

Design and Implementation of Cloud Storage Flow Access Control

Based on Token Bucket Algorithm

Ai Mingzhen1, a, Yu Wen 2,b
1Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing

University of Posts and Telecommunication, Beijing 100876, China

2 Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing
University of Posts and Telecommunication, Beijing 100876, China

a aimingzhen1992@163.com, b yuwen@bupt.edu.cn

Keywords: Cloud storage, Service interface, Flow control; Token bucket.

Abstract. With the popularity of cloud computing, cloud computing enterprises are launching cloud

storage services, which are becoming more and more attention and use as an emerging network

storage technology. In the application process of cloud storage, object storage service interface is

growing rapidly, so as to ensure stability and reliability, the flow control of object storage service is

required. Based on the token bucket algorithm, this paper put forward three kinds of flow access

control strategy to cloud storage service interface, which can provide fine-grained flow access control

for different user priorities and service interfaces.

1. Introduction

Cloud storage is a new concept that extends and evolves in the concept of cloud computing. It is a new

type of network storage technology. Cloud storage is a system that brings together a large number of

different types of storage devices in a network to work together through application software to jointly

provide data storage and service access [1]. Users can connect to cloud storage at anytime, anywhere,

via any connected device and conveniently access the data. The biggest feature of cloud storage is the

storage as services, where users can upload their data to the cloud storage via API of the public cloud

storage.

Object storage is cloud computing architecture of data storage that is usually used to store

unstructured data with classified classification characteristics. [2] With the rapid growth of usage, the

service interface pressure of object storage grows. Flow of different users and different interface are

different. Therefore, object storage requires a fine-grained flow control based on user priorities and

individual interfaces to prevent service overload, thus enhancing the reliability and robustness of

services.

Based on object storage platform and the token bucket algorithm, this paper will study flow access

control strategy of the cloud storage service interface, implementing fine-grained flow control for

different user priority and service interface.

2. Overview of Cloud Storage

This paper is based on the object storage system using the bucket model. Object storage is to support

massive user remote access and unlimited capacity expansion. Object storage supports streaming

writes and reads. Object storage provides an API for developers to upload their own files to the remote.

The local application interface for object storage is a RESTful API. In object storage, buckets are

containers for storing objects. Each object is stored in a storage bucket. Objects are the basic entities

that are stored. Objects are composed of object data and metadata. The metadata is a name - value pair

that describe an object. The key is the unique identifier for the object in the bucket. Each object in the

bucket can only have one key. The combination of bucket, key, and user identity “uuid” can uniquely

identify an object.

2nd International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 155

211

For service interface of the object storage, the prevailing flow control technology is Nginx cluster,

sliding window, bucket algorithm. With Nginx's own request limitation module

ngx_http_req_module[3] and the flow restriction module

ngx_stream_limit_conn_module[4],distributed network applications deployed on the Nginx cluster

can control flow[5]. The Nginx cluster can't implement fine-grained flow control for interfaces. High

time precision division of sliding window algorithm may waste system computing power. The bucket

algorithm cannot handle the burst request.

3. Relevant technical specifications

Flow shaping is the active regulation of network flow rate [6]. The typical role of network shaping is to

limit the flow and burst of a certain connection that flows out of a network, so that such network

packets are sent out at a more uniform speed. Flow shaping is usually done using a buffer and a token

bucket and leaky bucket algorithm. When network packets are sent too quickly, they are first cached

in the buffer, and the buffered packets are sent evenly under the control of the token bucket. In the

Internet era, many web services borrowed from the idea of flow shaping and used network flow to

control the rate of Internet service.

Leaky bucket. The bucket algorithm provides a mechanism to control the flow rate of the port,

smooth the flow of flow on the network, and achieve flow shaping, thus providing a stable flow for

the network. The leaky bucket algorithm abstracts the flow control model into a bucket of fixed

capacity, which water flow into at an uncertain rate. But water is flowing at a fixed rate of . When

the bucket is full, the excess water will overflow.

The design idea of the leaky bucket algorithm is shown in the figure below.

Fig.1 Schematic of Leaky Bucket Algorithm

Analogous to the flow control, the incoming packets will be placed in the data cache, and the

cached size can not exceed the capacity of the cache. Once the cache is full, place it in a waiting queue,

or discard it directly. Since the rate of the leaky bucket algorithm is fixed, the packets in cached will

be forwarded to the network at a constant rate.

