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Abstract. The motion planning of industrial robot plays an important role in today’s production 
systems, such as Made in China 2025 and Industry 4.0. The motion planning under uncertain 
condition is an important research topic in autonomous robots. For promoting the ability of motion 
planning to adapt to the environment change, in this paper, we propose a deep reinforcement learning 
(DRL) method which combines reinforcement learning with deep learning for industrial robot motion 
planning. Our work shows that the DRL-agent is capable of learning how to control the robot to 
successfully reach robotic tasks without explicit prior Knowledge of kinematics. We conclude that 
DRL has great potential for industrial robots and production systems, especially in robot motion 
planning.  

1. Introduction 

One of ultimate goals in robotic industry is to create autonomous robots in the field of artificial 
intelligence (AI). Such robots equipped with actuators and sensors, can execute tasks with less human 
intervention. Motion planning [1] is an important research topic in autonomous robots. Most motion 
planning algorithms are based on the exact environmental model [2], which means these algorithms 
cannot deal with the motion planning under uncertain condition that mainly refers to unknown 
environment and uncertainty environment. The unknown environment is an environment that is very 
complex and difficult to model accurately. The uncertainty environment refers to the results of robot 
execution are biased due to control errors and environmental factors, Even the mission failed. 

Reinforcement learning (RL) [3],which is a branch of machine learning (ML) [4],which is good at 
controlling autonomous agent that interacts with the environment. RL improves the behavior of A in 
the process of continuous interaction with the environment. For example, the environment of arcade 
game Pac-Man is a maze. In the Pac-Man, the actions including up, down, left, and right, the reward 
is to eat the bean (+) and meet the monster (-). The goal of Pac-Man is to get out of the maze and 
maximize the accumulated reward value. The advantages of applying RL to motion planning 
including without accurately model of environment, adaptability to new environment and self-
learning ability. However, RL has many challenges, high-dimensional state, no suitable reward 
function, the reward value for action has sparse feature, training data is not easy to obtain, and so on. 
Deep learning (DL) has made breakthroughs in computer vision [5] and speech recognition [6] in 
recent years. Such as convolution neural network, multilayer perceptron, restricted Boltzmann 
machine and recursive neural network to solve the environment perception in different scenarios. DL 
provides the possibility to effectively solve the problem of high dimensional feature mapping in RL. 
Deep reinforcement learning (DRL) [7] is a combination of DL and RL. In DRL, the state of RL is 
expressed by deep neural network. The correlation between data samples generated by RL and no 
suitable neural network structure problems appear when DRL solves high-dimensional state. 

This paper use DRL methods to solve the robot motion planning problem in uncertain conditions. 
The state is represented by the convolution neural network and obtaining a lot of training data through 
simulation environment, using Pool of experience to solve the training data correlation, analyzing the 
effects of different neural network structure and reward function on robot arm motion planning, taking 
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the number of attempts to make the right motion planning as one of the indicators of reward function 
to improve training speed, improving algorithm q-learning to train the network and using stochastic 
gradient descent algorithm to update network weights. The experimental environment is simulated 
by mujoco [8]. The system makes right motion planning for a given starting point to ending point. 
System input is the RGB image obtained by a fixed monocular camera in mujoco and output is the 
best action for a given state. The experiment confirmed and improved DRL's ability to solve the robot 
motion planning problem in uncertain conditions. 

2. Background 

RL technique is essentially a trial and error method which aims to replicate the human learning 
process. The goal of RL is to maximize the accumulated reward value R୲ as computed by  

R୲ ൌ෍ߛ௜ି௧
୒

୧ୀ୲

௜ݎ ሺ1ሻ 

Where γ is the discount, N is maximum number of tries each episode. 
The theoretical basis of RL is Markov decision making process (MDP) that the next state 

associated with the current state and the current the action taken. Reinforcement learning algorithm 
include based model (states, actions, transition probability, and rewards) and based free-model (states 
and actions) that only knows part of the information, this article is based free-model. The RL updates 
the table through the value iteration and select action by looking up the table. Turning the update of 
the table into a function fitting problem, namely, the approximate state gives an approximate action, 
and finally, update θ makes Q୲ approach Q∗. The table records the mapping from state to action, so, 
it is impossible to deal with such massive state issue such as the go and robot motion planning, the 
solution is to extract the main features sො of s, then we have the approximate Q-function Qሺsො, aሻ. So, 
the form of data is critical to learning. 

