip method with ξ=0 and the relationship between insertion 
ratio of Prandtl-Reisser method and stability coefficient is shown in Fig. 5 and the the comparison 
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with failure probability in Fig. 6. It is seen from Fig. 5 that under the condition of ξ=0, the stability 
coefficient of two slip surfaces takes on completely different forms because with increasing insertion 
ratio, the limit sliding soil mass volume of circular slip method is mainly evidenced by the increasing 
depth. For this reason, the limit sliding soil mass volume of Prandtl-Reisser method is demonstrated 
by the increasing width of foundation pit bottom, which makes the rapid growth of stability 
coefficient tend to the limit and results in the approximate hyperbolic-type.（ It also can be seen from 
Fig. 6) that the stability failure probability of circular slip method is higher than that of  method, which 
is associated with the volume of the sliding soil mass behind the wall of two types of slip surface. The 
volume of sliding soil mass behind the wall of circular slip method is significantly higher than that of 
Prandtl-Reisser method. 
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Fig.3  Relationship between insertion ratio and stability 

factor of circular sliding surface 
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Fig.4  Relationship between the centre of a circle and failure 
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There are two modes if formula (11b) is taken as the constraint condition of objective function. In 
the first mode, the distributed load Pi is thought to be at the pit bottom (similar to the back-pressure 
load Pi when the foundation pit bottom reaches the limit equilibrium state). Fig. 7 and 8 respectively  
demonstrate the computation results of circular slip method (when ξ=2.8m) and Prandtl-Reisser 
method (when ξ=0.0m) with distributed load at the pit bottom. Fig. 7 reveals that at the insertion ratio 
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Fig.7  Influence of different pit bottom stack load on stability 

coefficient based on circular sliding method 
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Fig.8  Influence of different pit bottom stack load on stability 

coefficient based on Prandtl-Reisser method 
of more than 0.65, the circular slip method can markedly enhances its stability coefficient along with 
the increase in back-pressure load at the pit bottom; however, at the insertion ratio of less than 0.65, 
the increase in stability coefficient is basically in linear proportion to the increase in back-pressure 
load. However, in Prandtl-Reisser method, as the back-pressure load increases, the stability 
coefficient tends to an asymptotic value. 

In the second mode, in light of the lateral load on the supporting structure (similar to the interior 
support of the foundation pit or external support of anchor stock), the influence of lateral load of 
circular slip method (when ξ=0.0m) is presented in Fig. 9. It can be seen from Fig. 9 that for the lateral 
supporting force of less than 800kN, the increase of stability coefficient transfers from the parabolic 
type to approximate linear type; however, for the lateral supporting force of more than 800kN, the 
increase of stability coefficient gradually transforms to the approximate hyperbolic model. At the 
insertion ratio of lower than 0.6, the growth rate of stability coefficient takes on proportional increase 
along with the horizontal supporting force. At the insertion ratio o higher than 0.6, the growth rate of 
stability coefficient significantly reduces. At the horizontal supporting force of 1600kN and insertion 
ratio of more than 0.8, the stability coefficient basically remains unchanged. It can be speculated from 
the mechanism of horizontal supporting face in enhancing the stability of pit bottom that the 
horizontal supporting force that is far away from the pit bottom is less effective in increasing the 
stability coefficient of pit bottom. Therefore, Fig. 10 offers a comparison of the two slip methods at 
the horizontal supporting load of 200kN, 500kN and 800kN (Fig. 10). 
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Fig.9  Influence of final bracing load based on circular 

sliding method on stability coefficient  
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β and ρ objective, the objective function of chance-restrained programming and the confidence 
level of random constraint function values respectively, are theoretically the higher, the better. 
However, in reality, higher confidence level also requires high costs. Fig. 11 and 12 present the 
relationship between the insertion ratio and stability coefficient at different evaluation of β and ρ. The 
circular slide method (ξ=0.0m) and Prandtl-Reisser method slip surface basically take the insertion 
ratio of 0.42~0.50 as the demarcation point. When the Dp/H0 is lower than the demarcation point, the 
changes of β and ρ basically has no impact on the stability coefficient of different insertion ratio. 
However, when the Dp/H0 is higher than the demarcation ratio, the gradual decrease in β and 
ρ reduces the stability coefficient as the stability coefficient descends. The demarcation point of 
insertion ratio can be understood as: (1) at the insertion ratio of less than 0.42 or 0.50, the decrease in 
confidence level β and ρ will not change the stability of pit bottom. The unsafe insertion ratio refers to 
the chaotic characteristics of foundation soil with no possibility of the stability state at the pit bottom; 
(2) For the insertion ratio of higher than 0.42 or 0.50, the decrease in confidence level β and ρ will 
decrease the stability at the pit bottom; in other words, the safety of appropriate insertion ratio is 
mainly determined by the credibility of the property of foundation soil.  

Conclusion 

The establishment of the above-mentioned model and computational analysis of examples generate 
the following conclusions: 
 (1) The motion unit method can be employed to establish the deterministic model for the analysis of 

bottom stability of foundation pit, which is placed at certain confidence level with the property 
of foundation soil of foundation pit and boundary load (stack load at the pit bottom, bracing 
load, stack load on the ground outside the pit) as the random constraint function. In this case, 
the model for the analysis of chance-constrained programming of motion-unit method is 
established, which can be applied to the possible sliding forms at the pit bottom; 

(2) For the circular sliding method, the position of sliding circular center can significantly influence 
the pit bottom stability at different insertion ratio. The higher position of sliding circular center 
( ξ is higher), regardless of the insertion ratio, is accompanied by the marked decrease of failure 
probability; 

(3) For the two slip surfaces, Prandtl-Reisser method is accompanied by higher possibility of 
wedge sliding object at the pit bottom. At higher insertion ratio, the circular sliding has higher 
failure probability; 

(4) Lateral bracing is conducive to the stability of pit bottom soil. The last wailing effect is so 
crucial that it can double the stability coefficient of pit bottom; 

(5) At the insertion ratio of less than 0.42 or 0.50, the confidence of random constraint function will 
basically not influence the pit bottom stability. 
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