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Abstract—Based on the existing time-of-use electricity price 

pricing scheme of Beijing, a real-time pricing scheme for electric 
vehicle charging is proposed in this paper to perform load 
shifting by adjusting the hourly-changed charging price. A two-
stage model of determining electric vehicle charging price is 
proposed. In the first stage, the charging load of the next day is 
predicted according to statistical probabilities. Together with the 
prediction of the base load pattern, the charging price of each 
hour is then optimized accordingly as a reference for the next day. 
In the second stage, the exact charging price is set ahead of each 
hour based on the power demand in previous hours and the 
desired load curve. The model is first built and then solved using 
the CPLEX software and MATLAB programming. The 
simulation result shows that the peak load as well as the peak-
valley load difference is reduced. The charging cost of customers 
is also expected to be diminished. 

Keywords—electric vehicle; real-time pricing; price prediction; 
charging schedule 

I. INTRODUCTION 

Climate change has raised worldwide concern over the 
greenhouse gas emitted by internal combustion engines. 
Electric vehicles can help improve air quality and reduce 
pollution. Up till now, many countries have announced 
regulations to promote electric vehicles and restrict the use of 
traditional vehicles. For example, France and Britain will ban 
the sale of cars burning gasoline from 2040. Car manufacturers 
like Volvo have announced plans to produce pure electric 
vehicles or vehicles using clean energy in the future. It is 
evident that electric vehicles will be purchased and used by 
more and more household in the future. 

However, as pointed out by many literatures, uncoordinated 
charging of electric vehicles will bring serious problems to the 
power grid [1-3]. For instance, the charging demand of electric 
vehicles will coincide with the existing peak of load curve, 
creating a higher power consumption. The problem has two 
aspects. Firstly, the peak of base load and the popular hours of 
uncoordinated charging load appear at nearly the same time. 
Secondly, under the uncoordinated charging scheme, electric 
vehicle users tend to charge their cars simultaneously at certain 
hours after they have parked their vehicles. In order to alleviate 
the problem, the charging of electric vehicles should be 
coordinated. 

Under the uncoordinated charging scenario, the increase of 
charging load will bring more uncertainties to the operation of 
power grid. In order to shift the charging load, two methods 
can be adopted: direct load control or price signal. According to 
economic principles, introducing lower charging prices in the 
valley period can encourage more power consumption and 
reduce peak-valley difference. Commonly used pricing 
schemes include time-of-use (TOU) tariff, real-time pricing 
(RTP) and critical period pricing (CPP). Among them, RTP is 
considered to be the most effective scheme [4]. 

The objective functions selected by existing literatures 
include minimization of peak-load difference [5-6], 
minimization of charging cost [4], maximization of power grid 
companies, maximization of users’ satisfaction, etc. Some 
authors combine several of the above-mentioned objectives to 
create a multi-objective optimization model. 

RTP is a typical method of demand side response. Many 
scholars have researched on this topic and have come up with 
several pricing models. The authors in [7] propose a RTP 
scheme using the power output of PV sources as input, together 
with the users’ response to changes in price, leading the users 
to transfer their power demand and use the consume the output 
of photovoltaic energy as much as possible. In [8], the authors 
study the consumers’ price elasticity under the RTP scheme, 
including self- and cross-elasticity, to realize the users’ reaction 
to varying prices. Reference [9] come up with an iterable 
optimization model of determining RTP. By using the least 
square method, the relationship between users’ demand and 
price of electricity is fitted. According to the price elasticity of 
demand, the load response model is constructed and solved to 
maximize the users’ interest. A robust optimization model 
aiming at decreasing the total operational cost of charging 
service supplier is set up in [10]. Since the uncertainty of 
electricity price is considered, as long as the predicted price 
deviates from the prediction within a certain extent, the 
charging schedule can still be optimized. 

