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Abstract: We consider IMEX-MCNAB time discretization scheme for the partial integro-
differential equation derived for the pricing of options under a jump-diffusion process. The scheme 
is defined by a convex combination parameter, which divides the zeroth-order term due to the 
jumps between the implicit and explicit parts in the time discretization. This scheme is studied 
through Fourier stability analysis. It is found that, under suitable assumptions and time step 
restrictions, the IMEX-MCNAB scheme is conditionally stable. Numerical experiments show the 
effectiveness of the proposed method. 

1. Introduction 
Options, as an important financial derivative, are very active in the current financial market. In 

1973, F. Black and M. Scholes [1] proposed the famous Black-Scholes model. But the Black-Scholes 
model, despite its simplicity, ignores some of market features, such as market jumps and crashes, 
whereas these are such important events that should be considered. 

In 1976, R. Merton [2] proposed the addition of jumps into the Black-Scholes model. Contrary to 
models with continuous paths, jump-diffusion models allow large sudden changes in the price of the 
underlying asset. In [3], S.G. Kou introduced a jump-diffusion model in which amount of jump has a 
distribution of log-double exponential type. In a richer CGMY model [4], the asset price is a Levy 
process with possibly infinite jump activity. 

A solution to a jump-diffusion model can be obtained by solving a partial integro-differential 
equation (PIDE). Direct numerical issues were already considered in [5, 6]. However, direct solution 
methods are usually too expensive with a full matrix, and therefore other numerical methods should 
be considered. D. Tavella and C. Randall [7] described a stationary iterative method for pricing 
European options. S. Salmi, J. Toivanen [8] proposed an iterative method for pricing American 
options under jump-diffusion models. 

U. Ascher, S. Ruuth and B. Wetton [9] introduced implicit-explicit methods for time-dependent 
partial differential equations including the IMEX-MCNAB scheme. J. Frank, W. Hundsdorfer and J. 
Verwer [10] analyzed the stability of implicit-explicit linear multistep methods. S. Salmi, J. Toivanen 
[11] discussed some IMEX-schemes for pricing options under jump-diffusion models. 

In this paper, we discuss IMEX-MCNAB scheme for pricing European options under Kou's jump-
diffusion model. We also put a convex combination of the zeroth-order term into the IMEX-
MCNAB scheme which was introduced in [11]. Then this scheme is studied with Fourier stability 
analysis and numerical experiments show the effectiveness of the proposed method. 

This paper is organized as follows. Section 1 consists of the introduction. In Section 2, Kou's 
models for European options under jump-diffusion processes are introduced. In section 3, we 
consider the IMEX-MCNAB scheme and study its stability through Fourier analysis. In section 4, 
numerical experiments show the effectiveness of the proposed method. Finally, this paper concludes 
with a conclusion section. 
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2. Kou's Models for European options 
Under the risk neutral measure, the underlying asset price x is governed by the following 

stochastic differential equation 

     ( ) ( )1 ,dx dt dW dq
x

µ λκ σ η= − + + −        (1) 

whereµ is the drift rate,σ is the volatility, dW is an increment of Gauss-Wiener process, 1η − is an 
impulse function producing a jump from x  to xη , [ ]1Eκ η= − , where [ ]E ⋅  denotes the expectation 
operator, and dq is the independent Poisson process with arrival rate λ . 

Now suppose ( , )v x t as the price of European option with underlying asset model of (1), then 
( , )v x t  satisfies the following PIDE 

   
( )

( ) ( ) ( )

2 2

0

1:
2

, ,

xx xv Lv x v r xv

r v v x g d

τ σ λκ

λ λ η τ η η
∞

= = + −

− + + ∫
          (2) 

whereτ is the time to maturity, [ )0,x∈ ∞ , [ )0, ,Tτ ∈ and T  is the maturity, r  is the risk-free interest 

rate, and ( )g η  is the probability density function of the jump amplitude η  satisfying ( )
0

1g dη η
∞

=∫ . 

In this paper, we consider Kou's model. 

In Kou's model, ( )g η is following log-double-exponential density 
( ) ( ) ( ) ( ) ( )1 1 2 2 ,g p exp H q exp Hη η ηη η η η η η= − + −  

where 1 21, , , 0, 1,p q p qη η> > + =  and ( )H η is the Heaviside function. It can be shown that, in this 
case 

[ ] 1 2

1 2

1 1
1 1

p qE η ηκ η
η η

= − = + −
− −

. 