For the capacity of , the outflow rate is , when data request arrives:

(1) If the current capacity in the bucket is current_capacity < , then the flow is allowed to be put

into the bucket and cached, waiting for forwarding or service;

(2) If the current capacity in the bucket is current_capacity  , then according to the setting, the

flow will be placed in the waiting queue or discarded;

Advances in Engineering Research, volume 155

212

Because the leakage rate of the leaking barrel is a fixed parameter, even if there is no resource

conflict in the network, the leaky bucket algorithm can not take the burst flow to the port rate. For

many application scenarios, there is a requirement to allow burst transport, in addition to control the

average transmission rate.At this time, the leaky bucket algorithm may not be suitable, and the bucket

algorithm is more suitable.

Token bucket algorithm. The token bucket algorithm is a kind of network flow shaping

algorithm. The token bucket algorithm is used to control the number of data sent to the network and to

allow the sending of burst data. In the token bucket algorithm, there is a fixed capacity bucket with

tokens in the bucket. The bucket began to be empty, and the token was filled with a fixed rate of 

into the bucket until it reached the capacity of the bucket. The extra token will be discarded.

Whenever a request comes,try to remove a token from the bucket. If there is no token, the request

cannot pass.

The basic process of the token bucket algorithm is as follows:

(1) If the average transmission rate of user configuration is ,then a token is added to the bucket

every 1/ second;

(2) Supposing that the bucket can hold  tokens at most. If token bucket is full, then this token will

be discarded;

(3) When an n-byte packet arrives, n tokens are deleted from the token bucket and the packet is sent

to the network;

(4) If there are fewer than n tokens in the token bucket, the token is not deleted and the packet is

considered out of flow limits;

(5) The algorithm allows bursts of up to  bytes in length. From the long-term results, the packet

rate is limited to a constant . Packets outside the flow limit can be handled differently:

(1) Discard directly;

(2) Packets are placed on the waiting queue, transmitted when there are enough tokens in the token

bucket;

(3) Packets are forwarded to the network, but special labeling is required. Discard these specially

marked packets when the network is overloaded.

The principle of token bucket algorithm is shown below:

Fig.2 Schematic of Token Bucket Algorithm

Token bucket algorithms not only limit the average data transfer rate, but also allow some degree

of burst transfer. In the token bucket algorithm, as long as there are tokens in the token bucket, burst

data is allowed to be transmitted until the user-configured threshold is reached. Therefore, the

algorithm is suitable for transmitting burst flow.

Advances in Engineering Research, volume 155

213

4. Flow Control Strategy Design of Service Interface

Demand Analysis. In order to flow control strategy to be more consistent with the production

environment, we need in-depth analysis of various needs.

Functional requirements. The flow access control strategy should be transparent to the user. When

the user normally accesses the object storage service, the flow control strategy is to control the flow,

and the delay of flow control operation needs to be reduced as far as possible. When the object storage

is in the face of abnormal flow, such as DDos attack and peak flow access, the flow control strategy

can immediately restrict the growth of flow and ensure normal service.

Non-functional requirements. The current object cloud storage hopes to implement fine-grained

service interface flow access control policies based on different users and interfaces. Before running

flow control services, the service provider can configure the roaming access control strategy of the

service interface itself.
Design of Flow Control Strategy. The main function of flow control strategy is to simulate the

token bucket algorithm to determine whether current flow needs to be restricted. In this paper, three

flow control strategies are designed. These three strategies are based on the token bucket algorithm.

the basic idea is that each request requests a token to the flow control service. if the token exists, then

the forwarding is allowed. If the token is empty, the request is denied.

A Service Strategy Based on User Priority.This strategy provides an algorithm similar to

priority scheduling. The algorithm needs to compute priority for each user based on one or more

attributes of the user. For example, different users can use multiple computing resources such as

network bandwidth, memory, CPU, hard disk, and so on on the cloud computing platform. These

resources are given different weights, and different amounts of the same resource are assigned to

different score. The sum named sum_weight of the product of the user's resource score and weight is

calculated. Assume that according to the range of sum_weight, the user's priority is divided into four

types from high to low, namely c4, c3, c2, c1。Different priority users correspond to four token

bucket instances. The four token bucket instances set different token generation rates 4, 3, 2,

1,which satisfy the size relationship: 4> 3> 2> 1. Let the average current production

environment QPS is q, so that q < 1. When the request arrives, the strategy determines whether the

user can get the token based on the user's priority. If the token is obtained, processing the request is

allowed. Otherwise, refuse the request. The presence or absence of the token is closely related to the

token generated rate configured by the service provider according to priority of different users .

The algorithm steps of this strategy are as follows:

(1) Gets the user's uuid from the request data and determine whether the current flow control

strategy is already open. If the strategy service is not turned on, the current request does not need to

intercept based on the user priority service policy to check the next blocking policy.

