

Robot Motion Planning Under Uncertain Condition Using Deep
Reinforcement Learning

Zhuang Chen1, a, Lin Zhou2, b and Min Guo2, c
1School of Chongqing University of Technology, Chongqing 400054, China;

2 School of Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
a cqcz0852@163.com, b cqchowlam@163.com, c ls58742@163.com

Keywords: Motion planning, Reinforcement learning, Deep reinforcement learning, Uncertain
condition.

Abstract. The motion planning of industrial robot plays an important role in today’s production
systems, such as Made in China 2025 and Industry 4.0. The motion planning under uncertain
condition is an important research topic in autonomous robots. For promoting the ability of motion
planning to adapt to the environment change, in this paper, we propose a deep reinforcement learning
(DRL) method which combines reinforcement learning with deep learning for industrial robot motion
planning. Our work shows that the DRL-agent is capable of learning how to control the robot to
successfully reach robotic tasks without explicit prior Knowledge of kinematics. We conclude that
DRL has great potential for industrial robots and production systems, especially in robot motion
planning.

1. Introduction

One of ultimate goals in robotic industry is to create autonomous robots in the field of artificial
intelligence (AI). Such robots equipped with actuators and sensors, can execute tasks with less human
intervention. Motion planning [1] is an important research topic in autonomous robots. Most motion
planning algorithms are based on the exact environmental model [2], which means these algorithms
cannot deal with the motion planning under uncertain condition that mainly refers to unknown
environment and uncertainty environment. The unknown environment is an environment that is very
complex and difficult to model accurately. The uncertainty environment refers to the results of robot
execution are biased due to control errors and environmental factors, Even the mission failed.

Reinforcement learning (RL) [3],which is a branch of machine learning (ML) [4],which is good at
controlling autonomous agent that interacts with the environment. RL improves the behavior of A in
the process of continuous interaction with the environment. For example, the environment of arcade
game Pac-Man is a maze. In the Pac-Man, the actions including up, down, left, and right, the reward
is to eat the bean (+) and meet the monster (-). The goal of Pac-Man is to get out of the maze and
maximize the accumulated reward value. The advantages of applying RL to motion planning
including without accurately model of environment, adaptability to new environment and self-
learning ability. However, RL has many challenges, high-dimensional state, no suitable reward
function, the reward value for action has sparse feature, training data is not easy to obtain, and so on.
Deep learning (DL) has made breakthroughs in computer vision [5] and speech recognition [6] in
recent years. Such as convolution neural network, multilayer perceptron, restricted Boltzmann
machine and recursive neural network to solve the environment perception in different scenarios. DL
provides the possibility to effectively solve the problem of high dimensional feature mapping in RL.
Deep reinforcement learning (DRL) [7] is a combination of DL and RL. In DRL, the state of RL is
expressed by deep neural network. The correlation between data samples generated by RL and no
suitable neural network structure problems appear when DRL solves high-dimensional state.

This paper use DRL methods to solve the robot motion planning problem in uncertain conditions.
The state is represented by the convolution neural network and obtaining a lot of training data through
simulation environment, using Pool of experience to solve the training data correlation, analyzing the
effects of different neural network structure and reward function on robot arm motion planning, taking

2nd International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 149

94

the number of attempts to make the right motion planning as one of the indicators of reward function
to improve training speed, improving algorithm q-learning to train the network and using stochastic
gradient descent algorithm to update network weights. The experimental environment is simulated
by mujoco [8]. The system makes right motion planning for a given starting point to ending point.
System input is the RGB image obtained by a fixed monocular camera in mujoco and output is the
best action for a given state. The experiment confirmed and improved DRL's ability to solve the robot
motion planning problem in uncertain conditions.

2. Background

RL technique is essentially a trial and error method which aims to replicate the human learning
process. The goal of RL is to maximize the accumulated reward value R୲ as computed by

R୲ ൌ෍ߛ௜ି௧
୒

୧ୀ୲

௜ݎ ሺ1ሻ

Where γ is the discount, N is maximum number of tries each episode.
The theoretical basis of RL is Markov decision making process (MDP) that the next state

associated with the current state and the current the action taken. Reinforcement learning algorithm
include based model (states, actions, transition probability, and rewards) and based free-model (states
and actions) that only knows part of the information, this article is based free-model. The RL updates
the table through the value iteration and select action by looking up the table. Turning the update of
the table into a function fitting problem, namely, the approximate state gives an approximate action,
and finally, update θ makes Q୲ approach Q∗. The table records the mapping from state to action, so,
it is impossible to deal with such massive state issue such as the go and robot motion planning, the
solution is to extract the main features sො of s, then we have the approximate Q-function Qሺsො, aሻ. So,
the form of data is critical to learning.

