
Literature Survey: Analysis on Semantic Web
Information Retrieval Methodologies

1K.Ezhilarasi, 2G.Maria Kalavathy

1Research Scholar, Anna University, India
2Professor, St.Joseph’s College of Engineering, India

k.ezhilarasi@yahoo.com, maria_kalavathy@yahoo.co.in

Abstract:The Semantic web is the extension of an existing

web that defines a standard by which, information is given

in well-defined meaning and enables the machines to

understand information. Many kinds of research are going

in semantic web space. Researchers follow different

approaches to retrieve data from the semantic web. This

paper is to investigate the existing situation of the Semantic

Web with the focus on effective information retrieval.

Based on the architecture of semantic search engine, list of

parameters (like ranking algorithm, reasoning mechanism)

is framed to carry out a systematic analysis of different

techniques proposed by the researchers. This survey

identifies around 20 unique models that retrieve the data

from the semantic web and information systems. Summary

of the selected semantic search models is specified and

compared them by means of “classification parameters”

defined. This comparison identifies common insight,

unique features and also open issues. This study can be

used as a guide for future application development and

research.

Keywords: Semantic search engine, Semantic Information

retrieval, Ontology, semantic search

I. INTRODUCTION
The Web has become an object of our daily life and

the amount of information in the web is ever growing.
Besides plaintexts, especially multimedia information
such as graphics, audio or video has become a
predominant part of the web's information traffic. But,
how can we find our required information from this
huge information space? Nowadays, there are many web
search engines for retrieving information from the
Internet. These traditional search engines retrieve and
display the information based on the occurrence of
words in a document, geographical location etc, instead
of understanding the content by exploiting semantics.
For example, consider the user wants to find the name of
all Indian researchers who have written documents on
the semantic web during the last year. This kind of
search is not feasible in traditional search engines, but
the Semantic web has the ability to execute the search
successfully since it associates formal meaning with the
content.

The focus of semantic web is to make the web as
machine-understandable by declaring annotations,
where automated agents will be able to understand the
content on the web, establish the relationship between
them and take logical decisions to accomplish the
complex task with minimum human interaction.
Ontology is generally defined as formal vocabulary and
is considered as one of the main pillars of the semantic
web. This is used to define the world by declaring the
concepts and their relationships in an unambiguous way.
The Semantic Web search engines aim is to fetch the
reliable, precise, relevant information what actually user
needs without taking much time to traverse the
irrelevant pages what traditional search engine does.
1.1 Search Process:

Till now various semantic search approaches have been
published. Their application area and their realization
are varied, though they have common set of ideas. So
the search process included a manual keyword search
on IEEE, ACM, Scopus, and Google Scholar. In the
first stage we focused on the following keywords and
keyword combinations: Semantic web; “{Information
retrieval, Search Engine, intelligent information,
search} and {prototype, model, methodology}.

For data providers, we disregarded all
publications released prior to 2000. General papers
(e.g. original publications on key topics) were not
filtered by date. These initial searches yielded semantic
search papers. Every publication was perused and
summarized. Lastly, we extracted a sample set of
relevant references from papers we identified as key
publications.
We categorize the papers in four approaches based on
functionality. Semantic Search approaches [13][25][17]
can use any of the following approaches:
First Approach (Contextual Search): A contextual
Approach is to disambiguate and to make queries to
provide single meaning.[1][27][15]
Second Approach (Reasoning Search): The focus is on
reasoning. It finds new information from the given
facts.[7][10][22][23]
Third Approach (User Query Processing):
Understanding of User query language. This approach’s

93Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

International Conference for Phoenixes on Emerging Current Trends in Engineering and Management (PECTEAM 2018)
Advances in Engineering Research (AER), volume 142

effort is the goal of identifying the aim of
people.[2][4][5][11]
Fourth approach (Ontology based search): The
representation of knowledge uses ontology. The system
uses the typed query by using ontology so that the
search can be focused. [12][23][29][30]
Semantic search engines can mix more than one
approach to fulfill different functions. There is room for
a variety of search engine which means it does not fit
into any type.
The filtered papers [16] are grouped into two categories:
1. Research papers that perform a search on the web.
2. Research papers that perform a search on the

specific domain.
After studying the research papers, around 20 unique
model/prototype are filtered. These prototypes
functionalities are summarized and compared based on
the classification parameters; this survey addresses the
common perception, uniqueness and also open issues.

The rest of this paper is presented as follows. In
section II, classification parameters framed by us to
analyze the semantic search engine approaches. Section
III represents overview of selected approaches with
open issues. Section IV constitutes comparison of all
prototype/systems based on the classification
parameters. Section V comprises the scope for future
research directions and finally concluded with
conclusion.

II. CLASSIFICATION PARAMETERS

The architecture of conceptual-semantic search
engine has components like the crawler, parser,
ontology database, knowledge repository, inference
engine, ranking algorithm and user interface. By
considering this in mind the following parameters [14]
are formulated to analyze the semantic search
approaches.
1. Focus:

In this criterion, Search engines may works on
information retrieval from the (Semantic) web or special
purpose information systems.
2. Transparency

Regarding the user interface with semantic system
features, Transparency types are as follows:
 Transparent: The semantic functions of the system

are invisible to the user; the system appears to be an
‘ordinary’ search engine. Transparent systems have
no means to request additional information from the
user.

 Interactive: Interactive systems may ask the user for
clarification or suggest changes to the query.

 Hybrid: Hybrid systems merge both interactive and
transparent behavior. Normally, they act as
transparent systems. If systems require user
interactions means, it functions like interactive
systems.

3. User Context:

The usefulness of retrieved documents always links
to the user context. Many semantic search engines apply
the user context to fetch the user’s needed information.
 Dynamic interaction: User context is extracted from

user interaction dynamically. Based on the user’s
query and query-refinement history the system
guesses about desired results. .

 Predefined Question Category: In this approach,
queries are categorized in so-called question-

categories that specify the user’s information need.
The system provides a fixed number of question-
categories that are exploited during query
evaluation.

4. System Design

Search engines can be designed in three possible ways
they are:
 Stand-alone search engine: A stand-alone search

engine peforms all functions by using single
machine and it consists of components like the
crawler, indexer and query engine etc..

 Meta-search engine: A meta-search engine does not
have indexer,crawler and database. It distributes
queries to other subordinate search-engines and
combines the results, thereby provide the search
result to the user.

 Distributed Search engine: Distributed search
engine has other machines to carry out process like
crawler, reasoner. It distributes all work to other
machines in order to improve the scalability and
performance.

5. Query Refinement:

The semantic modification of user queries is a well-
known technique for information retrieval. In the area of
semantic search, it often exploits information from
ontologies. It plays a central role in many semantic
search engines. Different techniques have been
developed to increase both, recall and precision of a
query. The increase of precision is often called query

disambiguation.
The query transformation falls into three categories:
Manually: The simplest way to modify a query leaves
the modification to the user. When the user enters a
query, the system returns not only documents but also an
appropriate part of ontology. The user navigates the
ontology and reformulates his query, i.e., adds or
removes query terms.
Query rewriting: Query rewriting is driven by the idea
that a query can be optimized by the system. Three
different ways, augmentation, trimming and term
substitution are observed.
In the case of augmentation, the query is enhanced with
terms that are derived from the ontological context of
the original query terms, e.g., the query for ‘Berners
Lee’ could be enhanced with ‘Semantic web’.