The method raised in this paper differs from [11] in that the 
fixed reference charging curve is updated every hour, so that a 
more precise target curve is generated. A rolling optimization 
model over the next 24 hours is developed in [12] by 
calculating the best charging scheme every 30 minutes based 
on the latest charging load information. Based on this method, 
this paper takes the latest prediction of load into consideration. 
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Moreover, the minimization of peak-valley is selected as the 
objective, along with the reduction of charging cost. 

The coordinated charging strategy raised in this paper 
features: (1) a two-stage charging scheme which optimizes the 
charging behavior with the next 24 hours, aiming at minimizing 
the peak-load difference of the daily load curve; (2) generation 
of the electricity price of charging and prediction of EV 
charging load of the next day in the first stage, considering the 
users’ demand and safety of the grid; (3) determination of the 
final charging price based on the latest prediction of charging 
load and the deviations generated in previous time slots. 

The rest of the paper is formulated as follows: the two-stage 
RTP scheme is constructed in Section II; Section III illustrates 
the simulation results; the analysis and conclusion are 
presented in Sections IV and V respectively. 

II. MODEL CONSTRUCTION 

A. Stage One 

Although many load prediction methods have been 
developed, still the real load will deviate from the predicted 
value. The factors affecting electric vehicle drivers’ behavior 
include bad weather condition, traffic control, etc. Since the 
daily travelling mileage is not affected by the start time of 
charging, the charging demand is the same before and after 
optimization. Meanwhile, the price of electricity within a time 
slot should exceed the cost of energy generation and 
transmission. In order to protect the interest of electric vehicle 
drivers, an upper boundary should be set. 

Because the charging process can only start before the end 
of travelling, the optimized start time of charging can only be 
postponed. In order to alleviate the impact on vehicle users, the 
delay should be made as short as possible. 

Price elasticity is effective in terms of analyzing customers’ 
response to changes in price [6]. The demand of electricity 
changes with the variation of price, as described by 

0 0/ /D D      ,                            (1) 

where ΔD and Δπ represent the change in load and price, π0 and 
D0 are the initial values of load and price, and ε is the price 
elasticity matrix. The price elasticity matrix is consisted of two 
parts: self-elasticity and cross-elasticity. The self-elasticity is 
situated at the diagonal of the matrix, while off-diagonal 
elements are cross-elasticities. Because the daily charging 
demand must be satisfied, the shift of charging load caused by 
self-elasticity is not considered. The change of load at time slot 
ti caused by change of price at time slot tj is denoted by εij. 
This paper adopts the electricity price elasticity proposed by 
[13]. As the RTP changes every hour, the size of the price 
elasticity matrix is 24×24. The total change of load in hour i 
caused by changes of price in all the other hours is 
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where Δπj=πj-πj0; πj and πj0 represent the proposed real-time 
price and the original TOU price respectively. The changed 
demand of charging power at hour i becomes 

0( ) ( ) ( )i i iD t D t D t   .                         (3) 

The optimization model is constructed as follows: 
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Equation (5) means that the total charging power demand is 
not changed before and after optimization. Pmax(ti) in (6) 
denotes the maximum charging power restricted by the ratings 
of lines and transformers. Eq.(7) represents the mean price of 
electricity before and after the optimization is constant. (8) 
means that the total cost after the optimization should be lower 
than before. 

B. Stage Two 

By solving the optimization model in stage one, the 
predicted charging power is obtained and used as the reference 
of the second stage. The objective of the second stage is to 
make the actual charging curve as close to the day-ahead 
predicted value as possible. The reference curve generated in 
stage one is idealized in that charging load in several hours are 
set to be zero. In reality, drivers will charge their vehicles in 
day time due to urgent charging need. The model assumes that 
the total charging power within a day in the studied region is 
nearly constant, which is evident that drivers tend to charge 
their batteries full at the end of the day. Therefore, the total 
charging demand of the remaining hours of a day can be 
predicted by the existing charging data of each of the past time 
slots. When the latest prediction deviates from the day-ahead 
reference value, actions should be taken to reduce the 
difference. The self-elasticity of electricity is utilized to alter 
the electricity price and charge the charging demand. 