The problem of robot motion planning under uncertain conditions: given the unknown obstacles,
the initial position and target position in Euclidean space ܹ. With free collision, generate a sequence
of continuous path from start point to ending point. This paper does not directly give a sequence of
motion planning from the beginning to the end but select the best action in the current state s୲ until
the whole motion planning finished. Due to the RL doesn't need precise modeling experiment
environment, so the experiment is not set obstacles. Because RL without accurately model of
environment, the experiment is not set obstacles. The Euclidean space ܹ that the robot arm can reach,
robot arm action set is A ൌ ሼaଵ, … , a୩ሽ, the current state s୲ is the RGB image obtained by a fixed
monocular camera in mujoco, selecting the best action a୲ for a given state s୲ then do action a୲ in the
mujoco, getting next state s୲ାଵ, then calculating the reward value r୲ by reward function, repeat the
process until the whole motion planning is completed. We can say that the process of finding the best
motion planning is a reinforcement learning process.

The specific process is as follows:
1.Observe current state s୲
2.Select the best action a୲ for a given state s୲ then execute a୲
3.Observe next state s୲ାଵ
4.Calculate the reward value r୲ by reward function
5.Update the Q-value as follows:

Q୲ାଵሺs୲, a୲ሻ ൌ Q୲ሺݏ௧, ܽ௧ሻ ൅ α ቄr୲ ൅ γ	max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱሻ െQ୲ሺݏ௧, ܽ௧ሻቅ ሺ2ሻ

Where α ∈ ሾ0,1ሿ is the learning rate, γ ∈ ሾ0,1ሿ called the discount rate that determines the present
value of future rewards. Q୲ → Q∗	as t → 	∞, namely:

Q∗ሺs୲, a୲ሻ ൌ E ቂr୲ ൅ γ	max
௔ᇲ∈஺

ܳ∗ሺݏᇱ, ܽᇱሻ|s୲, a୲ቃ ሺ3ሻ

The mainly function of DL is understand state s୲, using the neural network replaces the lookup
table to solve the problem of high state dimension, extracting the main features ̂ݏ௧ of s୲ then similar
states can map to similar action.

Advances in Engineering Research, volume 149

95

3. Deep Re-enforcement Learning

In 2006, Hinton proposed a back-propagation (BP) algorithm based on the chain rule. In a broad
sense, the network structure of deep learning is also a kind of multi-layer neural network. The BP
algorithm makes multi-layer neural networks popular, deep learning has made breakthroughs in
computer vision and speech recognition, in recent years. DL has a strong environmental
understanding which means small number of states. In 2013, DeepMind [7] uses the deep neural
network to automatically extract complex features to solve the problem of high dimensional mapping,
combining DL with RL become Deep Reinforcement Learning (DRL) to learn control strategy
directly from high-dimensional raw data, putting convolutional neural network(CNN) with Q-
Learning then get Deep Q-Network (DQN) algorithm that input raw image ݏ௧ and output each action
q value.

RL widely used in mobile robot navigation and the control of biomimetic underwater microrobot,
DL helps indoor visual navigation [9] and other applications go farther [10]. Training with DL under
the simulation environment can reduce high-dimensional state and training data is not easy to obtain,
DL training requires that samples have labels, good independence and determination of target
distribution. However, reward always with noise, delay and sparsity in RL, current state ݏ௧ correlation
with next state ݏ௧ାଵ, the determination of target distribution is unstable and different scenarios have
different state distribution. Therefore, we need to solve these problems, using reward r୲ construct
sample’s label and putting sample ሺݏ௧, ܽ௧, ,௧ݎ ௧ାଵሻ into experience pool D until training by randomlyݏ
select part of data to solve the correlation between samples. Update the network through the loss
function Lሺθሻ until the whole network convergence.

Q-Learning update by:

Q୲ାଵሺs୲, a୲ሻ ൌ Q୲ሺݏ௧, ܽ௧ሻ ൅ α ቄr୲ ൅ γ	max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱሻ െQ୲ሺݏ௧, ܽ௧ሻቅ ሺ4ሻ

The loss function:

Lሺθሻ ൌ E ൥ቆr୲ ൅ γ	max
ୟᇲ∈୅

Q୲ሺݏᇱ, aᇱ; θሻ െQ୲ሺs୲, a୲; θሻቇ
ଶ

൩ ሺ5ሻ

Where θ is parameters of network, then using random gradient descent to update θ.
3.1 Model Architecture

Lin [11] used the neural network early to enhance the generalization ability of reinforcement
learning. Today we continue with the idea of using convolutional neural network (CNN), CNN needs
to constantly adjust the parameters to ensure network convergence.