94

Advances in Engineering Research (AER), volume 142

Depending on the ontology structure (see next
subsection) different semantics can be exploited.
The trimming of a query removes query-terms and has
the opposite effect of augmentation.
Augmentation and trimming exploit that a query
consisting of a Conjunction (AND) of terms becomes
more specific with each additional term, where a query
composed of a Disjunction (OR) becomes more general.
In other words, related to the user’s information need,
long conjunctive queries yield high precision, where
long disjunctive queries lead to the high recall.
Substitution is the process of search terms are replaced
with ontologically related terms. In general, terms are
substituted with synonyms, hypernyms or hyponyms
from the ontology to increase recall or precision,
respectively. Substitution may yield a result-set that only
partially overlaps the original result set.
Graph-based: The third technique to optimize user
queries requires tight coupling between the document
base and the ontology. It perceives both, ontological
concepts and documents as the nodes of a graph. Query
terms are used to find relevant nodes in the graph. From
these nodes, an algorithm traverses the graph to
determine semantically related documents.
6. Ontology structure

Ontology-based semantic search engines rely on
certain ontology structures. Ontologies are usually built
from concepts, properties, constraints and possibly
axioms. We observe that semantic search exploits
properties only and distinguish the following cases:
 Anonymous properties: In the case of anonymous

properties, the system disregards the name and the
semantics of the property. The interrelation between
two concepts indicates that they share the same
context only.

 Standard properties: The properties are
synonym_of, hypernym_of, meronym_of,
instance_of and negation_of. The homonym_of
property does not have to be modeled explicitly
since it is equivalent to term equality. The usage of
standard properties enhances semantic search
capabilities. However, it also introduces
dependencies on ontological structures.

 Domain-specific properties: Besides standard
properties, a system can exploit domain-specific
properties, as e.g., ‘image type’ in a image retrieval
system.
Ontology structure is an important criterion since it
characterizes the flexibility of the search engines
concerning the reuse of ontologies.

7. Crawler

A crawler is a program that visits Web sites and
reads their pages and other information in order to create
entries for indexing. The major search engines on the
Web have such a program, which is also known as a
"spider" or a "bot." Crawlers are programmed to visit

sites that have been suggested by their proprietor as new
or updated. Entire sites or specific pages can be
selectively visited and indexed.
8. Ranking Algorithm

Search Engines use ranking algorithms to weigh
different elements to determine which webpage is most
appropriate to a search query. This criterion explains
what type of ranking algorithm is used to arrange the
result based on relevance.
9. Reasoning Mechanism

Reasoning mechanism allow deriving new
information from existing concepts and roles that are not
explored in the initial ontology. When solving a
problem, one must understand the question, gather all
significant facts, analyze the problem i.e. compare with
previous problems (note similarities and differences),
perhaps use pictures or formulas to solve the problem.
Main types of reasoning mechanism are:
Deductive Reasoning – A type of logic in which one
goes from a general statement to a specific instance.
If the conclusion is not guaranteed (at least one instance
in which the conclusion does not follow), the argument
is said to be invalid.
Inductive Reasoning involves going from a series of
specific cases to a general statement. The conclusion in
an inductive argument is never guaranteed.
10. Technologies used:

The list of possible technologies may be used to
develop the prototype of search engine are:
Crawler: Heritrix, MultiCrawler, BioCrawler,
Application: Apache Jena Fuseki
Semantic web Languages: RDFS, Quadruples, OWL,
DAML+OIL
Database : Mysql, YARS2, db4OWL, Jena
TDB,Jena SDB, Sesame,OWLLIM
Query Language: SPARQL ,SQL, RQL
Ranking and Reasoning: Apache Lucene,
Protégé+HerMIT
Apart from the above, the researcher might develop their
own application for doing the process.
11. Result presentation

How the results are presented is given in this
category. Semantic search may return concept, ontology,
snippets or document etc. these can be represented as
text, URI with additional information like Label,
comment and type etc.
12. Open issues

For each approach, the problems which has not yet
been solved and scope for future enhancement or
research are identified and specified. Issues might be
related to functional (like ranking algorithms, reasoning
mechanism used) or non functional (like performance,
scalable and interoperable)

95

Advances in Engineering Research (AER), volume 142

III. SUMMARY OF UNIQUE APPROACHES
The selected research prototype’s design and its

functionality are elucidated in this section. Semantic
search engines are developed for the purpose of
retrieving audios [9] and videos [27] also.
3.1 SHOE - Simple HTML Ontology Extension:

The architecture of SHOE [1] has following
components:
Annotation:

After selecting proper ontology and using that
ontology vocabulary add markup to the web pages is
called as the annotation. The knowledge annotator tool
is used to add SHOE knowledge to web pages. This tool
has the interface to displays concepts, instances,
relations and claims. The user can do editing operations
on these objects.
Crawler:

Expose, a web crawler is used to search web
pages with SHOE markup and store it in the knowledge
repository. This crawler is traversed like a graph, where
nodes are web pages and arcs are the hyperlink from
those web pages. The Cost function is used for each
URL where it should be placed in Queue. If unknown
ontology is coming during traversal, it loads that
ontology.
Knowledge Base:

Parka KB is used to store category and relation
claims, as well as any new ontology information in the
knowledge base (KB). Parka has the capability to
answer queries on KBs with millions of assertions in
seconds and provides better performance in parallel
machines.
User Interface:

Parka Interface Queries: users have to draw a
graph in which nodes represented constant or variable
instances and arcs represented relations. To provide an
answer to the query, subgraph matching on the user’s
graph is performed. Drawing the queries by the users is
difficult and time-consuming also.
TSE Path analyzer: The user is allowed to sketch the
feasible pathways of food product contamination. The
user can specify the queries by selecting a few values
from hierarchical lists. The results are shown in the form
of a graph and detail of any node can be fetched by
clicking on that node in the graph.
Issues:

Need of a general-purpose query tool that needs only
minimum knowledge to use.

3.2 Inquirus 2:

It functions like a meta-search engine [2] (does not
have a local database and relies on other search
engines). The results returned from the other search
engines are combined through combination policy and
fusion policy. Ordering of results is done by fetching
and analyzing individual pages and uses consistent

scoring function, making the ordering problem more like
that of a standard search engine.

In this architecture user preferences to the query is
added. Rather than being limited solely to the use of
keywords for expressing an information need, the user
can provide an information need category that controls
the search strategy used by the meta-search engine.
Each information need category has an associated list of
sources, modification rules, and a scoring function.
Source selection:

A standard meta-search engine always uses the
same source search engines: the source-selection process
does not change. Meta-search engines such as
SavvySearch, ProFusion, Inquirus, and MetaSEEK
might not send all queries to the same search engines.
Some engines allow the user to select groups of search
engines (such as “News” or “Sports”), or to select
individual engines. Others attempt to map the keywords
in the query to the best search engines.
Inquirus 2 does source selection based on user
preferences. Preferences could be a set of sources,
similar to other meta-search engines.
Query Modification:

To enhance the number of results relevant to a
specific need, Inquirus 2 performs query modification.
There are three types of query modification used:
 utilization of search engine-specific options
 Prepending terms to the query, or appending terms

to the query.
 More than one modified query can be submitted for

a given search engine.
Ranking Algorithm:

To incorporate multiple factors into the
ordering policy, Inquirus 2 represents user preferences
as an additive value function over any of the available
metadata. There are two factors for each attribute: the
relative weight and the attribute-value function (the
mapping from the attribute’s assignment to its value).
The best function for each category should be identified
manually and attached with that attribute.
Open Issues:

This system did not allow the users to easily
generate their own categories and automatic
identification and implementation of document scoring
functions.

