
A Spectrum Analysis Algorithm Based on GPU

Kunyuan Xu, Yanhua Jin*, Fangyuan Zhao and Haoran Ma
School of Aeronautics & Astronautics, University Of Electronic Science and Technology Of China, Chengdu, 611731, China

*Corresponding author

Abstract—Considering the requirement of spectrum analysis,
the parallel spectrum analysis algorithm is designed for a
software radio platform built on the spectrum analyzer, where
CPU is the controller and GPU is the baseband processor. The
software platform is combined with the GPU processor, making it
possible that the data required massive calculation in the RF
collector is transferred to the GPU to process, which has the
ability of powerful parallel computing. The key part of this paper
is the parallel optimization of mixed-radix FFT algorithm and
STFT algorithm, in which the data memory and memory
allocation are also improved. Results show that the simulation via
CUDA programming is superior than CPU processing.

Keywords—GPU spectrum analysis; parallel computing; mixed
base FFT;STFT

I. INTRODUCTION

Spectrum analysis is one method that FFT is used to
convert the baseband IQ data from the time domain to the
frequency domain for correlation operations, requiring a more
powerful processor when the data needs real-time processing
with higher bandwidth demand.

In 1963, Cooley wrote the first FFT algorithm program.
The algorithm uses divide and conquer strategy to make DFT
computation from Oሺܰଶሻ to Oሺܰ logଶ ܰሻ , in which
computational efficiency improved significantly. In addition to
the Cultrueki algorithm [1], there are many efficient algorithms,
including split-base algorithm, radix-2 FFT algorithm, radix-4
FFT algorithm and hybrid algorithm [2,3].

About the parallel implementation of FFT algorithm, MIT
has developed the CPU-based FFT algorithm library FFTW,
which has good portability and adaptability. In 2003, Kenneth
Moreland and Edward Angel used the GPU's shader compiler
to transplant the FFT algorithm to the GPU platform [4]. In
2007, NVIDIA introduced the CUDA parallel development
environment and published the CUDA-based FFT library
function CUFFT. To a certain extent, its speed has increased
when compared with the same period of the CPU FFT [5].
However, it leaves a lot to be desired in the implementation of
small-power 2-power FFT. In order to solve this problem, this
paper discusses the implementation of the hybrid-based FFT on
the GPU. Since the global memory is accessed every time one-
dimensional FFT is performed, it can not take full advantage of
high storage bandwidth efficiency of GPU [6]. However, the
progressive strategy can be used to solve the matching problem
between computing power and storage bandwidth effectively
[7].

As for non-stationary signals, the STFT algorithm is mainly
studied in this paper, which is according to the theory that the
sections of windowed signals can be optimized in parallel

computation. It is obvious that GPU has fast speed than CPU
[8].

II. GPU SPECTRUM ANALYSIS FRAMEWORK AND

COMPUTING FLOW

The applications of spectrum analyzers can make the IQ
baseband signal converted from the time domain to the
frequency domain, and the use of GPU processing can speed up
this procedure. Common spectrum analysis system mainly
consists of the underlying hardware, intermediate driver and
upper software. As shown in Figure 1, in which the hardware is
responsible to original input signal for attenuation /
amplification, acquisition, analog / digital conversion, access to
time-domain data, and finally the signal is transmitted to the
host. The sampled data is transmitted from the host computer
to the GPU memory, and the result is transmitted to the binary
file after the spectrum analysis operation. These analyzed data
contain information such as spectral series and energy spectra.
The upper software is responsible for receiving, processing and
analyzing the input signal to get the test result. The main
content of this paper is the GPU spectrum analysis.

FIGURE I. GPU SPECTRUM ANALYSIS SYSTEM FRAMEWORK

There are five steps in the GPU spectrum analysis operation,
looping in the case of constant input from the source signal.
Usually, reading and writing global memory data is needed in
each step of GPU computing, hence the design of parallel
algorithms is introduced to reduce the global memory read and
write operation times. The entire operation flow is shown as
Figure 2.

The specific steps are as follows:

(1) The Host side receives and buffers data, and copies data
to the Device side memory through the PCI-E bus.

(2) The format of the data to be transmitted is changed, and
the character data passed in on the Device side is converted into
floating-point data.

International Conference on Computer Science, Electronics and Communication Engineering (CSECE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 80

5

(3) Spectrum analysis algorithm including hybrid-based
FFT algorithm and STFT algorithm is carried out on the GPU.

(4) The data is copied from the memory on the Device side
to the Host side, and the parallel optimized spectrum is
transmitted to the memory on the Host side.

(5) Spectrogram is output to the Host and displayed in the
PC.