The local feature size of the image determines the size of kernel per layer, the number of
convolutional layers and the number of kernel per layer determine the complexity of the neural
network model. This paper compares three different neural network structures, all of activation is
Relu. C3F2 which means three convolution layers and two Fully connected layers. Same as Mnih, V.,
et al. [7], C3F2 inputting single 84*84 grayscale image then through three convolution layers and two
full connection, finally output q-value for each action. The more details about C3F2 see table 1. C2F2
is less a convolution layer than C3F2, the more details about C2F2 see table 2. C1F2 is less a
convolution layer than C2F2, the more details about C1F2 see table 3.

Table 1. Convolutional neural network structure C3F2
Layer Input Kernel Size Stride Num Filters Output

C1 1*84*84 8*8 4 32 20*20*32

C2 20*20*32 4*4 2 64 9*9*64

C3 9*9*64 6*6 1 64 4*4*64

F1 4*4*64 N/A N/A 512 512

F2 512 N/A N/A 6 6

Advances in Engineering Research, volume 149

96

Table 2. Convolutional neural network structure C2F2
Layer Input Kernel Size Stride Num Filters Output

C1 1*84*84 8*8 4 32 20*20*32

C2 20*20*32 4*4 2 64 9*9*64

F1 9*9*64 N/A N/A 512 512

F2 512 N/A N/A 6 6

Table 3. Convolutional neural network structure C1F2
Layer Input Kernel Size Stride Num Filters Output

C1 1*84*84 8*8 4 32 20*20*32

F1 20*20*32 N/A N/A 512 512

F2 512 N/A N/A 6 6

3.2 Reward Function
Reward function [3] is a key part of RL in motion planning. There is no uniform reward function,

such as, Mnih, V., et al. [7] for feedback good reward is 1 and bad is -1, if no feedback reward is 0.
Zhang, F., et al. [12] have the reward function fሺdሻ ൌ 10ିଷ ∗ ሺδ/d െ 1ሻ , where, δ ൌ 0.05m is
threshold for distance. James, F., et al. [13] build the reward function fሺdሻ ൌ eିఊ∗ௗ, where, γ ൌ 0.99,
d is the Euclidean distance between the end of the robot arm and the target point. So, through reading
and analyzing a lot of literature, this paper proposes the convergence speed become one of the
indicators of reward function II that accelerates system learning.

In the experiment, N is maximum number of tries each episode, d୧ is the Euclidean distance
between the end of the robot arm and the target point after execute action a୧, Δd is variation of the
distance d୧. Specific reward function detailed in table 4.

Table 4. Reward function and convergence speed
I irrelevant II related

01: If Δd ൐ 0	
02: Set r୧ ൌ െ1
03: Else r୧ ൌ 1

01: If Δd ൐ 0
02: Set r୧ ൌ െ1 ൅ 1/ሺ1 ൅ N െ iሻ
03: Else r୧ ൌ 1 െ 1/ሺ1 ൅ N െ iሻ

3.3 Algorithm
The refresh rate is 60hz, in the simulation environment. Caffe framework only with CPU, initial

random probability ε ൌ 0.9 (ε decrease with the increase of episode) to select random action a୲ (or
with probability 1 െ ε to select action a୲ ൌ max

௔ᇲ∈஺
ܳ௧ሺݏᇱ, ܽᇱ; θሻ when given state ݏ௧, then do action a୲

and obtain the RGB image as ݔ୲ାଵ by a fixed monocular camera in mujoco. If t ൐ N then restart new
episode, where N is maximum number of tries each episode. The ݏᇱ means that the maximum action
ܽᇱ corresponds to state, given a state s then calculate the q value corresponding to each action a ∈ A,
and select the maximum one action aᇱ . After image preprocessing ϕሺݔ୲ାଵሻ we have ݏ௧ାଵ and
calculate the reward value r୲ by reward function. The image preprocessing includes turning the RGB
image ݔ୲ into a grayscale image s୲ with size 84*84.

Store sample ሺs୲, ܽ୲, ,୲ݎ s୲ାଵሻ into experience pool D, and only the size of experience pool D more
than 1000, then training by randomly select part of data, here we choose batch size is 32. Update the
network by random gradient descent, then repeat. The general framework is shown in figure 1 and
the detailed algorithm is shown in table 5. Line 11 to 14 is update the network in table 5, the value of
 .is set to 0.95 in the figure 1 ߛ

Advances in Engineering Research, volume 149

97

Loss function

Experience
Reply D

max (, ;)a Q s a   

r

(, , s')s a

(, , ,)s a r s

s

a= arg max (, ;)a Q s a 
environm

ent
Agent

(, ,)s a s

Reward
Function

Figure 1. System model image diagram.