The problem of robot motion planning under uncertain conditions: given the unknown obstacles, 
the initial position and target position in Euclidean space ܹ. With free collision, generate a sequence 
of continuous path from start point to ending point. This paper does not directly give a sequence of 
motion planning from the beginning to the end but select the best action in the current state s୲ until 
the whole motion planning finished. Due to the RL doesn't need precise modeling experiment 
environment, so the experiment is not set obstacles. Because RL without accurately model of 
environment, the experiment is not set obstacles. The Euclidean space ܹ that the robot arm can reach, 
robot arm action set is A ൌ ሼaଵ, … , a୩ሽ, the current state s୲ is the RGB image obtained by a fixed 
monocular camera in mujoco, selecting the best action a୲ for a given state s୲ then do action a୲ in the 
mujoco, getting next state s୲ାଵ, then calculating the reward value r୲ by reward function, repeat the 
process until the whole motion planning is completed. We can say that the process of finding the best 
motion planning is a reinforcement learning process. 

The specific process is as follows: 
1.Observe current state s୲ 
2.Select the best action a୲ for a given state s୲ then execute a୲ 
3.Observe next state s୲ାଵ 
4.Calculate the reward value r୲ by reward function 
5.Update the Q-value as follows: 

Q୲ାଵሺs୲, a୲ሻ ൌ Q୲ሺݏ௧, ܽ௧ሻ ൅ α ቄr୲ ൅ γ	max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱሻ െQ୲ሺݏ௧, ܽ௧ሻቅ ሺ2ሻ 

Where α ∈ ሾ0,1ሿ is the learning rate, γ ∈ ሾ0,1ሿ called the discount rate that determines the present 
value of future rewards. Q୲ → Q∗	as t → 	∞, namely: 

Q∗ሺs୲, a୲ሻ ൌ E ቂr୲ ൅ γ	max
௔ᇲ∈஺

ܳ∗ሺݏᇱ, ܽᇱሻ|s୲, a୲ቃ ሺ3ሻ 

The mainly function of DL is understand state s୲, using the neural network replaces the lookup 
table to solve the problem of high state dimension, extracting the main features ̂ݏ௧ of s୲ then similar 
states can map to similar action. 
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3. Deep Re-enforcement Learning 

In 2006, Hinton proposed a back-propagation (BP) algorithm based on the chain rule. In a broad 
sense, the network structure of deep learning is also a kind of multi-layer neural network. The BP 
algorithm makes multi-layer neural networks popular, deep learning has made breakthroughs in 
computer vision and speech recognition, in recent years. DL has a strong environmental 
understanding which means small number of states. In 2013, DeepMind [7] uses the deep neural 
network to automatically extract complex features to solve the problem of high dimensional mapping, 
combining DL with RL become Deep Reinforcement Learning (DRL) to learn control strategy 
directly from high-dimensional raw data, putting convolutional neural network(CNN) with Q-
Learning then get Deep Q-Network (DQN) algorithm that input raw image ݏ௧ and output each action 
q value. 

RL widely used in mobile robot navigation and the control of biomimetic underwater microrobot, 
DL helps indoor visual navigation [9] and other applications go farther [10]. Training with DL under 
the simulation environment can reduce high-dimensional state and training data is not easy to obtain, 
DL training requires that samples have labels, good independence and determination of target 
distribution. However, reward always with noise, delay and sparsity in RL, current state ݏ௧ correlation 
with next state ݏ௧ାଵ, the determination of target distribution is unstable and different scenarios have 
different state distribution. Therefore, we need to solve these problems, using reward r୲ construct 
sample’s label and putting sample ሺݏ௧, ܽ௧, ,௧ݎ  ௧ାଵሻ into experience pool D until training by randomlyݏ
select part of data to solve the correlation between samples. Update the network through the loss 
function Lሺθሻ until the whole network convergence. 