In the case of an European put option, the initial and boundary conditions are 
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                       (3)  

To simplify notation, we split the PIDE (2) into parts as follows 
                     ,v Lv Dv Jv vτ λ λ= = + −              (4) 

where D is the differential operator and J is the integral operator defined by 

     
( )

( ) ( )

2 2

0

1: ,
2

: , .

xx xDv x v r xv rv

Jv v x g d

σ λκ
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 = ∫

             (5) 

3. Time stepping scheme and stability 

In the following, we include the extra parameter [0,1],c∈  for the convex combination of the 
zeroth-order term vλ between the differential part and integral part of (4) 

( )( ) ( )1 ,v Lv D c I v J cI vτ λ λ= = − − + −           (6) 

where I is the identical operator. 
We consider the stability properties of IMEX-MCNAB (implicit-explicit, modified Crank-

Nicolson, Adams-Bsahforth) time-stepping scheme of (3.1), which is 
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where ( ),m m τ= ∆v v I is the identity matrix, D and J  are matrices resulting from the spatial 
discretization of (5). This scheme was previously studied in a more general context in [9]. The extra 
parameter [0,1]c∈  for the convex combination of the zeroth-order term vλ leads to a family of 
methods for the IMEX-MCNAB scheme, with a particular method defined by the value .c  We adopt 
the finite difference method for the spatial discretization, see [8] for details on the discretization. 

A scheme is conditionally stable if it can be shown to be stable for τ∆  smaller than a given 
positive value. This is a more stringent requirement, and zero stability clearly follows from 
conditional stability. Unfortunately, the stability region of a scheme applied to a general problem is 
often difficult to prove rigorously. The usual approach is to apply the scheme to the linear test 
problem and analyze its stability. In the case of IMEX-schemes, the linear test equation reads 

                 ( ) ( ) ( ),B Cv v vτ υ τ υ τ′ = +                 (8) 

where Bυ  and Cυ are the complex eigenvalues of the explicit and implicit part of the scheme, 
respectively. 

By applying the so-called method of lines approach on the PIDE (2), we obtain a semi-discrete 
linear system of ODEs 

    ( ) ( ) ( ) ( ),τ τ τ λ τ′ = + −v Dv Jv v     0.τ ≥        (9) 
Stability results for the test equation (8) can be readily extended to linear systems with 

commuting matrices. The stability of IMEX-schemes in a commutative framework was discussed in 
[10], for example. However, above D and J do not commute in general. Nevertheless, in many 
practical applications it has been found that time step size restrictions based on the linear test 
equation are accurate even in the noncommutative case [12]. In the following, we will analyze the 
stability of the IMEX-MCNAB scheme (7) applied to the linear test equation (8). 

3.1 Stability of the test problem 
The stability of an IMEX linear multistep method, as in [10], is determined by the roots of the 

characteristic equation 

       
0 1 0

,
l l l

l i l i l i
i B i C i

i i i
a b cζ υ ζ υ ζ− − −

= = =

= +∑ ∑ ∑        (10) 

where ia , ib and ic are the coefficients that define the particular IMEX-scheme, as in relation (1.2) in 
[10], and where l  is the number of past steps involved in the scheme. The scheme is stable if all 
roots satisfy 1ζ ≤ , with strict  inequality for multiple roots. We adopt the formulation in [10] by 

dividing the equation by lζ and substituting 1z z= . Now the characteristic equation reads 
                    ( ) ( ) ( ),B CA z B z C zυ υ= +                           (11) 

where ,A B  and C  are given by 

0
( ) ,

l
i

i
i

A z a z
=

=∑  
1

( ) ,
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B z b z

=
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0
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i
C z c z

=

=∑                     (12) 

Stability holds if all roots satisfy 1z ≥ , again with strict inequality if z  is a multiple root. A 
necessary condition for this is 

( ) ( ) ( ) 0,B CA z B z C zυ υ− − ≠ for all 1z < .  (3.8) 
Apart from the possibility of multiple roots of modulus 1 this is also a sufficient condition. 
For the IMEX-MCNAB scheme (7), the polynomials in (11) are given by 
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   2 23 1 1( ) 1 , ( ) , ( ) (3 ) ,
2 2 16

A z z B z z z C z z= − = − = +                    (13) 

where Bυ  and Cυ  are the eigenvalues of 
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( )

,

(1 ) .
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c

τλ υ

τ λ υ

∆ −
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J I v = v

D I v = v
           (14) 

Let the eigenvalues υJ  and υD  be given by 
                     ,υ= JJv v    .υ= DDv v               (15) 

Then it holds 
( ), [ (1 )].B Cc cυ τλ υ υ τ υ λ= ∆ − = ∆ − −J D    (16) 

Substituting Bυ  and Cυ  in (16) into the characteristic polynomial gives 

          
2 23 (3 )1 ( ) [ (1 )] .