(2) If the intercept strategy has been turned on, according to the user's uuid, this algorithm get the

user priority named c attached to the current request. According to the user's priority, this algorithm

obtains the corresponding token bucket algorithm instance named bucket_instance。

(3) Call The function of token bucket bucket_instance to get the token. If the current request gets

the token, the request is allowed to be processed.

(4) If the current request gets a token failure, then the service request is rejected.

A service policy based on interface priority. The service policy based on interface priority limits

the access frequency of users to a service interface in the time window named windows_time. When

the user accesses the interface, the constant access_times, the maximum number of accesses in the

current time window, decides whether to reject the service.

This policy sets a priority C for each interface based on the processing time and system

consumption of different interfaces. This policy takes the eight interfaces in table 1 as an example and

sets three priority levels. Different priority interfaces, which are given different allowable access

times access_times in a time window. There is a variable expire_time in this policy that represents the

expiration time of a time wondow. Local interface-class map data structure used to store the interface

Advances in Engineering Research, volume 155

214

priority information configured by the service provider. When the user accesses the service interface

of this policy, the priority of the service interface is obtained, and the service instance is obtained

according to that priority.
Tab.1 Interface Priority

Name of Interface Priority Name of Interface Priority

get_bucket() 1 get_object() 1

list_bucket() 0 list_object() 0

delete_bucket() 1 delete_object() 2

Create_bucket() 2 put_object() 2

For example, when windows_time = 50ms, access_times = 100, the first 100 requests pass through

the 50ms time window, and the 101st request is rejected.

The algorithm steps of this strategy are as follows:

(1) When the user request arrives, the flow control service checks the policy switch and the

interface information to match. If not, the flow control service executes the next policy. If the match is

matched, the policy retrieves the priority information  for that interface from the local map.

(2) According to the priority, get the current policy's windows_time and access_times, expire_time.

(3) If expire_time = 0, this is the first visit, allowing the visit, while setting expire_time =

windows_time+Unix Time(), updating the remain_times = access_times. The function UnixTime() is

used to get the current time.

(4) If expire_time 0, and expire_time < UnixTime(), indicating that the last window cycle is over,

setting expire_time = 0, and executing step 3.

(5) When expire_time  UnixTime (), if the remain_times < 1 ,indicating that the number of this

visit is insufficient, the request is rejected. If the remain_times  1, the value of the remain_times is

reduced once within the allowable range, allowing this request.

A Service Strategy with Burst Time. This strategy is based on a token bucket algorithm that

resolves the degradation of the token bucket algorithm's processing rate to a constant rate  when a

large number of requests come in for a long time. During a time period of the strategy, the time is

divided into a burst time named burst_time and a normal service time named normal_time. These two

periods correspond to their respective maximum number of visits burst_times and normal_times,and

satisfy burst_time < normal_time，burst_times > normal_times. When the user first requests, the

strategy allows the request, and set the current time as the start time of the cycle. If the subsequent

request is within burst time, the request will try to obtain a token of burst time.Otherwise,the request

tries to get the token of normal service time. If the token is given, the request is passed, otherwise the

number of access times is exceeded and the service is denied.

For example, setting burst_time = 100ms, normal_time = 900ms, then the service request arrives,

if the time is within 100ms on the current cycle, then the request of former burst_times times is

normal service, otherwise the request is rejected. If the request arrives at 100ms to 1000ms, then the

request of the former normal_times times is allowed, otherwise the service is rejected. The algorithm

then goes into a loop of two time periods.

The algorithm steps of this strategy are as follows:

(1)The algorithm checks if the strategy switch is on when a user request arrives. If not, skip the

following steps. If enabled, get burst_time, normal_time, burst_times, normal_times.

(2)If start_time = 0, indicating the first request, the strategy will set start_time = Unix_time(),

burst_remain_times = burst_times, normal_remain_times = normal_times,and allow the request。

(3)If start_time  0, calculate gap_time = UnixTime () - start_time.

(4)If gap_time  burst_time, it indicates that the current request is within the burst time and tries to

acquire the burst time token burst_remain_times. If burst_remain_times  1, the request is allowed to

Advances in Engineering Research, volume 155

215

decrement the value of burst_remain_times by one. Otherwise, it indicates that the number of tokens

in the burst time has run out, rejecting the request.

(5) If gap_time > burst_time and gap_time < burst_time + normal_time, it indicates that the current

request is during the normal service time . the current request tries to obtain the normal service token

normal_remain_times. If normal_remain_times  1, it indicates that the request is currently permitted

within the allowed number of accesses, and decrements the value of burst_remain_times by one.

Otherwise, it indicates that the number of tokens in normal service time has run out, and the request is

rejected.