Q-Learning update by: 

Q୲ାଵሺs୲, a୲ሻ ൌ Q୲ሺݏ௧, ܽ௧ሻ ൅ α ቄr୲ ൅ γ	max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱሻ െQ୲ሺݏ௧, ܽ௧ሻቅ ሺ4ሻ 

The loss function: 

Lሺθሻ ൌ E ൥ቆr୲ ൅ γ	max
ୟᇲ∈୅

Q୲ሺݏᇱ, aᇱ; θሻ െQ୲ሺs୲, a୲; θሻቇ
ଶ

൩ ሺ5ሻ 

Where θ is parameters of network, then using random gradient descent to update θ. 
3.1 Model Architecture 

Lin [11] used the neural network early to enhance the generalization ability of reinforcement 
learning. Today we continue with the idea of using convolutional neural network (CNN), CNN needs 
to constantly adjust the parameters to ensure network convergence. 

The local feature size of the image determines the size of kernel per layer, the number of 
convolutional layers and the number of kernel per layer determine the complexity of the neural 
network model. This paper compares three different neural network structures, all of activation is 
Relu. C3F2 which means three convolution layers and two Fully connected layers. Same as Mnih, V., 
et al. [7], C3F2 inputting single 84*84 grayscale image then through three convolution layers and two 
full connection, finally output q-value for each action. The more details about C3F2 see table 1. C2F2 
is less a convolution layer than C3F2, the more details about C2F2 see table 2. C1F2 is less a 
convolution layer than C2F2, the more details about C1F2 see table 3. 

Table 1. Convolutional neural network structure C3F2 
Layer Input Kernel Size Stride Num Filters Output 

C1 1*84*84 8*8 4 32 20*20*32 

C2 20*20*32 4*4 2 64 9*9*64 

C3 9*9*64 6*6 1 64 4*4*64 

F1 4*4*64 N/A N/A 512 512 

F2 512 N/A N/A 6 6 
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Table 2. Convolutional neural network structure C2F2 
Layer Input Kernel Size Stride Num Filters Output 

C1 1*84*84 8*8 4 32 20*20*32 

C2 20*20*32 4*4 2 64 9*9*64 

F1 9*9*64 N/A N/A 512 512 

F2 512 N/A N/A 6 6 

Table 3. Convolutional neural network structure C1F2 
Layer Input Kernel Size Stride Num Filters Output 

C1 1*84*84 8*8 4 32 20*20*32 

F1 20*20*32 N/A N/A 512 512 

F2 512 N/A N/A 6 6 

3.2 Reward Function 
Reward function [3] is a key part of RL in motion planning. There is no uniform reward function, 

such as, Mnih, V., et al. [7] for feedback good reward is 1 and bad is -1, if no feedback reward is 0.  
Zhang, F., et al. [12] have the reward function fሺdሻ ൌ 10ିଷ ∗ ሺδ/d െ 1ሻ , where, δ ൌ 0.05m  is 
threshold for distance. James, F., et al. [13] build the reward function fሺdሻ ൌ eିఊ∗ௗ, where, γ ൌ 0.99, 
d is the Euclidean distance between the end of the robot arm and the target point. So, through reading 
and analyzing a lot of literature, this paper proposes the convergence speed become one of the 
indicators of reward function II that accelerates system learning. 

In the experiment, N is maximum number of tries each episode, d୧  is the Euclidean distance 
between the end of the robot arm and the target point after execute action a୧, Δd is variation of the 
distance d୧. Specific reward function detailed in table 4. 

Table 4. Reward function and convergence speed  
I irrelevant II related 

01:  If Δd ൐ 0	 
02:    Set r୧ ൌ െ1 
03:  Else r୧ ൌ 1 

01:  If Δd ൐ 0  
02:    Set r୧ ൌ െ1 ൅ 1/ሺ1 ൅ N െ iሻ 
03:  Else r୧ ൌ 1 െ 1/ሺ1 ൅ N െ iሻ 

3.3 Algorithm 
The refresh rate is 60hz, in the simulation environment. Caffe framework only with CPU, initial 

random probability ε ൌ 0.9 (ε decrease with the increase of episode) to select random action a୲ (or 
with probability 1 െ ε to select action a୲ ൌ max

௔ᇲ∈஺
ܳ௧ሺݏᇱ, ܽᇱ; θሻ when given state ݏ௧, then do action a୲ 

and obtain the RGB image as ݔ୲ାଵ by a fixed monocular camera in mujoco. If t ൐ N then restart new 
episode, where N is maximum number of tries each episode. The ݏᇱ means that the maximum action 
ܽᇱ corresponds to state, given a state s then calculate the q value corresponding to each action a ∈ A, 
and select the maximum one action aᇱ . After image preprocessing ϕሺݔ୲ାଵሻ  we have ݏ௧ାଵ  and 
calculate the reward value r୲ by reward function. The image preprocessing includes turning the RGB 
image ݔ୲ into a grayscale image s୲ with size 84*84. 