3.3 TAP:

The Semantic Web application framework TAP [8]
presented combines traditional information retrieval
with semantic search. This system develops GetData
Interface.

GetData is intended to be a simple query interface
to network accessible data presented as directed labeled
graphs. It is planned to be very easy to build, support
and use, both from the perspective of data providers and
data consumers. GetData is not intended to be a

96

Advances in Engineering Research (AER), volume 142

complete or expressive query language a SQL, RQL or
DQL.
To improve the semantic search, this system follows two
steps:
1. Augment the list of documents with relevant data

pulled out from the semantic web.
2. Understanding of the denotation of the search term

helps to better filter and sort the list of documents
retrieved.

The TAP Knowledge Base which contains about 65,000
instances of these classes is used as a lexicon to identify
such searches.
To retrieve the information from the web, this system
provides the wrapper for each web site (data source).
GetData interface is provided with each of the site.
Given the number of data sources and their distributed
nature of its data sources, ABS makes extensive use of
the registry and caching mechanisms provided by TAP.
These entire data source together yield a Semantic Web
with many millions of triples. TAP system function like
meta-search engine design.

3.4 Hybrid Spread Activation [10]:

 Spread activation techniques are used to find
related concepts in the ontology given an initial set of
concepts and corresponding initial activation values.
These initial values are obtained from the results of
classical search applied to the data associated with the
concepts in the ontology.

The hybrid spread activation is the main part of the
proposed system, occurring in the hybrid instances
graph, where relations (links) have both a label that
comes from the ontology definition, and a numerical
weight, which comes from the weight mapping
techniques. The spread activation algorithm works by
exploring the concepts graph. Given an initial set of
concepts, the algorithm obtains a set of closely related
concepts by navigating through the linked concepts in
the graph. Inferences occur naturally in this process,
since the result set may contain nodes that are not
directly linked to the initial set of nodes. The spread
activation algorithm is domain dependent. The spread
activation algorithm provides the path through which the
node was obtained.

3.5 ISRA - Intelligent Semantic web Retrieval Agent

[4]:

This has been developed using J2EE technologies.
It uses traditional client server architecture (meta-search
engine model). The client is a basic web browser,
through which the user specifies search queries in
natural language. The server contains Java application
code and the WordNet database. The prototype also
provides an interface to several search engines including
Google(www.google.com),Alltheweb(www.alltheweb.c

om) and AltaVista. The prototype consists of three
agents:
 Input-Output-Parser Agent:

This is responsible for capturing the user’s
input, parsing the natural language query, and returning
results. The agent uses “QTAG” to parse the user’s
input. It returns the part-of-speech for each word in the
text. Based on the noun phrases (propositions)
identified, an initial search query created.
WordNet Agent:

The WordNet Agent interfaces with the
WordNet lexical database via JWordNet (a pure Java
standalone object-oriented interface). For each noun
phrase, the agent queries the database for different word
senses and requests that the user select the most
appropriate sense for the query. The agent extracts word
senses, synonyms and hypernyms (superclasses) from
the lexical database and forwards them to the query
refinement agent to augment the initial query.
Query Refinement and Execution Agent:

The Query Refinement and Execution (QRE)
agent expands the initial query based on word senses,
and synonyms obtained from WordNet. The refined
query is then submitted to the search engine using
appropriate syntax and constraints, and the results
returned to the user.
Issues:

Can improve the scalability and customizability of the
approach, and minimize user interaction.

3.6 Librarian Agent:

Librarian agent system [5] behaves like a human
librarian. This approach is based on incremental
refinement of user’s queries, according to the ambiguity
of a query’s interpretation.
The role of the Librarian Agent is
(i) to resolve the disambiguation of the queries

posted by users (query management module)
(ii) to enable efficient ranking and/or clustering of

retrieved answers (ranking module) and
(iii) To enable the changes in the knowledge

repository regarding the users’ information
needs (collection management module).

Query Management module is responsible for the
ambiguity measurement and for the recommendations
for the refinements of a query.
This estimates the ambiguities of the initial query (so
called Problem Discovery phase) in order to provide
suitable modification of that query, which will decrease
the number of irrelevant results or/and increase the
number of relevant results (Query Refinement Phase)
Query processing involves three information sources:
 the ontology is used to determine the clarity or

unambiguousness of a query
 the user’s past queries help to guess the correct

meaning of query terms

97

Advances in Engineering Research (AER), volume 142

 the document-base is analyzed to predict the result-
set size of augmented or trimmed queries

Ranking Module: It analyses the domain ontology, the
underlying repository and the searching process in order
to determine the relevance of the retrieved answers.
Based on the relevance, the retrieved documents are
displayed to the users.
Change Management module: This module is to make
recommendations for the changes in the collection and
in the underlying ontology. Any upgrading of
knowledge repository, updating ontology is performed
in this module.

3.7 SCORE - Semantic Content Organization and

Retrieval Engine

It uses automatic classification and
information-extraction techniques together with
metadata and ontology information to enable contextual
multi-domain searches that try to understand the exact
user information need expressed in a keyword query.
The activities carried out in SCORE [3] are:
1. Defining WorldModel and Knowledgebase:

Knowledge extraction agents manage the
Knowledgebase by exploiting trusted knowledge
sources. Different parts of the Knowledgebase can
be populated from different sources. Various tools
help detect ambiguities and identify synonyms.
Commercial deployments of SCORE can be
expedited with a predefined WorldModel and
Knowledgebase.

2. Content processing: This includes classifying and
extracting metadata from content. The results are
organized according to the WorldModel definition
and stored in the Metabase. Knowledge and content
sources can be heterogeneous, internal or external
to the enterprise, and accessible in push or pull
modes.

3. Support for semantic applications: The semantic
engine processes semantic queries, but does not
currently support inference mechanisms found in AI
or logic-based systems. Instead, it provides limited
inference based on the traversal of relationships in
the Knowledgebase. An API for building traditional
and customized applications returns results as XML
to facilitate GUI creation.

