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Abstract. In this work, a novel controller dynamic linearization based model free adaptive predictive 
control algorithm (CFDLc-MFAPC) for a class of discrete nonlinear system is proposed. This method 
introduces dynamic linearization parameters of ideal controller based on dynamic linearization 
technology, and combines predictive control idea to realize predictive function in controller. 
Compared with the model-based control method, the advantage of this method is mainly that it is a 
pure data driven control (DDC)  method, and does not need any model information, but only needs 
the I/O data of the system. Moreover, the introduction of predictive control ideas not only improves 
the robustness of the system, but also realizes the model free adaptive prediction effect for the 
expected mutation. By this method, the robustness of the algorithm can be improved. The validity of 
the proposed method is verified by numerical simulations.  

1. Introduction 

With the development of information science and technology, more complex equipment was born, 
production equipment to the large-scale, complex development, based on the traditional theory and 
method of model control is widely used in various industries, but the control effect and its accuracy in 
many cases cannot satisfy people's control requirements, especially in the control of some difficult 
modeling system, it is more weak. 

Due to the development of modern electronic technology, most of the industrial production 
processes produce huge amounts of production data every day, and the real operating information of 
the system is contained in these data. How to control the input and output data of the controlled object 
directly and effectively. How to reduce the dependence of the control system on the mathematical 
model of the controlled object and how to improve the control system is discussed, the robust 
performance of these systems is an urgent problem to be solved in the industrial field. 

In this case, data driven control method becomes a feasible method, which can effectively avoid 
using the traditional model only depends on the input and output (I/O) measurement data of the 
controlled plant. Until now, many kinds of DDC approaches have emerged [1-4]. there are a variety 
of data-driven control methods, e.g. such as model-free adaptive control (MFAC) [5], lazy learning 
control (LL) [6], virtual reference feedback tuning (VRFT) [7], iterative feedback tuning (IFT) [8], 
correlation-based controller tuning (CbT) [9], etc. Among above mentioned data driven control 
methods, the model free adaptive predictive control (MFAPC) [10] approach, which has been widely 
used in recent years, e.g., the predictive function is implemented in the controller using a 
lazy-learning (LL)-based model free adaptive predictive algorithm[11], control of oxygen enriched 
air Concentration[12] etc. 

The existing researches about this topic mainly focus on the model free adaptive control systems. 
However, for the model free adaptive predictive control system, the controller dynamic linearization 
is still an open problem. In this paper, we consider the controller dynamic linearization of MFAPC 
and give the  ideal controller structure and time-varying parameters of the iedal controller. 

In this work, a novel model free adaptive predictive control method based on controller dynamics 
linearization. The main feature of the proposed method is that, two equivalent dynamic linearization 
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data models, one is on the generic ideal controller to a general discrete-time nonlinear system and the 
other is on the controlled plant, are used to design and analysis the compact form dynamic 
linearization based model free adaptive predictive controller (CFDLc-MFAPC) scheme, and neither 
the controlled plant model nor the structure information are involved in the controller design and 
analysis. The time varying pseudo-partial derivative (PPD) is tuned by an optimization method on a 
given controller designing criterion function using on-line measured I/O data of the controlled plant 
in close loop. Moreover, the introduction of predictive control ideas, such that the controller not only 
shows good robustness but also can realize the effect of model-free adaptive prediction for the sudden 
change of the desired signal. This method not only avoids the modeling of the controlled object, but 
also has strong robustness. Numerical simulations verify the effectiveness of the proposed method. 

The rest of the paper is organized as follow: Section II introduces the main result of the new type 
of MFAPC method, including description of CFDLc data model, both on ideal controller and 
controlled plant, controller designs. Then, the PPD in CFDLp and the parameters in the CFDLc are 
estimated in section III. The numerical examples are given in the section IV and Section IV concludes 
the work. 