2 16
z z zz c cτλ υ τ υ λ− +

− = ∆ − + ∆ − −J D                  (17) 

Solving υJ  from the above equation yields 

 ( )2
2

2 1 1(1 ) 1 3 .
3 16

c z c z
z z

υυ
λ τ λ
  = + − + − − +  − ∆   

D
J

                  (18) 

The boundary of the stability region for υJ  is obtained by setting 
iz e θ= , substituting this into 

(18), and letting θ  vary in the range[0,2 ]π . Stability boundaries for the IMEX-MCNAB scheme are 

plotted in Figure 1 for 0υ =D . The green unit ball illustrates the area of possible eigenvalues 1υ ≤J . 
This suggests that the IMEX-MCNAB scheme becomes stable for all [0,1]c∈  once 1/ 2λ τ∆ < , 
while for 0c =  the stability condition becomes even more relaxed at 1λ τ∆ < . 

 
Figure 1.  Stablity boundaried for 1λ τ∆ = (left), 2 3λ τ∆ = (center) and 1 2λ τ∆ = (right) with 

0.υ =D  

We will now formally investigate the stability regions of the IMEX-MCNAB scheme. We will 
assume that J  does not have error due to the truncation of the domain. This leads to a non-negative 
right stochastic matrix J . An alternative path is to assume that J  has truncation error and is non-

negative. In this case 1υ <J  holds due to the Gershgorin circle theorem. Thus, roots of modulus 1 
do not exist, and the theoretical results below would be valid even if J  is not right stochastic. We 
assume that J  does not have truncation error because it is a more general framework. 

In [11], we have the following lemma. 
Lemma 1. If J  is strictly positive, then 1υ ≤J  and roots of modulus 1 are simple. 
Proposition 1. If J  is strictly positive, then for real 0υ ≤D  the IMEX-MCNAB scheme is 

conditionally stable for all 1 2λ τ∆ <  and [0,1]c∈ . 
Proof. We know that the characteristic equation is satisfied for 

 ( )2
2

2 1 1(1 ) 1 3 .
3 16

c z c z
z z

υυ
λ τ λ
  = + − + − − +  − ∆   

D
J

              (19) 
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From Lemma 1, it shows that 1υ ≤J . Assume that 1z <  and that equation (19) holds. In the 
following we will show that this will lead to a contradiction. Denote 

1 2k λ τ= ∆ > and ( )1 1,1 1 .z a bi a b= + − < < < <  
Multiplying equation (19) by z yields 

( )2

2 2

2 1(1 ) 1 3
3 16

12 1 (9 )
8

9 (3 )1 4 .
2 (3 )
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  ⋅ = + − + − − +  −   
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 

  − + + − − −   − +  

D
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D
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                     (20) 

Now we can show that ( ) 1Re zυ ⋅ ≥J , which means 1zυ ⋅ ≥J . 

2 2

1( ) 2 1 (9 )
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Then 

2 2

( ) 4(3 ) 42 2 0,
(3 ) 3

dRe z a
dk a b a
υ ⋅ −

= − ≥ − >
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Thus, it holds 
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Let 2 2
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, then we have 
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Denote
3 2( ) 3 8 18f a a a a= + − − , through analyzing the first and second derivative of it, we can 

conclude that the maximum value of ( )f a  in the interval ( )1,1−  is obtained at the two endpoints 
1a = ± , and ( 1) 11 0f − = − < , (1) 22 0f = − < . Thus ( )f a  is negative in the interval ( )1,1− , which 

leads 0M > , and the next inequalities hold 

2 2
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a aRe z ac c c
a b

υ − + ⋅ > + − + − −  − + 
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In the above expression, denote 
9 1 9
2 3 8

aN a
a

+
= − +

−  which is the coefficient of ,c  it holds 

                       
29( 1) 0.

8(3 )
aN

a
− −

= <
−

                 (26) 

So the expression is minimized by the choice 1c = , and the next inequality holds 

                   8( ) 4 .
3

Re z a
a

υ ⋅ > + −
−J                (27) 

So we have 
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28 1( ) 1 3 0.

3 3
aRe z a

a a
υ −

⋅ − > + − = >
− −J    (28) 

The above analysis shows that ( ) 1Re zυ ⋅ >J , and thus 1.zυ ⋅ >J This leads to 1,zυ >J and 

also

1 1
z

υ ≥ >J
, which is a contradiction with Lemma 1. Hence, there is no 1z <  such that (19) 

holds, which means that the necessary condition for stability (3.8) holds. This is also sufficient, since 
Lemma 1 guarantees that roots of modulus 1 are simple.  