Processed digital
baseband signal

Host: receiving and
caching data

Device:GPU spectrum
analysis

Spectrum
output

CUDA
executor

FIGURE II. COMPUTING FLOW CHART

III. MIXED-RADIX FFT PARALLEL ALGORITHM

OPTIMIZATION

Spectral analysis of stationary signals based on GPU
processor architecture, which is mainly based on the Cooley-
Tukey algorithm framework of FFT, focuses on the
optimization of mixed-radix FFT algorithms. When FFT
operation is performed on one-dimensional signals, it is found
that the computational efficiency is too low, and the optimized
FFT can greatly improve the computational efficiency [9].

Assume x(n) is a real sequence of 2N points, then its one-
dimensional DFT calculation is formed as:

Xሺkሻ ൌ DFTሾxሺnሻሿ ൌ ෍ ሺ݊ሻݔ ேܹ௡௞ேିଵ
௡ୀ଴

k ൌ 0,1,2,⋯ , N െ 1 (1)

where ேܹ௡௞ ൌ ݁ି௝గ೙ೖಿ (n = 0,1, 2, ..., N-1) represents the
rotation factor and N is the DFT calculated length. The data
length N is decomposed into the product of two factors: 	N ൌଵܰ ൈ ଶܰ, and then the DFT calculation based on the Cooley-
Tukey algorithm is obtained as follows: Xሺ݇ଵ, ݇ଶሻൌ ෍ ேܹమ௡మ௞మ ேܹ௡మ௞భேమିଵ

௡మୀ଴ ෍ ,ሺ݊ଵݔ ݊ଶሻ ேܹభ௡భ௞భ ൜0 ൑ ݇ଵ ൑ ଵܰ െ 10 ൑ ݇ଶ ൑ ଶܰ െ 1ൠேభିଵ
௡భୀ଴

 (2)

The Cooley-Tukey algorithm includes two index
transformations and two one-dimensional DFTs, which is
divided into the following five steps.

Step1: According to the column direction, N-point length
data is stored in a two-dimensional matrix, the size of which is ଵܰ ∗ ଶܰ.

Step2: FFT calculation of each column of data is calculated,
which means the ଵܰ-point one-dimensional FFT is calculated ଶܰ times (first-level transform)	.

Step3: Multiply the first-level transform result by the
twiddle factor ேܹ௡మ௞భ.

Step4: Do FFT calculation on each row of data, which
means the ଶܰ -point one-dimensional FFT is calculated ଵܰ
times (second-level transform).

Step5: Transpose the matrix into a matrix of ଶܰ ∗ ଵܰ, and
read the data in the direction of the column.

The above formula contains two dimensions of the FFT
calculation. In this paper, we use Cooley-Tukey FFT algorithm
to realize FFT based on mixed-matrix. The basic theory is to
convert long-sequence discrete Fourier transform to short-
sequence FFT. After multi-basis decomposition, matrix
transform is used to obtain the spectrum. GPU parallel
processing architecture can improve efficiency. The 2௠ FFT
can be implemented by medium -2, medium -4, medium -8,
medium -16 and other base combination. In reality, the higher
the cardinality is, the less the number of data rearrangement is,
and the greater the demand of register is. With the limited
resources of register, the higher the cardinality is, the less the
parallel threads is, but it also reduces the occupancy rate.
Above all, 2௠ can be preferentially decomposed into a
combination of a base group of -16, -8, -4, and -2 in sequence.

In this parallel algorithm, how to choose the size of ଵܰand ଶܰ should be modest, requiring that it can fully calculate the
value of the FFT only using the on-chip shared memory and
registers without revisiting the global memory to load onto the
GPU when it is read from the global memory. While ଵܰ or ଶܰ
is too large to be fully integrated into the on-chip memory for
computing, the five steps above need executing to decompose
each value until it is brought up to the required standard. The
flow chart based on mixed-radix FFT algorithm is shown as
Figure 3:

FIGURE III. FFT ALGORITHM FLOW CHART BASED ON HYBRID

Advances in Computer Science Research, volume 80

6

Taking N = 1024 as an example, firstly, 1024 can be
decomposed into 128 × 8 to make 128 rows of 8-point one-
dimensional FFT; Secondly, perform data transposition in
shared memory; Thirdly, considering that the 128-point FFT is
hard, it can be further broken down into 16 × 8. Usually there
are many kinds of N decompositions such as 512 which can be
also decomposed into 4 × 16 × 16 or 8 × 8 × 16. Different
decomposition leads to different efficiency, and the smaller the
base is, the greater the amount of computation is, so try to
avoid radical decomposition of -2 or -4. As the level of
decomposition increase, synchronous operation becomes more
complex, therefore, try chose a base as large as possible in the
case of meeting the requirements of shared storage. According
to the above principle, the optimal decomposition of N = 256 is
16 × 16 instead of 4 × 8 × 8, and the optimal decomposition of
N = 128 is 16 × 8 instead of 8 × 8 × 2.