2. CFDLc-MFAPC Controller Design  

In this section, the dynamic linearization technology and the controllers dynamic linearization 
technology are introduced in the part A and the part B, respectively. On this basis, the part C 
introduces the design of  model free adaptive predictive control based on the dynamic linearization of 
the controller. 
2.1 Dynamic Linearization Technique 

Consider a class of SISO nonlinear discrete-time systems described by 
( 1) ( ( ), , ( ), ( ), , ( ))y uy k f y k y k n u k u k n                                             (1) 

Where yn , un  are the unknown positive constants of the output ( )y k and the input 
( )u k respectively, ( )f   is an unknown nonlinear function.  

A1a. The partial derivative of ( )f  with respect to the ( 2)th
yn   variable is continuous, for all 

k with finite exceptions. 
A2a. System (1) satisfies generalized Lipschitz condition, for all k with finite exceptions, that is, 

1 2 1 2( 1) ( 1) ( ) ( )y k y k b u k u k     , 

For 1 2( ) ( )u k u k  and any 1 2k k , 1 2 0k ,k   where 

( 1) ( ( ), , ( ), ( ), , ( ))i i i y i i uy k f y k y k n u k u k n      , 1,2i   ; and b  is a positive constant. 

Lemma 1[10] Consider nonlinear system (1) satisfying A1 and A2. If ( ) 0u k  , then there exists 

a time-varying parameter ( )k R  , called pseudo partial derivative (PPD), such that system (1) can 
be transformed into the following CFDL data model, 
  ( 1) ( ) ( )y k+ k u k   (2)

With ( )k b   for any k  under the case of linearization length constant (LLC) 1L  . 

Based on above equivalent incremental data model, the following one-step-ahead prediction 
equation can be got straightforwardly 
  ( 1) ( ) ( ) ( )y k y k k u k    (3)

Compared with other linearization methods for nonlinear function, this dynamic linearization 
method possesses the following features. First, it does not require the mathematics model, order and 
time delay of the controlled plant. Second, it is an equivalent dynamic linearization data model rather 
than a static approximation model and no high-order term is dropped. Third, the dynamic 
linearization model, having time-varying incremental from with very simple structure and very few 
parameters, is a data model only for the purpose of controller design rather than first principles model. 
The introduction of linearization length constant can avoid the high-order controller design. In 
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CFDLp data model, all of the nonlinear properties and the parameter estimation error are fused into 
the scalar PPD, thus the dynamic behavior of the PPD may be very complicated, and, as a result, it 
would be difficult to design an algorithm to capture this complex dynamic behavior. Finally, the 
dynamic behavior of pseudo-partial derivative is not sensitive to the time-varying parameter, 
structure, or delay of a controlled plant, but these factors explicitly formulated in the first principles 
model or the identified model, in which they are hard to handle. 

Through dynamic linearization technology, the nonlinear system (1) is equivalent to the data 
model (2). In the sequel, we will forcos on controller dynamically linearization. 
2.2 Controller Dynamic Linearization 

For nonlinear system (1), assume that there exists an ideal nonlinear controller of the following 
from (4), which can stabilize the plant (1) and drive the plant output to track the desired signal 
asymptotically. 
  ( ) ( ( 1), , ( ), ( 1), , ( )),c eu k C u k u k n e k e k n        (4)

Where ( )C  is a smooth unknown nonlinear function, ( )u k is the control input, and 
( ) ( ) ( )de k y k y k  is the output tracking error at time instant k ; ( ), ( )dy k y k are the desired and 

actual output of the controller plant, respectively; ,c en n are the two unknown orders of the 
controller[13] 

In this section, a novel controller design method, that is, controller compact form dynamic 
linearization based MFAPC method (CFDLc-MFAPC), is proposed for controlled plant (1). 

Different from the prototype MFAC, the proposed method is based on the equivalent dynamic 
linearization method both on the ideal controller and on the controlled plant, which can be realized 
merely using the I/O data of the controller and of the controlled plant. 

Before presenting the details, some assumptions are made as follows. 
A1b. The controller (4) is a smooth nonlinear function, and the partial derivatives of ( )C   with 

respect to error input signals ( )e  are continuous. 