3.8 TRUST – Text retrieval using semantic technologies:

This is developed for semantic and multilingual
search engine [11] capable for processing natural
language questions in English, Polish, French,
Portuguese and Italian.
The aim is to find sentence from a set of texts that
answers questions in Natural Language. When the user
framed a question, a list of pivot (key elements in that
question) is displayed. For polysemous pivot, a short
description of its sense is shown, the users can able

select the sense that he finds adequate for his question or
accept the one that suggested. The user may also choose
between the local search (hard disk) and web search
(hybrid both standalone and meta-search engine).
After the question is submitted, the search engines looks
for text blocks containing candidate answers. The
selected blocks are arranged based on proximity to the
question and top ones are given to question/ answer
evaluator. The most relevant text blocks are extracted.
The answers are displayed arranged in descending order
of their relevance.
Modules designed to implement search engine are:
Question Analysis:

Natural language questions were interpreted
and transformed to Boolean query by eliminating
stopping words like what, where and who. Question
categories are defined to handle the questions like how,
when and where. Pivot elements are extracted from the
question. Pivot elements are key elements in the
question that might be a word, expressions, number,
date, phrase etc.
Indexing Process:

Indexation of each file was started by splitting into
text blocks and each text block is parsed. For Each
sentence the following information is collected:
 Relevant ontological and terminological domain

found in the sentence.
 Any answer is found for defined question categories
Search Procedure:

The user is allowed to do hard disk search or
web search. In case of local search, search is carried out
in indexed file using search keywords along with
synonyms pivot elements.
In case of web search, the question is given to meta-
search engines along pivot elements. In both case results
are on text blocks are given to question/ answer
evaluator.
Question/ answer evaluator:

In this step, the evaluator analyzed the highest
ranked text block by parsing each sentence and giving
its final score to express its likelihood to answer the
question. Sentences with minimum relevance are
excluded. The best sentences are displayed by
descendent order of their scores.
Issues:

 Improvement can be performed with word sense
disambiguation, increase the use of lexical-semantic
relations.

 Connection between word senses and ontology
domain can be refined.

 Evaluator can be improved.
3.9 Audio data retrieval:

The audio retrieval proposed [9] is part of a
special-purpose information system. It retrieves news
items from a collection that is fed by broadcast audio-
streams. The audio meta-data are extracted by speech

98

Advances in Engineering Research (AER), volume 142

recognition and from plain-text content-descriptions that
are supplied by the broadcast stations. The approach
contains disjunctive query augmentation and term
substitution based on domain ontology. The ontology
consists of concepts, individuals and their synonyms,
hypernyms and meronyms. The ‘upper part’ of the
ontology is designed manually, while the lower-level
concepts are extracted from the Yahoo hierarchy. There
is no notion of user context.

3.10 Ontogator:

The key idea of the Ontogator system [6] is to
combine the usage benefits of multi-facet search with
the answer quality benefits of ontology-based search,
together with semantic recommendations.
Ontogator uses two information sources:

1. Domain Knowledge consists of an ontology that

defines the domain concepts and the individuals. In
this paper, the domain ontology consists of some
329 promotion related concepts, such as “Person”
and Building”, 125 properties, and 2890 instances.

2. Annotation Data describes the metadata of the
images represented in terms of the annotation and
domain ontologies. Annotation ontology describes the
metadata structure used in describing the images. It is
assumed, that the subject of an image is described by
associating the image with a set of RDF(S) resources of
the domain knowledge, classes or instances. They
occur in the image and hence characterize its content.

Based on the domain knowledge and the annotation
data, Ontogator provided to the user with two services:
Multi-facet search The underlying domain ontologies
are mapped into facets and facilitate multi-facet search.
In our example case, there are six facets “Happenings”,
“Promotions”, “Performances”, “Persons and roles”,
“Physical objects”, and “Places”. The facets provide
complementary views of the contents along different
dimensions. The facets can be used for indexing the
content and to help the user during information retrieval
Recommendation system: After finding an image of
interest by multi-facet search, the domain ontology
model together with image annotation data can used to
recommend the user to view other related images. The
recommendations are based on the semantic relations
between the selected image and other images in the
repository.
The two services are connected with the information
sources by tree sets of configurations or rules.
Hierarchy rules: The heart of the multi-facet search
engine is a set of category hierarchies by which the user
expresses the queries. The hierarchy rules are a set of
configurationally rules that tell how to construct the
facet hierarchies from the domain ontologies.
Mapping rules: Annotations associate each image with a
set of resources of the domain ontology. Mapping rules

extend these direct annotations by describing the
indirect relations between the images and the domain
knowledge.
Mapping rules solve the problem by specifying the
relations by which images are related with domain
resources.
Recommendation rules: The domain ontology defines
not only the concepts and their hierarchical structure,
but also the relations by which the actual domain classes
and individuals are related with each other. Based on
these relations, recommendation rules are used to find
associations between an image and other images of
potential interest to the user.

3.11 OWLIR - OWL Information Retrieval

OWLIR [7] is an implemented system for retrieval of
documents that contain both free text and semantic
markup in RDF, DAML+OIL or OWL. The framework
support both retrieval-driven and inference-driven
processing. Inference and retrieval should be tightly
coupled; improvements in retrieval should lead to
improvements in inference, while improvements in
inference should lead to improvements in retrieval. The
implemented system was built to solve a particular task
– filtering University student event announcements.
User Interface:
A simple form-based query system allows a student to
enter a query that includes both structured information
(e.g., event dates, types, etc.) and free text. The form
generates a query document in the form of text
annotated with DAML+OIL markup. The queries and
event descriptions are processed to represent in triples,
enriching the structured knowledge using local
knowledge base and inference engine and swangling the
triples into indexed terms. The result is a text-like query
that can be used to retrieve a ranked list of events.
Ontology design:

OWLIR defines ontologies, encoded in DAML+OIL,
allowing users to specify their interests in different
events. These ontologies are also used to annotate the
event announcements.
Text Extraction:

Event announcements in free text are converted into
semantic markup by using AeroText™ system. This
system extracts key phrases and elements from free text
documents and translates the extraction results into a
corresponding RDF triple model that uses DAML+OIL
syntax. This is accomplished by binding the Event
ontology directly to the linguistic knowledge base used
during extraction.
Inference System:

OWLIR uses the metadata information added
during text extraction to infer additional semantic
relations. These relations are used to decide the scope of
the search and to provide more relevant responses.
OWLIR bases its reasoning functionality on the use of

99

Advances in Engineering Research (AER), volume 142

DAMLJessKB. DAMLJessKB facilitates reading and
interpreting DAML+OIL files, and allowing the user to
reason over that information.

3.12. SWOOGLE

Swoogle [12] is designed as a system that
automatically discovers SWD (Semantic Web
Document) s indexes their metadata and answers queries
about it.
The Swoogle architecture consists of web crawlers that
discover SWDs; a metadata generator; a database that
stores metadata about the discovered SWDs; a semantic
relationships extractor; an N-Gram based indexing and
retrieval engine; a simple user interface for querying the
system; and agent/web service APIs to provide useful
services.

Ontology Rank inspired by the Page Rank algorithm
which ranks online documents based on hyperlinks. This
algorithm uses graph that are formed by SWDs has a
richer set of relations than the graph of the World Wide
Web.