The reference is updated every hour to maintain its 
precision. The time step of one hour is selected to 
accommodate the hourly changed RTP. When updating the 
prediction, the actual charging load and other load are added 
into the model to generate a new reference curve. When the 
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above-mentioned data are unavailable, the previous obtained 
prediction is used. 

The revision of the reference load curve is as follows: 

Firstly, the accumulated deviance of the actual curve and 
the day-ahead predicted values are calculated and evenly 
distributed to all the remaining hours of that day. Namely, for 
the accumulated charging demand not served, certain amount 
of predicted will be added to the prediction curve to be the new 
reference curve of future hours. As for the exceedingly used 
charging demand, some load will be diminished from the old 
curve. Since even distributions is adopted, even the latest data 
cannot be obtained, the daily charging reference can still be 
kept until the end of the day. 

Secondly, the base load curve may deviate from predicted. 
However, methods with high precision has been developed and 
can be used to accurately predict the total load of the next few 
hours. The prediction method of the base load curve exceeds 
the scope of this paper. It is assumed that the base load demand 
of the next few hours can be predicted with high accuracy. This 
paper focuses on the adjustment of reference charging curve 
according to changes of base load. 

The reference charging load is updated using the following 
equation: 

1 1

0 01 1
( ) ( ) [ ( ) ( )] / (25 )

h h

p p p i a ii i
D h D h D t D t h

 

 
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where Dp0(ti) denotes the original reference charging load for 
the ith hour, and Dp0(ti) is the actual charging power of the ith  
hour. 

In order to calculate the change of charging price, the 
shifted value of charging load should be obtained. The 
available charging power that can be supplied of each hour 
consists of two parts. One is brought by the deviation of 
predicted and actual values of the base load. The other is 
determined by the accumulated deviation of the actual and 
predicted charging load. The charging load of each hour is 
obtained by  

( ) ( ) ( )p pD h D h L h     .                    (10) 

Considering the reduction of load during peak hours, when 
the actual charging power is less than predicted, the abundant 
power will not be added to the available charging power. 
According to the load consumption pattern, 17.00 to 21.00 are 
selected as peak hours. The effect on the available charging 
power is given by 

0 0

0
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( ) ( ) [17,21]

p p p p
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where Lp(ti) denotes the latest prediction of base load in the ith 
hour, and Lp0(ti) is the original prediction of base load in the ith 
hour used in stage one. 

The change of charging price can be calculated using  

0 0( ) ( ) ( )/[ ( ) ( )]h h D h h D h      ,       (12) 

where ε(h) represents the self-elasticity of electricity in the hour 
of h. 

III. SIMULATION RESULTS 

A. Uncoordinated Charging 

Because fast charging is usually used when in urgent 
scenarios, its demand is not affected by price. In order to study 
the optimal RTP, this paper focuses on the normal charging 
behavior of electric vehicles, which is commonly used by 
consumer vehicles. Since the power is relatively small, its 
demand is sensitive to changes in price. 

According to the national household travel survey 
conducted by the US Department of Transportation, although 
the daily travel behavior of a single vehicle is hard to predict, 
the travelling of a flock of vehicles has some regular patterns. 
It is found that the ending time of the last journey of a day 
coincides with normal distribution [14], namely 

2( ) ( , )return i T TT V N   .                            (13) 

Meanwhile, the daily travelling mileage can be 
approximated by log-normal distribution, namely 

2( ) ( , )i d ddistance V lognormal   .              (14) 

Moreover, this paper further assumes that the normal 
charging power is evenly distributed between the lower and 
higher boundary 

min max( ) [ , ]vehicle iD V U P P ,                     (15) 

where Pmin and Pmax represent the minimum and maximum 
charging power. 

Assume that the total number of electric vehicles in a 
certain region is 50,000. The daily travelling distance 
distribution has a mean value of 20km and a variance of 8.8km. 
The start time of charging follows the normal distribution 
whose mean value equals 17.6h and variance equal 3.4h. The 
lower and upper boundaries of normal charging power are 2kW 
and 5 kW respectively.  