Store sample ሺs୲, ܽ୲, ,୲ݎ s୲ାଵሻ into experience pool D, and only the size of experience pool D more 
than 1000, then training by randomly select part of data, here we choose batch size is 32. Update the 
network by random gradient descent, then repeat. The general framework is shown in figure 1 and 
the detailed algorithm is shown in table 5. Line 11 to 14 is update the network in table 5, the value of 
 .is set to 0.95 in the figure 1 ߛ
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Figure 1. System model image diagram. 

Table 5. Robot motion planning algorithm based on deep reinforcement learning. 
Robot motion planning algorithm based on DRL 

01: initial size of experience pool D is M 
02: initial action-value function Q with random weights 

03: for episode ൌ 1,M do 
04:   initial ݔଵ, d and image preprocessing ݏଵ ൌ ϕሺݔଵሻ 

05:   for t ൌ 1, T do 
06:     with probability ε to select action a୲, where, if Δd ൐ 0 then a୲ ∈ ሼܣ െ a୲ିଵሽ else a୲ ൌ a୲ିଵ 

07:     or with probability 1 െ ε select action a୲ ൌ max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱ; θሻ 

08:    do action a୲, obtain ݔ୲ାଵ 
09:    get next state ݏ୲ାଵ ൌ ϕሺݔ୲ାଵሻ, calculate the reward value r୲ by reward function 

10:    store sample ሺs୲, ܽ୲, ,୲ݎ s୲ାଵሻ into experience pool D 
11:    random small batch sample ሺs୨, ܽ୨, ,୨ݎ s୨ାଵሻ from D 

12:    if s୨ାଵ is terminal set y୨ ൌ r୨ 
13:    else set ݕ௝ ൌ ௝ݎ ൅ ݔܽ݉	ߛ

௔ᇲ∈஺
ܳሺݏᇱ, ܽᇱ;  ሻߠ

14:    random gradient descent on ሺݕ௝ െ ܳሺݏ௧, ܽ௧;  ሻሻଶߠ
15:   end for 
16: end for 

4. Experiments 

Experiment with robot JR605 (more details see website http://www.hsr2013.com), each joint has 
two actions (five degrees clockwise or five degrees counterclockwise), three joints and each time has 
six actions to select. We use the ADADELTA [14] that one of the Stochastic Gradient Descent 
algorithm to update the network, experiment defines an epoch is 5000 iterations, namely M ൌ 5000, 
each iteration (update one times of the parameters of network) sets batch samples size is 32, each 
epoch means training network by 5000 ∗ 32 samples. The experiment verifies the effectiveness of 
deep reinforcement learning under uncertain conditions, a visual image of the motion planning of the 
robot arm's reaching task using deep reinforcement learning can be seen in figure 5. 

Under Reward function II, experiment with three different convolutional neural network structures, 
from the figure 2 and figure 3 we can see that basically the same effect.  

Under the convolutional neural network structure F3C2, experiment with two different reward 
functions, from the figure 4 we can see that reward with convergence speed is done well and more 
efficient. 
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Figure 2. Average q-value with different 
convolutional neural network structures 

Figure 3. Average reward with different 
convolutional neural network structures 

 

Figure 4. Average q-value with different 
reward functions 

 

Figure 5. A visual image of the motion 
planning of the robot arm's reaching task using 

deep reinforcement learning 

5. Summary 

This article uses deep reinforcement learning for robot arm motion planning under uncertain 
conditions, which doesn't require precise environmental modeling, learning robot control strategy 
directly with high dimensional state input and achieving the robot arm motion planning from 
perception to action.  

In the future, we will add some noise when training in mujoco to make the difference between the 
simulation and the real environment smaller, focus on prior knowledge to improve the train learning 
of the system, such as teaching based on the drag torque sensor. 
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