3.13. SWSE – Semantic Web search Engine

SWSE [22] operates over structured data and
holds an entity-centric perspective on search: returns
data representations of real-world entities. All process is
performed in distributed systems.
Crawling: Process of retrieving the raw RDF
documents from the Web is crawling. Crawler starts
with a set of seed URIs, retrieves the content of URIs,
parses and writes content to disk in the form of quads,
and recursively extracts new URIs for crawling. Crawler
supports only to traverse RDF/XML documents.
Consolidation:

The consolidation component tries to find
synonymous (i.e., equivalent) identifiers in the data, and
canonicalises the data according to the equivalences
found. Owl: sameAs statements are extracted from the
data and identify owl: sameAs triples and buffered them
to a separate location.
Ranking:

The ranking component performs links-based
analysis [14] over the crawled data and derives scores
indicating the importance of individual elements in the
data (the ranking component also considers URI
redirections encountered by the crawler when
performing the links-based analysis);
Reasoning:

The reasoning component materializes new
data which is implied by the inherent semantics of the
input data (the reasoning component also requires URI
redirection information to evaluate the trustworthiness
of sources of data);
Indexing:

The indexing component prepares an index which
supports the information retrieval tasks required by the
user interface.
The query-processing and user interface components
service queries over the index documents and displays
the result.

3.14. Falcons Concept search:

This is a keyword-based ontology search
engine [21] which performs following tasks:
The multithreading crawler dereferences URIs with
content negotiation (accepting only application/rdf+xml)
and downloads RDF documents, which are then parsed
by Jena. The URIs newly discovered in these documents
are submitted to the URI repository for further crawling.
Each RDF triple in an RDF document and the document
URI form a quadruple and is stored in the quadruple

store implemented based on the MySQL database.

The Meta analysis component periodically computes
several kinds of global information and updates them to
the metadata database, e.g., which kind of entity
(class/property/individual) a URI identifies and which
concepts ontology contains.
The indexer updates a combined inverted index, which
serves the proposed mode of user interaction, i.e.,
keyword search with ontology restriction. The ranking

process is implemented based on Lucene. At indexing
time, a popularity score is computed and attached to
each concept. At searching time, popularity of concepts
and term-based similarity between virtual documents of
concepts and the keyword query are combined to rank
concepts.
For each concept returned, a query-relevant structured
snippet is generated from the data in the quadruple store.
For each concept requested, the browsing concepts

component loads its RDF description from the
quadruple store and presents it to the user.

3.15. Watson

Watson [23] is a Semantic Web search engine
providing various functionalities not only to find and
locate ontologies and semantic data online, but also to
explore the content of these semantic documents.
Watson performs three main activities:
1. It collects available semantic content on the web.
2. It analyses it to extract useful metadata and indexes.
3. It implements efficient query facilities to access the
data.

The crawling and tracking component uses Heritrix, the
Internet Archive’s Crawler to discover locations of
existing semantic documents.
 The Validation and Analysis component is then used to
create a sophisticated system of indexes for the

100

Advances in Engineering Research (AER), volume 142

discovered semantic documents, using the Apache
Lucene indexing system.
Based on these indexes, a core API is deployed that
provides all the functionalities to search explore and
exploit the collected semantic documents.
Watson provides different ‘perspectives’, from the most
simple keyword search, to complex, structured queries
using SPARQL.

3.16. GoWeb:

It combines classical keyword-based Web
search with text-mining and ontologies to navigate large
results sets and facilitate question answering.
GoWeb [19] is an internet search engine based on
ontological background knowledge. It helps to filter
potentially long lists of search results according to the
categories provided by the GeneOntology (GO) and the
Medical Subject Headings (MeSH). It offers an efficient
search and result set filtering mechanism, highlighting
and semi-automatic question answering with the
ontological background knowledge. The selection of top
concepts includes the occurrence frequency, the
hierarchy level and, if available, a global frequency from
a pre-analyzed corpus.
The workflow for GoWeb can be described as follows.
The user submits a query through the search form on the
GoWeb website to the server. The server preprocesses
the query and sends a search request to the search
service. The search service returns the first results. The
first results are then annotated, highlighted (concepts
and keywords), rendered and sent to the user.

3. 17. WebOWL

This is a semantic web search engine [24] for
OWL data. It was built on the principles of current
search engines but instead of focusing on whole pages
(or whole ontologies) it focuses on the actual entities
within these ontologies. It uses a ranking algorithm that
assigns different ranking power to classes and
individuals. The system comprises all the key
components of a search engine, which are a crawler, a
database, a query mechanism and a ranking algorithm.

BioCrawler
In order to discover new ontologies and refresh the data
of already stored ones, WebOWL uses BioCrawler to
crawl the Web. BioCrawler is an intelligent crawler that
learns to recognize and remember sites that contain
ontologies or link to other sites containing ontologies,
thereby forming a neighborhood of semantic content.
The system consists of cooperating intelligent agents
running on the Jade platform.
db4OWLse Database

The database of the WebOWL search engine is an
enhanced version of db4OWL, a generic OWL database
currently being developed by the authors and based on

the db4o object database engine(db4Objects Inc.). The
system uses Jena’s parser and reasoner to import data.
The OWL species and type of reasoning is set via a
configuration file.
OWLRank

OWLRank is an algorithm developed specifically for
WebOWL and is used to determine the ranking value of
OWL objects. It was inspired by PageRank and uses a
similar popularity measure to determine the importance
of OWL classes and individuals. OWLRank measures
semantic links between classes and individuals to
determine their significance.
Web Front-End

The WebOWL search engine uses a web front end to
allow users to formulate queries and navigate through
the results. The front-end was primarily designed as a
demo for the search engine’s functionality; however, its
development has revealed many challenges and
unanswered questions in terms of the Semantic Web’s
usability and appeal to Internet users.

3.18. SIRM – Semantic Information Retrieval Model

This model was designed to develop a standard RDF
format of linguistic information, [30] which includes
declarative specifications of a machine readable lexicon
that captures morphological, syntactic, and semantic
aspects of the lexical items related to ontology.
This model consists of following modules:
RiscoLex:

The semiautomatic construction of a lexical database in
Portuguese for the Financial Risk domain was proposed
was called as RiscoLex. This database was created
based on ontology of risk and its corresponding corpus.
The construction of RiscoLex is to extract the labels of
classes and properties of the ontology, identify and
retrieve their respective synonyms and the
morphosyntactic features of each term, convert them
into RDF format, and provide the lexical database with
the Lemon model.
Ontology and corpus:

Document descriptors for corpus which is a descriptor to
describe document contents, and people interact using
natural language to infer unexpressed meanings.
Ontological entities represent concepts, and inference
engines automatically infer non explicit information.
Functional usage:

The user interacts in a traditional way to submit
the query. The query processing standardizes the terms
for the search. The lexicon-ontological knowledge
includes the ontology and the RiscoLex. The corpus
characterizes the database containing the documents to
be retrieved. The joint indexation of the databases
involved provides the lexical-semantic index, which is
used in the retrieval and ranking of retrieved documents
to be presented to the user.

101

Advances in Engineering Research (AER), volume 142

The semantic annotation process is therefore essential to
link documents to the semantic space created by the
domain ontology. NLP is the main tool for document
identification, comparison, and annotation.
Issues:

Consideration of peculiarity and jargons of the
domain may improve the vocabulary and also it
contributes to improve the search results of lexical
databases with semantic IRS.
The adoption of different weighting factors, other than
the tf-idf, to address the lexical-semantic indexing
would be highly useful.
The databases created by ontology lexicalization could
be used as tools to improve automatic summarization or
automatic text writing.
The participation of lexicographers, terminologists, and
linguists in the building of lexical databases could
greatly contribute to the interpretation and adequacy of
linguistic phenomena to the ontology environment.