The typical base load data of an area is shown in Table I. 
The total load curve can be obtained by combining the base 
load and charging load. According to equations (13)-(15), the 
daily charging load can be obtained using Monte-Carlo 
Simulation method. The result is shown in Figure I. 
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TABLE I.  BASE LOAD OF EACH HOUR 

Hour Load/MW Hour Load/MW 

1 511 13 682.5 

2 532.5 14 692.5 

3 520 15 688 

4 491 16 686 

5 543.5 17 729 

6 566 18 735 

7 596 19 778 

8 643.5 20 775 

9 717.5 21 729 

10 734 22 681 

11 752.5 23 581.5 

12 670 24 553.5 

 

 
FIGURE I.  BASE LOAD AND CHARGING LOAD.   

B. Coordinated Charging 

After implementing the optimization model proposed in 
stage one, the resulting load curve can be obtained. The new 
total load curve is illustrated by the yellow line in Figure I. The 
corresponding RTP of each hour is presented in Figure II. 

 

FIGURE II.  PRICE OF DIFFERENT STAGES 

 

IV. ANALYSIS 

As can be seen clearly from the red line in Figure I, because 
the peak charging demand of electric vehicles appears at the 
same time with the maximum of load demand, the peak 
increases from 778MW to 830.9MW, rising by 6.8%. 

After optimization, a large amount of charging power is 
shifted to the time period when base load is low and electricity 
is cheap. The minimum total power usage rises to 610.22MW. 
Meanwhile, the ideal charging demand during peak hours is 
decreased to zero, avoiding the increase of maximum load 
demand. In order to encourage drivers to perform load-
shedding and valley-filling, the charging price is modified 
accordingly. Since the base load during evening are varied 
between hours, the optimized prices of electricity also differ 
from each other to flatten the total load curve and avoid a new 
peak load in the evening. As is restricted by the time order, the 
start time of charging can only be postponed. Consequently, the 
charging load are shifted to time slots when base load is low, 
namely midnight and early morning. The maximum decrease of 
charging price is 68% and the price drops to 0.3837 yuan/kWh, 
which creates enough stimulation for customers to delay their 
charging behavior. In order to balance the price, the price of 
electricity of charging increases in day time. The maximum 
price appears at 19.00 when the price increases from 1.8044 
yuan/kWh to 2.0364 yuan/kWh. The peak-valley difference 
drops from 405.9MW to 309.0MW, fulfilling the objective of 
load-flattening. 

Under the uncoordinated scenario, the total cost of charging 
is 960,518.5 yuan. After stage one, the cost becomes 331694.6 
yuan, which results from the large amount of load shifted from 
peak hours to valley hours. Because of the drop of charging 
cost, customers of electric vehicles gain more benefit. At the 
same time, since the amount of energy purchased from power 
grid during peak hours are reduced, the cost of charging service 
providers also decreases. However, their profit is influenced by 
the price users pay for charging. Under the pricing regulations, 
these service providers can gently increase charging prices of 
several hours to keep their balance. As for grid companies, with 
the drop of peak load and decrease in peak-valley difference, 
the reliability of service is boosted, along with an increase in 
the utilization rate of generators. As the load changed in stage 
two, the economic performance cannot be evaluated. However, 
the second stage takes the latest load prediction into account, 
creating a more accurate reflection of the actual load on the 
charging price. 

V. CONCLUSIONS 

The results show that the proposed real-time pricing 
mechanism has a positive influence on electric vehicle users 
and power grid. Charging service providers can also keep their 
financial balancing by setting a higher price during peak hours. 
Using price signals to control the charging demand is a simple, 
flexible and effective method. It has a potential of 
implementation in the future. The two-stage pricing model 
takes advantage of both the day-advance and hour-advance 
mechanisms, announcing the relatively accurate price ahead of 
time and making small variations according to the precise 
predictions. 
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