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Abstract. In this paper, we have considered a phytoplankton-zooplankton system with toxic 

liberation delay. Firstly, we give the critical values of transcritical bifurcation. Then, we derive the 

normal forms and their unfolding with original parameters in the system near the bifurcation point by 

the normal form method and center manifold theory. Finally, we show that the plankton system 

undergoes a transcritial bifurcation, and  the  equilibrium  is unstable. 

1. Introduction 

In 2002, based on  the field-collected samples and mathematical modeling, Chattopadhyay et al.[1]  

formulated the following phytoplankton-zooplankton model: 
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( )f P represents the predational response function and ( )g P  represents the distribution of toxic 

substances. The other parameters is found in the literature [1]. 

From 2002, many authors [2,3] have studied the complex dynamic behaviors dynamics of 

phytoplankton-zooplankton models, such as stability of equilibrium, Hopf bifurcation, global 

Hopf-bifurcation and so on. Some references [4,5,6]  have discussed persistence, periodic resonance 

and chaos of phytoplankton-zooplankton models.  

In  this paper, we take  ( )f P  is of Holling type II and ( )g P is linear, i.e. ( )
P

f p
P




, ( )g p P .  

We also consider that the liberation of toxic substances by phytoplankton species is not an 

instantaneous process but is mediated by some time lag. The model is described by the following 

system: 
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In  the  reference [7], they   explained  complex dynamic behaviors of system(2), such as stability of 

equilibrium, Hopf bifurcation,  Hopf-transcritial bifurcation. In this paper, we will study simple-zero 

singularity of system (2). 

2. Distribution of Eigenvalues 

If 1 2d d     , *P K  then the system (2) has a unique positive steady-state denoted 

by
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We translate the equilibrium * * *( , )S P Z  of the system (2) to the origin. Let *

1( ) ( )u t P t P   

*

2 ( ) ( )u t Z t Z  ,  system (2) can be linearized at the zero equilibrium as follows: 
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The characteristic equation for system (3) takes the form: 

                                                2
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Since 2 1 2 2 0a b a b  , hence, 0  is a root of  Eq.(4). For 0  , if * *
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then all roots of Eq.(4) except 0 have negative real parts. Next we mainly focus on the case 0  . Now 
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We summarize the above results in the following theorem: 

Theorem 1 Suppose that  1 2d d     , * *  2P K P   ,   0  ,then the following are 

obtained: If  2

2 1 12 0a b a  , all roots of Eq. (4) except 0 have negative real parts  and does not have 

other roots in the imaginary axis. 

3. Simple-Zero Singularity 

By Theorem (1) ( )i , we know, if  1 2d d     , * *  2P K P    , 2

2 1 1 2 0a b a   , 0   

the characteristic equation Eq.(4) of the linear part of system (2)  has a simple zero root and the rest of 

roots have negative parts. Since
1 2 0b b  , in this section, we treat

1b  as a bifurcation parameter 

near
2b , and let 1 2b b    . In order to investigate the stability of *S  for (2), we employ the center 

manifold theory and normal form method by Faria et al.[8]. 

Following the same algorithms as those in [8], let 0   and 0B  . Clearly, the non-resonance 

conditions relative to  are satisfied. Therefore, there exists a 1-dimensional ODE, which governs the 

dynamics of (2) near *S . First, (2) can be written in 2: ([ ,0], )C C    of the form 
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where ( )   is a Dirac delta function. We obtain 
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Using the formal adjoint theory for FDEs (see [12]), we decompose C  by   asC P Q  , where 
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Taking the enlarged phase space :[ ,0] ,BC C       is continuous on [ ,0]  and
0

lim ( )


 


 

exists, we obtain the abstract differential equation with the form 
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Consider the projection : BC P  , 
0( ) [ , (0) )],X           which leads to the 

decomposition BC P ker  . Then, using the decomposition ( )  ,t x tu y  ( )x t C , 
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Therefore, the locally invariant manifold for (2) tangent to P at zero satisfies ( ) 0y    and the flow 

on this manifold is given by the following 1-dimensional ODE 
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From above, we know 0, 0.m n   For 0  , Eq.(7)  has two fixed points, 0x  is unstable and 

m
x

n
   is stable. These two fixed points coalesce at 0   and, for 0  , 0x   is stable and 

m
x

n
   is unstable. Thus, an exchange of stability has occurred 0  . Therefore, system (2) 

undergoes a transcritial bifurcation. In particularly, if 0  , the zero solution of (7) is unstable, so the 

equilibrium *S  is unstable. 

Then, by the results  of the above and Theorem 1, we have the following theorem: 

Theorem 2 For system (2), we have the following conclusions: System (2) undergoes a transcritial 

bifurcation from equilibrium *S  for { | 0, },j        and  1 2d d     . In particular, 

when 0[0, )  , (4)  has a simple zero root, and all the other roots have negative real part if 
* *2 .P K P    

4. Conclusion 

In this paper, we studied simple-zero singularity of toxic phytoplankton-zooplankton model with 

delay. We have obtained the vector field reduced to the center manifold for simple-zero singularity 

and discussed their unfolding with the parameter perturbations. The study is an extension of the 

literature [7]. 
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