3.19. IBRI-CASONTO

This is a search engine [29] for College of
Applied Sciences (CAS), Sultanate of Oman. The
system is based on the RDF dataset as well as
Ontological graph. This engine is developed for two
languages Arabic and English.
User Interface:

It provides three parts of searching which are
Keyword Searching, SPARQL Expert and CAS queries.
CAS Queries includes a set of predefined queries based
on our Arabic and English ontology. SPARQL Expert,
which requires an expert of writing SPARQL Query
because it forces the user to write a manual query. The
Keyword Searching that retrieves the results based on
the full-text matching of the query.
Indexing:

 TDB indexing is built on the Fuseki for Jena TDB
dataset is used. The indexing process in Lucene is used
for keyword searching, consists of a chain of logical
steps after gain access to the original content you need
to search.
Searching:

Keyword-Based search:
It is done by the support of Apache Lucene, which
provides with the access to the Lucene indexes. This
type of searching get the matched keywords without
understand the concept behind it.
Semantic-based search:
Semantic Searching of IBRI-CASONTO is supported by
Apache Jena Fuseki. It provides a SPARQL server that
can use the Jena TDB for persistent storage. In addition,
it provides with the SPARQL protocols for query,
update and rest update over the HTTP. Moreover, the
SPARQL query offers the searching over the triple-store
and retrieves the needed results.
Storage:

 Jena TDB is used to store triples because it is a
component of Jena for RDF storage and query. It
supports the full range of Jena APIs. The MySQL as
RDBMS is used for the keyword searching purpose.
Inference:

The inference is used to discover new relationships
between the data that modeled as a set of defined
relationships between the resources. It works as
automatic procedures that deriving additional
information by generating new relationships based on
the ontology dataset. There are several automated
reasoners, which can plug-in inside the ontology
environment such as Protégé (Pallet, FaCt++, HerMiT,
etc).
HerMiT is an open source that is already plug-in in
protégé 4.3 and it is a perfect reasoner for ontologies,
which is written in OWL. This reasoner is based on a
novel ‘‘hypertableau” calculus that delivers efficient
reasoning than any known algorithm.

3.20 IRSCSD - Information retrieval system for

computer science domain

The main objective of this research is design
and development of semantic web-based system [28] for
integrating ontology towards domain-specific retrieval
support like [26].
Methodology involves the following stages:
 First Stage involves the designing of framework for

semantic web-based system.
 Second stage builds the prototype for the

framework using Protégé tool.
 Third Stage deals with the natural language query

conversion into SPARQL query language using
Python-based QUEPY framework.

 Fourth Stage involves firing of converted SPARQL
queries to the ontology through Apache’s Jena API
to fetch the results.

IV. COMPARISON
Comparison of unique approaches that are

developed till now are represented in table (Table: 1, 2,
3 and.4) based on classification parameters.
V. FUTURE RESEARCH DIRECTIONS IN

SEMANTIC WEB SEARCHING
The realization of semantic search engine faces
challenges in [22]:
 The system must scale to large amounts of data.
 The system must be robust in the face of

heterogeneous, noisy, impudent, and possibly
continuing data collected from a large number of
sources.

 Providing reliable, most relevant information to the
user without taking much time.

102

Advances in Engineering Research (AER), volume 142

The semantic web information retrieval process consists
of major tasks like ranking, query processing, reasoning
and indexing. The scope for future
enhancements/research in each task is given separately.
Ranking:

Ranking in Web search engines depends on many
factors, ranging from globally computed ranks to query-
dependent ranks to location, preferences, and history of
the searcher. Same traditional search engine ranking
approaches are used by many researchers. Only a few
performs ontology-based document ranking in semantic
search. Apart from these approaches, scope for doing
research in the ranking algorithm:
 Inclusion of some additional signals into the

ranking procedure is area for further research,
especially in the face of complex database-like
queries and results beyond the simple list of objects.

 The question of finding appropriate mathematical
representation in current ranking of RDF graphs
leads to new ranking algorithms.

 Mathematically calculated weights can be assigned
for entities, links in RDF graph, thereby devising
new weightage scheme for ranking algorithm which
might lead to most relevant results on top.

Indexing:

The main directions for future work in indexing
would be to identify an intersection of queries for which
optimized indexes can be built in a scalable manner, and
queries which offer greater potential to the UI.

Investigation of compression techniques and
other low-level optimizations may further increase the
base performance.

Explore new methods for increment update so
that the system is constantly building the new index
while the old is being queried against;
Query Processing:

With respect to current query-processing
capabilities, our underlying index structures have proven
scalable. Open research question here is how to optimize
for top-k querying in queries involving joins; joins at
large-scale can potentially lead to the access of large-
volumes of intermediary data, used to compute a final
small results size; thus, the question is how top-k query
processing can be used to immediately retrieve the best
results for joins.
Extending the query processing to handle more complex
queries is a topic of importance when considering
extension and improvement of the current spartan UI.
In order to fully realize the potential benefits of
querying over structured data, we need to be able to
perform optimized query processing.
Reasoning:

To investigate some backward-chaining
(runtime) approaches which complement a partial
materialization strategy.

Combination of ranking into the reasoning process can
be considered in order to improve the precision.
The general scopes of semantic search that always need
future research are [25] [16]:
1. Identify the objective of user

This plays a considerable role in the intelligent
semantic search engine. Still there is scope for
identifying the intention of the user, by seeing the
keywords used and previous search keywords history
use some mining techniques.
2. Individual user patterns can be extrapolated to the

global users.

In search engines that presented disambiguation to
search terms, a user could type in a search word that was
ambiguous (e.g., Java) and search engine would return a
list of options (programming language, coffee, island in
the South Seas), thereby search engine can be
interactive.
3. Inaccurate queries.

The users use typically domain specific knowledge
and they don’t include all the potential synonyms and the
variations in search query. Users have a problem but they
aren’t sure how to phrase their query.

4. User Friendly UI

5. Providing Reliable data

The above are considered as improvements in user
context and user interface design for the semantic search
engine.
Main functional requirements need to be fulfilled and
improved in the semantic search engine are:
 High recall and High precision:

Consistently A few intelligent semantic search engines
are unable to show their significant performance in
improving the precision and lowering the recall.
Adaptability:

Many systems require a certain ontology
structure, i.e., they rely on custom-tailored ontologies. It
can cope with arbitrary ontologies but provide weaker
semantic capabilities. It is an open problem how systems
may adapt themselves to existing ontologies, i.e.,
ontologies that have been designed with a different
purpose. This is not only important concerning the reuse
of ontologies but also as regards the interoperability
between knowledge-based systems in general. The
system adaptability is an important step towards
domain-independent semantic search engines.
Performance/scalability. We only found few work on
the performance of systems. On the market, semantic
search engines have to compete with standard search
engines. They may introduce only a little overhead
compared to standard solutions. Consequently, they
need efficient implementation regarding indexing time,
index space and response time.

103

Advances in Engineering Research (AER), volume 142

VI. CONCLUSION
In this work, classification parameter is

introduced for comparing semantic search engines
approaches. With regard to the classification scheme,
common ideas, their advantages and drawbacks are
explained. Furthermore, research and application-
development issues are identified that are not addressed
by current systems. From this survey, there is a large
number of promising approaches to semantic document
retrieval can be learnt.