(6) If gap_time > burst_time + normsal_time, the previous cycle has ended.Setting start_time = 0

and going to the second step to continue.

5. Architecture Design

Flow control services architecture is as follows. Object storage is mainly divided into three parts: flow

control module, Nginx load balancing module, object storage service node OSS Node. Nginx is used

for load balancing; the flow control module intercepts requests according to the setting of three kinds

of strategies and provides flow control service by way of function call.

Fig.3 Diagram of System Architecture

In the steps of the flow control service, the service provider first configures the switch status and

the related parameter values of the three interception strategies in the flow control service. Each

request sent to the server needs to determine whether the current request is allowed according to the

three kinds of flow control strategies. If the request is allowed to pass, then enter the Nginx load

balancing module, according to the load balancing results, the request is assigned to an object storage

service node to handle the corresponding request. Three flow control strategies are carried out in turn,

after a request is verified by an interception strategy, the subsequent interception strategy will no

longer intercept the request for verification.

6. Experiment

In order to verify the effectiveness of flow control strategy, this paper designs a cloud storage

prototype system in the experimental environment. Three flow control strategies will be tested on the

prototype system.

Experimental Development Environment. The software and hardware development

environment of the flow control control service is as follows.

Advances in Engineering Research, volume 155

216

Tab.2 Development Environment

Environment Name Environment Name

operating system Ubuntu16.04 development tools Pycharm and git

CPU 1.9G AMD A4-3305M Python version 2.6

memory 4G database MySQL 5.5

Experiment Procedure. In the object storage prototype system, in order to verify three kinds of

intercepting strategies, eight interfaces in Table 1 were designed and implemented. Buckets and

objects are stored in the database。There are four priority users in the prototype system. When a user

requests an interface, the user's priority information will be attached. Using multithreading

technology, the three flow control strategies were tested separately in the experiment. The experiment

continue to visit the interface, and gradually increase the frequency of requests, record server QPS.

The result is shown in the figure.

Fig.4 Test Result of Service Strategy Based on User Priority

When testing the service strategy based on user priority, the experiment sets 4 = 200, 3 = 180, 2

= 160, 1 = 140. As can be seen from the figure, as the access rate increases, the QPS of the object

storage service gradually increases, and the number of user requests to receive the token is limited by

the number of interception strategies. The result of service strategy based on interface priority is

similar to this figure.

Advances in Engineering Research, volume 155

217

Fig.5 Test Results of Service Strategy with Burst Times

When testing service strategy with burst time,the experiment sets burst_time = 100ms,

normal_time = 400ms, burst_times = 650, normal_times = 500. As requests increase, the QPS of

service interfaces fluctuate dramatically during the burst, which helps to squeeze system performance.

Experiments show that the three flow control strategies can effectively control the flow and the

object storage service can get effective overload protection.

7. Conclusion

In summary, the object storage due to mass storage, unlimited expansion, remote login, low price and

other characteristics, has been widely used by enterprises and developers. Due to the huge amount of

users and storage, the object storage has to face the problem of flow access control of the service

interface. This paper designs three kinds of flow control services based on token bucket algorithm

from the aspects of research background, research status, requirement analysis. This article

establishes the object storage function prototype and verifies the validity of three flow access control

strategies.

Acknowledgment

 This work was supported by the National Natural Science Foundation of China(Grant No. 11272066

and No. 11472049).

References

[1] Shi Qiang, Zhao Peng-yuan. Analysis of Critical Technologies on Cloud Storage Security. Journal

of The Hebei Academy of Sciences,2011,28(03):66-69.

[2] YANG Teng-Fei, SHEN Pei-Song, TIAN Xue, FENG Rong-Quan. Access Control Mechanism

for Classified and Graded Object Storage in Cloud Computing. Journal of Software, 2017, 28(09):

2334-2353.

[3] Xie W, Li Y, Lu C, et al. Optimizing the resource-updating period behavior of HTTP cache

servers for better scalability of live HTTP streaming systems. Broadband Multimedia Systems

and Broadcasting (BMSB), 2012 IEEE International Symposium on. Seoul:IEEE, 2012:1-6.

[4] Liu Zhenyu. Website Load Balancing with Nginx. China Management

Informationization,2012(16):96.

Advances in Engineering Research, volume 155

218

[5] Zhong Tianhui. Design and Implementation of Flow Control Service Based on Token Bucket

Algorithm. Dalian university of technology,2016.

[6] Chakrabarti Deepayan, Vee Erik. Traffic Shaping to Optimize Ad Delivery. ACM Transactions on

Economics and Computation, 2015, 3:131一148.

Advances in Engineering Research, volume 155

219

