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Ensemble learning 

Abstract. We proposed an algorithm to construct ensemble radical basis function neural networks for 

regression estimation. Taking full advantage of the characteristic of radial basis function, we calculated 

groups of approximate basis in Reproducing Kernel Hilbert Space (RKHS). The approximate basis 

could be used to represent all the samples by the way of linear combination. By this way, the weak 

learners of radial basis function neural network were built. But it was proved that the weak learners were 

not accurate enough. In order to get accurate and stable learning machine with better generalization 

ability, we proposed the Ensemble Radical Basis Function Neural Networks (ERBFNNs). Employing 

the sinc function, the proposed ERBFNNs have shown exciting outcomes as have come out at the end 

of the paper. 

Introduction 

The problem of empirical data modeling is germane to many engineering applications. For this purpose, 

Broomhead and Lowe developed RBFNNs in 1988
 [1]

. 

Consider the standard supervised learning problem. In a regression problem, one is supplied with a 

set of data points 1 1{( , ), ,( , )}Ny y R  d

N
D x x R  that are sampled from an unknown function, where 

, 1, ,i Nix are input points and , 1, , ,y i Ni  the corresponding output points.  The goal is to find a fit 

to the data points such that an approximation to the unknown function is obtained. A RBFNN is an 

approximation of the form: 
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where iw ’s are the connecting weight and 

2

2
( ) exp( )i

i

i

c







x
x ’s are the radical basis functions 

( 1, ,i N ), b is the balance parameter or sometimes called a threshold. ic and i  are the i-th center 

vector and the width parameter. To construct RBF network, the number of the hidden layer must be set, 

and the centers ic , the widths i  and the weights iw  must be estimated. In RBF typical learning, the 

network structure will be determined based on prior knowledge or the experiences of experts. The 

parameters are estimated using either the clustering or the least mean squared method. On the other 

hand, there are approaches in which the network structure and its parameters are estimated by the 

evolutionary computation
 [2,3,4]

. 

In statistical learning theory(STL), some important conclusion has been drawn by Vapnik
[5,6]

 and his 

cooperators: If there were a “kernel function” ( , )ik x x  satisfying ( , ) ( ) ( )T

i ik  x x x x , we would 

only need to use ( , )ik x x  in the training algorithm, and would never need to explicitly even know what 

)(x  is. One example is :  
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In this example, ( ) x  is infinite dimensional 
[5,6]

, and we have defined dot product by (2). The 

problem could be written as:  
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Observing  equation (1) and problem (3), we can find that: selecting (2) as the kernel function, 

equation (1) is the solution to problem (3). 

Ensemble Radical Basis Function Neural Networks 

With the help of STL, we construct the RBFNN. So some important results are listed as follow
[5,6]

. 

Lemma 1 The VC dimension of a set of functions that are linear in the parameters  
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equals n, the numbers of parameters of a set of functions. 

Lemma 2 With probability 1   simultaneously for all functions in a set of real-valued bounded 

functions ( , ),Q z w w Λ , the inequality 

( ) ( ) ( ) ( )empR R B A l  w w                                                                                                          (5) 

is valid, where  
, (2 ) ln / 4 1

( ) annH l
l

l l




  
   

where ( )R w  is the expected risk, ( )empR w  is the empirical risk, and, 
, (2 )annH l 

, the annealed 

entropy. 

From lemma 2 we can draw a conclusion: 
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 And from lemma 1, we can get the VC dimension h  of the set of the functions. So inequality (6) 

could be used to estate the upper bound of the expected risk.  

Construct weak RBFNN learner  Consider the standard supervised learning problem for RBFNNs. 

Weights, center vectors and the width parameters must be estimated. The number of the hidden layer 

must be set. All this questions seem difficult. But it is easy in STL opinion. We can find some samples 

to represent all the samples by the following method. A learning program is given training examples of 

the form {(x1, y1), · · · , (xN, yN)} for some unknown function y=f(x). Mapping the input data into 

feature space and denoted as  
1

( )
N

k k
x


, the following steps are used to find the center vectors, which 

we called Vectors Selecting Method. 

1) Found two new sets { ( )}
h 1

X x , 
A

X  ; 

2) To every ( )
k

x , Nk ,,2 , get value of  

( ) ( )

min ( ( ) ( )) ( ( ) ( ))T

i i
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; 

3) If the value is less than  (a very small positive number that approximate to zero), )(
k

x  is 

added to set A
X ; else ( )kx  is added to set hX ; 

4) Go back to step 2 until all the vectors are checked. 
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Once the center vectors setted,  the number of the hidden layer is settled. The set },,{ 1 NxxX   is 

denoted as 'X  in feature space, that is )](,),([' 1 NxxX   . The above process split 'X  into two 

parts: hX  and A
X . All the elements in hX  are linearly independent and the elements in A

X  can be 

linearly approximated by hX . The elements in set hX  are different from each other, so we can look it as 

a row vector: )](),([ 1 hh xxX   . 

Since we have known that 
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represented by hX , so w  could be write as 
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  , we could rewrite Problem (3) 

as: 
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Where ],,[ 1 h  , h  is the number of elements in set hX . Substitute ( 1, , )ke k h  in equations 

(7) for ( 1, , )ke k h  in Eq. 7, we get  
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Dimension of equations set (8) is 1h . It is completely controlled by the number of elements in set 

hX . It is constructed by partial of the training data  {(x1, y1), · · · , (xN, yN)}. So it is a weak learner from 

the opinion of ensemble learning
[7,8]

. This is called a weak RBFNN learner. 

The aim of machine learning is to make a good predictor. This means finding a machine learning 

method that generates a predictor based on a set of examples, where the predictor is a good 

approximation of the function that generated the examples. It is well known that weak RBFNN learners 

are not stable
[7,8]

 and ensemble learning can improve the stability by aggregating unstable weak learners. 

The Vectors Selecting Method can be repeated many times and we can get enough weak RBFNN 

learners. Aggregating these weak RBFNN learners, a good approximation of the function is 

generated
[9,10,11]

. 

 

 
a) Bagging leaners                                          b) Weak RBFNN learners 

Figure 1.  Comparison of Bagging learners and weak RBFNN learners. 
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Experiments 

In order to achieve a high degree of comparability of our results, we have selected frequently used tasks 

for evaluation of learning algorithms. In particular, we have used a well-known sinc function 

approximation. For simulated test function 
sin x

y e
x

   we  generated 400 observations as a training 

dataset.  With this dataset, we generated two kinds of weak learners: the weak RBFNN learners (which 

are shown in part b of figure.1) and the bagging learners(which are shown in part a of figure.1). It’s easy 

to find that the weak RBFNN learners are much closer to the simulated test function and the ensemble 

RBFNNs can approximate it more accurate and fast. 

Summary 

This paper presents a new algorithm that addresses the problem of calculating the number and locations 

of the hidden node centers, in the process of training an RBF network. The ensemble learning algorithm 

improved RBFNNs for regression. How to design and combine weak learners is one of the core 

questions for ensemble learning. We suggest the sparse RBF networks as the weak learners. Using the 

approximation regression, we compared the performance to other procedures that are widely used. Our 

main results are concluded as: Firstly, the proposed RBFNNs are effective. Fig.1 illustrates that 

RBFNNs are much better than bagging predictors in regression. Secondly, RBFNNs are more robust. 

RBFNNs can select parameters in more widely ranges. We didn’t give a new method to aggregate the 

weak learners; this will be our task in the future. 
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