REFERENCES
[1]. Heflin, Jeff, and James Hendler. "Searching the Web with

SHOE." AAAI-2000 Workshop on AI for Web Search. 2000.
[2]. Glover, Eric J., et al. "Web Search---Your

Way." Communications of the ACM 44.12 (2001): 97-102.

[3]. Sheth, Amit, et al. "Managing semantic content for the
Web." IEEE Internet Computing 6.4 (2002): 80-87.

[4]. Burton-Jones, Andrew, et al. "A heuristic-based methodology for
semantic augmentation of user queries on the web." Conceptual

Modeling-ER 2003 (2003): 476-489.
[5]. Stojanovic, Nenad. "On the role of the Librarian Agent in

ontology-based knowledge management systems." J. UCS9.7

(2003): 697-718.
[6]. Hyvönen, Eero, Samppa Saarela, and Kim Viljanen. "Ontogator:

combining view-and ontology-based search with semantic
browsing." information retrieval 16 (2003): 17.

[7]. Mayfield, James, and Tim Finin. "Information retrieval on the
Semantic Web: Integrating inference and retrieval." Proceedings

of the SIGIR Workshop on the Semantic Web. 2003.
[8]. Guha, Ramanathan, and Rob McCool. "TAP: a Semantic Web

platform." Computer Networks 42.5 (2003): 557-577.
[9]. Khan, Latifur, Dennis McLeod, and Eduard Hovy. "Retrieval

effectiveness of an ontology-based model for information
selection." The VLDB Journal—The International Journal on

Very Large Data Bases 13.1 (2004): 71-85.
[10]. Rocha, Cristiano, Daniel Schwabe, and Marcus Poggi Aragao.

"A hybrid approach for searching in the semantic
web." Proceedings of the 13th international conference on World

Wide Web. ACM, 2004.
[11]. Amaral, Carlos, et al. "Design and Implementation of a Semantic

Search Engine for Portuguese." LREC. 2004.
[12]. Finin, Tim, et al. "Swoogle: Searching for knowledge on the

Semantic Web." Proceedings of the National Conference on

Artificial Intelligence. Vol. 20. No. 4. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[13]. Esmaili, Kyumars Sheykh, and Hassan Abolhassani. "A

categorization scheme for semantic web search

engines." Computer Systems and Applications, 2006. IEEE

International Conference on.. IEEE, 2006.
[14]. Li, Yufei, Yuan Wang, and Xiaotao Huang. "A relation-based

search engine in semantic web." IEEE Transactions on

Knowledge and Data Engineering 19.2 (2007).
[15]. Tummarello, Giovanni, Renaud Delbru, and Eyal Oren. "Sindice.

com: Weaving the open linked data." The Semantic Web.
Springer, Berlin, Heidelberg, 2007. 552-565.

[16]. Mangold, Christoph. "A survey and classification of semantic
search approaches." International Journal of Metadata,

Semantics and Ontologies 2.1 (2007): 23-34.

[17]. Dong, Hai, Farookh Khadeer Hussain, and Elizabeth Chang. "A
survey in semantic search technologies." Digital Ecosystems and

Technologies, 2008. DEST 2008. 2nd IEEE International

Conference on. IEEE, 2008.

[18]. Lamberti, Fabrizio, Andrea Sanna, and Claudio Demartini. "A
relation-based page rank algorithm for semantic web search
engines." IEEE Transactions on Knowledge and Data

Engineering 21.1 (2009): 123-136.
[19]. Dietze, Heiko, and Michael Schroeder. "GoWeb: a semantic

search engine for the life science web." BMC

bioinformatics10.10 (2009): S7.
[20]. Barbieri, Davide, et al. "Deductive and inductive stream

reasoning for semantic social media analytics." IEEE Intelligent

Systems 25.6 (2010): 32-41.
[21]. Qu, Yuzhong, and Gong Cheng. "Falcons concept search: A

practical search engine for web ontologies." IEEE Transactions

on Systems, Man, and Cybernetics-Part A: Systems and

Humans 41.4 (2011): 810-816.
[22]. Hogan, Aidan, et al. "Searching and browsing linked data with

swse: The semantic web search engine." Web semantics: science,

services and agents on the world wide web 9.4 (2011): 365-401.
[23]. d'Aquin, Mathieu, and Enrico Motta. "Watson, more than a

semantic web search engine." Semantic Web 2.1 (2011): 55-63.
[24]. Batzios, Alexandros, and Pericles A. Mitkas. "WebOWL: A

Semantic Web search engine development experiment." Expert

Systems with Applications 39.5 (2012): 5052-5060.
[25]. Sudeepthi, G., G. Anuradha, and M. Surendra Prasad Babu. "A

survey on semantic web search engine." IJCSI International

Journal of Computer Science Issues 9.2 (2012): 241-245.

[26]. Kamath, S. Sowmya, et al. "A semantic search engine for
answering domain specific user queries." Communications and

Signal Processing (ICCSP), 2013 International Conference on.
IEEE, 2013.

[27]. Farhadi, Babak, and M. B. Ghaznavi-Ghoushchi. "Creating a
novel semantic video search engine through enrichment textual

and temporal features of subtitled YouTube media
fragments." Computer and Knowledge Engineering (ICCKE),

2013 3th International eConference on. IEEE, 2013.
[28]. Bansal, Ritika, and Sonal Chawla. "Design and development of

semantic web-based system for computer science domain-
specific information retrieval." Perspectives in Science 8 (2016):

330-333.
[29]. Sayed, Awny, and Amal Al Muqrishi. "IBRI-CASONTO:

Ontology-based semantic search engine." Egyptian Informatics

Journal (2017).
[30]. Schiessl, Marcelo, and Marisa BRÄSCHER. "Ontology

lexicalization: Relationship between content and meaning in the
context of Information Retrieval." Transinformação 29.1 (2017):

57-72.

104

Advances in Engineering Research (AER), volume 142

TABLE 1
COMPARISON OF UNIQUE APPROACHES BASED ON CLASSIFICATION PARAMETERS

Prototype

/Project

SHOE Inquirus2 TAP Hybrid Spread

Activation

ISRA

By Jeff Heflin and
James Hendler

Eric J. Glover et al

R. Guha and Rob
McCool

Cristiano Rocha

Andrew Burton-
Jones,

Focus WWW WWW WWW WWW WWW

System Design Stand-alone Meta Search Engine Metasearch model Stand-alone Meta search
Engine

User context Used TSE Path
analyser as UI

Predefined Question

Category
Dynamic interaction and

Predefined Question

Category

 Not done Dynamic
interaction and

Predefined

Question

Category
Transparency Transparent Transparent Hybrid Transparent Interactive

Query

Refinement

Manual Prepending and
appending related
terms with the query

 Instance graph
based

Carried using
query refinement
agent which uses
Wordnet

Ontology

structure

Hypernym Anonymous Domain specific Hypernym
Synonym

Crawler Expose Web
Crawler

Not applicable GetData interface+ABS Traditional search
engine method

None

Ranking

Algorithm

No ranking
mechanism

Ordering Policy
Uses additive
function for each
category like topical
relevance

TAP search interface - Relevant results
from different
engines are
combined

Reasoning

Mechanism

Parka KB Combination policy TAP knowledge base New Inferences are
find out while
traversing the
instance graphs

Nil

Result

Presentation

Graphs with
URL

URL + Text Graphs, Nodes , URI,
description

Nodes , documents
(path that travel in
instance graphs)

URLs and
‘snippets’
provided from the
web pages

Technologies

used

Knowledge
annotator,
Expose, Parka
KB,PIQ, TSE
Path analyzer

 TAP Knowledge base
TAPache

J2EE, Lucene J2EE, WordNet

Open Issues Need of a
general-purpose
query tool that
needs only
minimum
knowledge to use

did not allow the
users to easily
generate their own
categories and
automatic
identification and
implementation of
document scoring
functions.