In the CUDA programming model, parallel computing
increases the thread to improve computing performance, but
reduces the resource utilization and the computational
efficiency. Therefore, there is a trade-off between occupancy
and resource usage.

(1)Global memory optimization

The largest memory on the GPU is the global memory.
Only the global memory can be read and written by both the
host and the device, so it is necessary to optimize its access.
Global memory efficiency can be increased by consolidating
load accesses to data. Each warp can be global memory
accessed with 32 or 64 or an integer multiple of 128 bytes.
Real hardware access is based on half-warp, which is 16. In
Figure 4 below, the thread accesses consecutively aligned 32-
byte fields to satisfy the merge push condition. If not satisfied,
the system will convert the 1 merge transmission to 16
transmissions, and the difference of their speed is 16 times.

Half-warp

64B alignment section

12B alignment section

FIGURE IV. 32BIT MERGE ACCESS

According to the above access conditions we know that in
order to use the global memory efficiently, the data need
processing to be integer times of 32,64,128 bytes as much as
possible, and writing into global memory when the amount of
data to merge the length of the data.

(2) Shared memory optimization

Shared memory is high-speed memory in the GPU. If two
or more threads are accessing the same bank, bank conflict
occurs, as shown in Figure 5. This delay in access conflicts
grows linearly with the increase of number of threads accessing
the same address, which means there are n delays when there
are n bank-conflicts. But in shared memory, when all threads
in the same half-warp access read the same address, things
change again. Because there is a mechanism in its access
mechanism called broadcast, when the broadcast delivery
conditions are met, the hardware sends the data to all the

required threads at once rather than becoming a multiple serial
transfer, as shown in Figure 6.

Thread 0 Thread 1 Thread 2 … Thread 13 Thread 14 Thread 15

Data 0 Data 1 Data 2 … Data 13 Data 14 Data 15Bank

Half‐warp

FIGURE V. BANK CONFLICT SHARED MEMORY ACCESS EXAMPLE

Thread 0 Thread 1 Thread 2 … Thread 13 Thread 14 Thread 15

Data 0 Data 1 Data 2 … Data 13 Data 14 Data 15Bank

Half‐warp

FIGURE VI. SHARED MEMORY BROADCAST MODE EXAMPLE

(3) Parallel optimization of matrix transpose

Matrix transposition is to transform the position of the data
in the matrix, and finally did not change the data in the matrix.
During the conversion, the position of data is independent, so
that you can use different threads parallel computing.

FIGURE VII. ARRAY BLOCK TRANSPOSE

In Figure 7, the original 12 * 12 matrix is divided into a 4 *
4 matrix according to 3 * 3 blocks, so that the combined blocks
(1,0), (3,2) transpose corresponds to the block (0,1), (2,3) after
transpose. Using this method of merging and dividing, we can
map 3 * 3 blocks to concurrent data operations in different
blocks in the GPU, so as to take full advantage of the
parallelism of the GPU and speed up the operation of matrix
transposition. When the matrix size is larger, the acceleration
will be more obvious.

IV. STFT PARALLEL ALGORITHM OPTIMIZATION

The non-stationary signal spectrum analysis is mainly for
short-time Fourier transform algorithm-STFT algorithm
optimization, because of STFT small amount of computation,
real-time, and achievement based on FFT. Analyzing the
parallelism of STFT algorithm can be based on CUDA
algorithm library CUFFT, not only improving the speed of
operation, but also taking advantage of GPU parallelism to
improve the operating efficiency.

Advances in Computer Science Research, volume 80

7

Joint time-domain spectral analysis puts the traditional one-
dimensional signal into two-dimensional time-frequency plane
analysis in order to better reflect the variation of the signal
frequency with time so as to fully understand the signal time-
frequency characteristics and the energy accumulation at a
specific time. The basic idea is that based on the traditional
Fourier transform, the non-stationary signal is seen as a series
of short-term stationary signal superposition.

Based on the basic principle of STFT described above, it
can be known that STFT is a function of time moving to meet
the condition, and then do FFT segmentally, which can finally
analyze the changes of frequency in different time periods
more clearly. For segmented FFTs, each piece of data is FFT
operation independent of each other, therefore, can be
processed in parallel, based on GPU time-frequency analysis.

The following two ways are to analyze the parallelism of
STFT:

(1) The use of CUFFT to achieve serial STFT

Figure 8 is a N-point STFT flow chart, each time a single
point to do a separate FFT in time, each segment to do in turn.

Input data

t t t tt t

t t t tt t

FFT in turn

1t 2t 1nt 3t nt

FIGURE VIII. STFT SERIAL

(2) the use of CUFFT parallel STFT

Figure 9 is a flow chart of STFT parallel processing with N
points plus four time window functions. By time segmenting
and combining into a time-sequential matrix, FFTs are
performed on each row to reduce the number of stages one by
one.