Under Kou's models, J is strictly positive for any quadrature with positive weights. We can 
obtain the following corollary from Propositions 1. 

Corollary 1. If 0υ ≤D , then the IMEX-MCNAB scheme is conditionally stable under Kou's 
models for all 1 2λ τ∆ <  and [0,1]c∈ . 

3.2 Stability of the full problem 

In the analysis, we assumed that 0υ ≤D . A sufficient condition for the eigenvalue υD  being real 
and nonpositive is, for example, that D  is tridiagonal and M-matrix. Under 0r ≥ , the M-matrix 
property can be attained by adding artificial diffusion into the model, as was done in [13] for 
example. 

 
Figure 2.  Stablity boundaried for 1 8υ = −D  (left), 1υ = −D (center) and  4υ = −D (right) with 

1 2.λ τ∆ =  
The formal connection between the stability of the linear test problem and the system of ODEs (9) 

holds, for example, in the special case 0υ =D . Stability regions for 1 8,υ = −D 1,υ = −D and 
4υ = −D are illustrated in Figure 2 for the IMEX-MCNAB scheme. The stability region improves for 

any real 0.υ <D Thus, under these assumptions, the stability of the scheme only improves with 
negative .υD  This suggests that under suitable assumptions, the special case 0υ =D  can be 
considered as the worst case stability scenario. 

4. Numerical experiments 
In this section, we present numerical results computed with the IMEX-MCNAB scheme. We 

price European put options under Kou's models using the following model parameters 
0.15, 0.05, 0.25, 100,r T Kσ = = = =  

1 20.1, 3.0456, 3.0775, 0.3445.pλ α α= = = =  
These parameters are also used by d'Halluin, Forsyth and Vetzal in [6] and Toivanen in [13]. We 

use the reference prices described in [13] as follows 
TABLE I.  Reference price used for numerical experiments 

Model Value at 90    Value at 100    Value at 110 
Kou 9.430457        2.731259          0.552363 

A uniform space grid between [ ]0, X  is used with n  nodes and 400.X =  We continue the 
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iteration until 
1 810 .l lv v + −− <

 The root mean square errors (RMSE) were computed at spatial 

nodes { }90,100,110 .ix =  
( ) ( ) ( )2 2 2* * *

1 1 2 2 3 3 3,RMSE v v v v v v = − + − + −    where 
*
iv  is the 

reference price and iv  is the computed price at { }90,100,110 .ix =  The priori chosen convex 

combination parameters are { }0,0.5,1 .c =  

Table II, Table III and Table IV show the results when { }0,0.5,1c =  respectively. 
TABLE II.  Numerical results when c=0.  

n        m     Error at 90   Error at 100  Error at 110   RMSE 
200     80      4.611e-4       -3.140e-2      -5.176e-3    0.01837 
400    160     7.738e-4       -8.975e-3      -1.303e-3   0.005255 
800    320     5.475e-4       -2.843e-3      -3.138e-4   0.001681 

1600   640     3.157e-4       -1.013e-3      -7.130e-5  0.0006439 

TABLE III.  NUMERICAL RESULTS WHEN c=0.5. 

n        m     Error at 90   Error at 100  Error at 110   RMSE 
200     80      2.631e-3       -4.686e-2      -1.414e-2    0.02830 
400    160     1.794e-3       -1.661e-2      -5.830e-3    0.01021 
800    320     1.047e-3       -6.648e-3      -2.583e-3   0.004161 
1600   640     5.640e-4       -2.913e-3      -1.072e-3   0.001821 

TABLE IV.  NUMERICAL RESULTS WHEN C=1. 

n        m     Error at 90   Error at 100  Error at 110   RMSE 
200     80      4.877e-3       -6.245e-2      -2.311e-2    0.03854 
400    160     2.833e-3       -2.428e-2      -1.035e-2    0.01532 
800    320     1.552e-3       -1.046e-2      -4.853e-3   0.006717 
1600   640     8.134e-4       -4.815e-3      -2.343e-3   0.003127 

5. Conclusions 
We considered the accuracy and conditional stability of IMEX-MCNAB scheme applied to the 

PIDE (2) with varying convex combinations of the zeroth-order term vλ . This scheme was studied 
through Fourier stability analysis, and it is found that, it is conditionally stable under Kou's model for 
all 1 2λ τ∆ <  and [0,1]c∈ . The scheme had the best accuracy in our numerical experiments when 

0c = . Thus, we recommend the IMEX-MCNAB scheme with 0c =  for European options pricing 
under Kou's jump-diffusion models. 
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