Table 5. Robot motion planning algorithm based on deep reinforcement learning.
Robot motion planning algorithm based on DRL

01: initial size of experience pool D is M
02: initial action-value function Q with random weights

03: for episode ൌ 1,M do
04: initial ݔଵ, d and image preprocessing ݏଵ ൌ ϕሺݔଵሻ

05: for t ൌ 1, T do
06: with probability ε to select action a୲, where, if Δd ൐ 0 then a୲ ∈ ሼܣ െ a୲ିଵሽ else a୲ ൌ a୲ିଵ

07: or with probability 1 െ ε select action a୲ ൌ max
௔ᇲ∈஺

ܳ௧ሺݏᇱ, ܽᇱ; θሻ

08: do action a୲, obtain ݔ୲ାଵ
09: get next state ݏ୲ାଵ ൌ ϕሺݔ୲ାଵሻ, calculate the reward value r୲ by reward function

10: store sample ሺs୲, ܽ୲, ,୲ݎ s୲ାଵሻ into experience pool D
11: random small batch sample ሺs୨, ܽ୨, ,୨ݎ s୨ାଵሻ from D

12: if s୨ାଵ is terminal set y୨ ൌ r୨
13: else set ݕ௝ ൌ ௝ݎ ൅ ݔܽ݉	ߛ

௔ᇲ∈஺
ܳሺݏᇱ, ܽᇱ; ሻߠ

14: random gradient descent on ሺݕ௝ െ ܳሺݏ௧, ܽ௧; ሻሻଶߠ
15: end for
16: end for

4. Experiments

Experiment with robot JR605 (more details see website http://www.hsr2013.com), each joint has
two actions (five degrees clockwise or five degrees counterclockwise), three joints and each time has
six actions to select. We use the ADADELTA [14] that one of the Stochastic Gradient Descent
algorithm to update the network, experiment defines an epoch is 5000 iterations, namely M ൌ 5000,
each iteration (update one times of the parameters of network) sets batch samples size is 32, each
epoch means training network by 5000 ∗ 32 samples. The experiment verifies the effectiveness of
deep reinforcement learning under uncertain conditions, a visual image of the motion planning of the
robot arm's reaching task using deep reinforcement learning can be seen in figure 5.

Under Reward function II, experiment with three different convolutional neural network structures,
from the figure 2 and figure 3 we can see that basically the same effect.

Under the convolutional neural network structure F3C2, experiment with two different reward
functions, from the figure 4 we can see that reward with convergence speed is done well and more
efficient.

Advances in Engineering Research, volume 149

98

Figure 2. Average q-value with different
convolutional neural network structures

Figure 3. Average reward with different
convolutional neural network structures

Figure 4. Average q-value with different
reward functions

Figure 5. A visual image of the motion
planning of the robot arm's reaching task using

deep reinforcement learning

5. Summary

This article uses deep reinforcement learning for robot arm motion planning under uncertain
conditions, which doesn't require precise environmental modeling, learning robot control strategy
directly with high dimensional state input and achieving the robot arm motion planning from
perception to action.

In the future, we will add some noise when training in mujoco to make the difference between the
simulation and the real environment smaller, focus on prior knowledge to improve the train learning
of the system, such as teaching based on the drag torque sensor.

References

[1]. Latombe, J.-C., Robot motion planning. Vol. 124. 2012: Springer Science & Business Media.

[2]. LaValle, S.M., Planning algorithms. 2006: Cambridge university press.

[3]. Sutton, R.S. and A.G. Barto, Reinforcement Learning I: Introduction. 1998.

[4]. Lecun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444.

[5]. Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional
neural networks. Advances in neural information processing systems, 2012. 25(2): p. 1097-1105.

[6]. Hinton, G., et al., Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 2012. 29(6): p. 82-
97.

[7]. Mnih, V., et al., Playing Atari with Deep Reinforcement Learning. Computer Science, 2013.

‐2

3

8

0 50 100 150 200 250

A
ve

ra
ge

 q
-v

al
ue

Train Epochs

c1f2 c2f2 c3f2

‐0.1

0.1

0.3

0.5

0 50 100 150 200 250

A
ve

ra
ge

 r
ew

ar
d

Train Epochs

c1f2 c2f2 c3f2

‐4

1

6

11

0 50 100 150 200A
ve

ra
ge

 q
-v

al
ue

Train Epochs

Reward function I Reward function II

Advances in Engineering Research, volume 149

99

[8]. Todorov, E., T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. in
Ieee/rsj International Conference on Intelligent Robots and Systems. 2012.

[9]. Zhu, Y., et al., Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement
Learning. 2016.

[10]. Tai, L. and M. Liu, Deep-learning in Mobile Robotics - from Perception to Control Systems:
A Survey on Why and Why not. 2016.

[11]. Lin, L.J., Reinforcement learning for robots using neural networks. 1993.

[12]. Zhang, F., et al., Towards Vision-Based Deep Reinforcement Learning for Robotic Motion
Control. Computer Science, 2015.

[13]. James, S. and E. Johns, 3D Simulation for Robot Arm Control with Deep Q-Learning. 2016.

[14]. Zeiler, M.D., ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Advances in Engineering Research, volume 149

100