Input data

Select this analysis data Follow up analysis data

FFT for each line

t t tt

1t
2t
3t

4t

1t 2t 4t3t
FIGURE IX. STFT PARALLEL

V. SIMULATION RESULTS

In this paper, the experimental hardware configuration:
Intel (R) core (i7-7700k) clocked at 4.2GHz CPU, memory
32G, NVIDIA GeForce GTX 1070 GPU.

Hard disk: (KINGSTONSUV400S37240G (240G))
(ST2000DM006-2DM164 (2.0TB))

Software Configuration: Windows 10 64-bit operating
system, VS2010 + CUDA7.5 programming environment.

(1) GPU-based parallel algorithm for mixed-radix FFT
implementation

FIGURE X. EFFECT COMPARISON CHART

It can be seen from Figure 10 that GPU-based algorithm
does not increase the speed with the small number of points,
and the CPU and GPU communication bandwidth is small,
resulting in data latency. Compared with the FFT speed on the
CPU, the performance improvement on 128x128, 256x256,
512x512 points of the mixed-based FFT can be clearly seen on
the GPU FFT algorithm, but the speed of mixed-radix FFT
algorithm compared to the CUFFT library is not obvious at
512x512 points which can reach 1.2 times.

(2) parallel implementation of STFT algorithm

FIGURE XI. CPU-STFT, SERIAL STFT, PARALLEL STFT COMPUTING

SPEED COMPARISON CHART

As can be seen from Figure 11, since GPU parallel
computing for the point of less data speed calculation of the
original operation has not been reflected, if the STFT in the
GPU is serial computing, the time will be more when Serial
STFT is carried out in the CPU, which did not reflect the
advantages of speed.

Advances in Computer Science Research, volume 80

8

FIGURE XII. CPU-STFT, PARALLEL STFT COMPUTING SPEED

COMPARISON CHART

It can be seen in Figure 12 CPU-STFT and parallel STFT
images, with the use of parallel computing, the speed
advantage quickly reflected in the data points for the 2048x128
when the speed up to 20.6 times, which is an obvious speed
advantage.

VI. CONCLUSION

In this paper, according to the demand of spectrum analysis
algorithm for spectrum analysis instrument, a parallel
processing algorithm suitable for spectrum analysis system is
designed based on GPU. The algorithm mainly optimizes the
parallel algorithm of the mixed-radix FFT algorithm and the
short-time Fourier transform algorithm. Experimentally
collected results show that the speedup of the mixed-radix FFT
algorithm at 512X512 compared with the FFTW library is 14.5
and the speedup of the parallel STFT algorithm at 2048X128
compared with Serial algorithm is 20.6, illustrating that both
the mixed-radix FFT algorithm and the parallel STFT
algorithm are advantageous.

REFERENCES
[1] ZHANG Quan,BAO Hua, RAO Hua, Realization and Application of

Two-dimensional Fast Fourier Transform Algorithm Based on GPU[J].
Opto-Electronic Engineering, 2016, 43(02): 69-75.

[2] SUN Yingxia,LI Yali,NING Yupeng. The principle of spectrum analysis
and using skills of spectrum analyzer[J]. Foreign Electronic
Measurement Technology, 2014,33(7):76-80.

[3] LUO Dongjia,ZHANG Libiao. The research based on FFT spectrum
analysis[J]. Practical Electronics, 2015(5):34.)

[4] Moreland K, Angel E. The FFT on a GPU[C]// Proceedings of the ACM
Siggraph/Eurographics Conference on Graphics Hardware, San Diego,
California, July 26-27, 2003: 112-119.

[5] ZHAO Lili, ZHANG Shengbing, ZHANG Meng, et al.High performance
FFT computation based on CUDA[J]. Application Research of
Computers, 2011, 28(4): 1556-1559.

[6] HE Tao,ZHU Daiyin.Design and implementation of large-point 1D FFT
on GPU[J].Computer Engineering &Science,2013,35(11):34-41

[7] Naga K Govindaraju, Brandon Lloyd, Yuri Dotsenko, et al. High
performance discrete Fourier transforms on graphics processors [C]//
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
Austin, Texas, November 15-21,2008: 1-12.

[8] PanerasDE, MainR, NawabSH. STFT computation using pruned FFT
algorithms[J]. IEEEtrans. On Signal Processing,1994,42(1):61- 63.

[9] YANG Lijuan, ZHANG Baihua, YE Xuzhen. Fast Fourier transform and
its applications[J].Opto-Electronic Engineering, 2004, 31(Suppl): 21-23.

[10] PING Zhaoqi,LI Yunhuan,ZHANG Liwei. The research of mixed-radix
FFT programming algorithm based on two and third[J]. Science
&Technology Association Forum, 2013(12):149-150.

Advances in Computer Science Research, volume 80

9