Need to create
generalized framework.
Methodology need to be
developed to understand
the search term

No weight
mapping formulas.
Evaluation scheme
can be devised.

Can improve the
scalability and
customizability of
the approach, and
minimize user
interaction.

105

Advances in Engineering Research (AER), volume 142

TABLE 2
COMPARISON OF UNIQUE APPROACHES BASED ON CLASSIFICATION PARAMETERS

Prototype

/Project

Librarian Agent SCORE TRUST Audio Data

Retrieval

Ontogator

By Nenad Stojanovic Amit P. Sheth Carlos Amarol Latifur Khan Eero Hyv¨onen

Focus Information system
Library Portal

Information system WWW, local hard
disk search

Audio data of
football sports

IS for image
retrieval

System Design Standalone Stand-alone Hybrid Stand-alone Stand-alone

User context Interactive None Interactive None Content based
browser

Transparency Transparent Transparent Transparent Transparent Transparent

Query

Refinement

Conj.
Augumentation
Query Refinement

Manual Natural Language
Processing

Disjoint
Augment
substitution

Substitution

Ontology

structure

- Domain specific Ontology concepts
are not used indepth

Domain
dependent
ontology for
football game

Domain specific
Annotation ontology

Crawler - Extractor Toolkit
Main memory
indexing

 Meta data
created for
broadcast audio
stream

Ranking

Algorithm

Based on relevance - Score given based on
relevance

Vector space
model, TF and
IDF calculation

Multi-facet search

Reasoning

Mechanism

 Inferences through
relationships

Lemma, inflection,
Parsing the text to
find for relevant for
the user question

Axioms in
ontology used as
inference

Implemented using
mapping rules
recommendation
rules and hierarchy
rules

Result

Presentation

Documents
+ontology

XML Text blocks Audio data Images
+descriptions of
images.
description of
resource can be
viewed
Topic maps

Technologies

used

 - Not given Not specified SWI Prolog,
Protégé, RDQL

Open Issues No dedicated
ranking algorithm

 No user context
queries, so filtering
the search is difficult.
Instances used in test
are limited, which
cannot reveal the real
feasibility.

No user context
queries,
 Instances used
in test are
limited, which
cannot reveal the
real feasibility.

106

Advances in Engineering Research (AER), volume 142

TABLE 3

COMPARISON OF UNIQUE APPROACHES BASED ON CLASSIFICATION PARAMETERS

Prototype

/Project

OWLIR Swoogle SWSE Falcons Watson

By James Mayfield and
Tim Finin

Tim Finin, et al Aidan Hogan et al

Yuzhong Qu
Gong Cheng

Mathieu
d’Aquin and
Enrico Motta

Focus WWW WWW WWW WWW WWW

System Design Meta-search engine
model

Distributed Distributed Stand-alone Stand-alone

User context Form based query

interface
Predefined Question

Category
Separate UI to
handle all type of
queries

None Watson API

Transparency Transparent Transparent Transparent Interactive Transparent

Query

Refinement

Manual Manual Manual Ontology selection -

Ontology

structure

Event Ontology Generic Ontology OWL rule based
ontology

Hypernym Web Ontology

Crawler AeroText used for
text extraction

Google crawler
Focused Crawler
Swoogle Crawler

Separate crawler
algorithm is used

 Internet Archive
Crawler

Ranking

Algorithm

- Ontology Rank Link based
Ranking

Concept Ranking -

Reasoning

Mechanism

DAMLJessKB Authoritative
reasoning

 Description
logic

Result

Presentation

Documents,
semantic markup

URIs, Literals, type
Classes, Relationships,
ontologies used etc

Entity snippets,
description.

Query Relevant
structure snippet,
URI, Label, type
RDF description,
Ontology metadata

URI, Labels,
comment

Technologies

used

WONDIR,
DAMLJessKB,
AeroText

Jena, MySQL Berkely DB,
Distributed
Architecture

Jena, MySQL,
Apache Lucene

Heritrix,
Apache Lucene
Jena

Open Issues More concerned with
more traditional
document-search over
ontologies.

 improve the method
of
snippet generation in
order to better
present ontology
structures.

do not include
components
for
consolidation or
reasoning.
Instead it focus
on providing
APIs to external
services

107

Advances in Engineering Research (AER), volume 142

TABLE 4
COMPARISON OF UNIQUE APPROACHES BASED ON CLASSIFICATION PARAMETERS

Prototype

/Project

GoWeb Webowl SIRM IBRI-CASONTO IRSCSD

By Heiko Dietze and
Michael Schroeder

Alexandros
Batzios and
Pericles A.
Mitkas

Marcelo SCHIESSL
Marisa BRÄSCHER

Awny Sayed Amal Al
Muqrishi

Ritika Bansal,
Sonal Chawla

Focus WWW WWW
Tested Pets
Ontology

WWW IS for College of Applied
Sciences

IS

System Design Meta Stand-alone Stand-alone Stand-alone Stand-alone

User context Dynamic interaction
and Predefined

Question Category

Predefined

Question

Category

Through Web UI

 Interactive, specialized
interface

Dynamic
Interaction

Transparency Hybrid Transparent Transparent Transparent Interactive

Query

Refinement

- Query By
Example

Graph-based Ontological Graphs Natural
Language
Query into
SPARQL
using tool

Ontology

structure

GO,MeSH Domain specific Lexicon model for
ontologies, OntoRisk
- Domain specific

Domain specific Domain
specific

Crawler - BioCrawler Labels, synonyms are
fetched from
ontology convert into
rdf stored in db

- -

Ranking

Algorithm

Filter based part-of and
is-a relationships of
ontology and
relevance

OWLRank Solr – term weighting
is based on tf-idf
algorithm

Default Default

Reasoning

Mechanism

OWL Jena Reasoner
Forward chain
method

Lexical semantic
indexing
OntoRisco – axioms

HerMit HerMit

Result

Presentation

Snippets, abstract form Classes,
URI

documents URI,
Entities

Entities

Technologies

used

BioCreAtIvE

Jade, Jena
 db4o object
database engine
MySQL

Protégé ,
Python+NLTK,
Apache Jena Fuseki,
RDFLib

Protégé+Hermit
Apache Lucene
Jena TDB
MySQL

Protégé,
Python
+QUEPY
framework
Apache’s Jena
 Fuseki

Open Issues The implementation
of different weighting
factors, other than the
tf-idf, to address the
lexical-semantic
indexing would be
highly useful.

 Till now not
implemented
for real-time
data .

108

Advances in Engineering Research (AER), volume 142

	BioCrawler