A2b. The system (4) is generalized Lipschitz, that is, for any 1( ) ( 1)u k b e k    is satisfied for 

any time instant k and ( 1) 0e k   . Where 1b  is a positive constant, and ( 1) ( 1) ( )e k e k e k     , 
( ) ( 1)u u k u k    . 

Remark 1: Similar to other data-driven control methods, it is assumed that A1 is the general 
condition of the ideal controller. 

Suppose that A2 is a bounded constraint on the influence of the output tracking error increment on 
the control input increment, which indicates that the controller is stable. 

The following theorem indicates that the general discrete time non-linear system satisfies 
assumption A1 and A2 can be convert to CFDLc model which is an equivalent dynamical form 
linearization model.  

Theorem 2: Consider nonlinear controller (4), satisfying A1 and A2, if ( 1) 0e k     , then there 

exists a time-varying parameter ( )k R  , called the pseudo-partial- derivative (PPD), such that 
system (4) can be transformed into the following equivalent dynamic linearization data model, called 
compact form dynamic linearization based controller (CFDLc) [14] 
  ( ) ( ) ( 1)u k k e k    (5)

With 1( )k b   for any time k . 

Proof: Please see reference[14].  
Remark 2: Similar with CFDLc, PFDL based controller could be easily derived, and it has been 

studied in our other work. Like IFT, VRFT in the other DDC methods, the tracking error ( 1)e k   is 
not available since the plant model is unknown, instead of a huge amount of measurement I/O data of 
the controlled design becomes an obstacle to the implementation of MFAC method. In this case, a 
remedy or an intuitive strategy is using a data model, e.g., equivalent CFDL data model, to predict the 
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multi-step-ahead system output, consequently the estimated value of the tracking error ( 1)e k   will 
be available. 

A3b 1( )k b   , +k Z  , where 1b  is a small positive constant. 

Remark 3: The PPD k（ ） in controller (5) is negative since feedback strategy is used. Moreover, 

since the controller is artificially designed, the bound 11,b b     of controller parameters could be 

known in prior. 
Using this assumption and Theorem 2, we have  

  *
11 ( ) 0,b k b k Z         (6)

Since controller (5) is the equivalent from of the ideal controller (4) for controlled plant (1), it 
means that the controller with a qualified parameter estimation algorithm is capable to generate a 
perfect input signal theoretically to drive the system to get a perfect control performance, that 
is ( 1) 0e k   . However, it does not mean the actual output tracking error will vanish at one-step 
ahead consequently due to the uncertainties or estimation error in practice. To make the ideal 
controller (5) have a causal implementable form in practice and to show the convergence analysis 
without involving any confusion, we redefine the actual tracking error at instant 1k   
as ( 1) ( 1) ( 1)dk y k y k      . This leads to the practical controllers based on the equivalent form 
(5) of the ideal controller (4) as follows  
  ( ) ( ) ( ),u k k k    (7)

If the controlled plant satisfies the following assumptions, then the equivalent compact form 
dynamic linearization data model of plant (CFDLp) can be obtained. 

A4b The controller (1) is a smooth nonlinear function, and the partial derivatives of ( , , )P     with 
respect to the control input ( )u   are continuous. 

A5b System (1) is generalized Lipschitz, that is ( 1) ( )y k b u k     for any k and ( ) 0u k  , 

where ( 1) ( 1) ( )y k+ y k y k    , ( ) ( ) ( 1)u k u k u k    , ( ) 0u k   for any 0k   and b  is a positive 
constant. 

Under these assumptions, nonlinear system (1) can be equivalently expressed as following 
dynamic linearization data model. 
  ( 1) ( ) ( ) ( )y k y k k u k    (8)

Where ( )k is the PPD of controlled plant satisfying with ( )k b   for any k . 

The proof of derivation of (8) is similar to the proof of Lemma 1, and is omitted here due to page 
limited. In next subsection, a type of control method, i.e., CFDLc-MFAPC, is designed for a class of 
nonlinear system. 
2.3 Design of Predictive Controller Based on Dynamic Linearization of Controller 

When using the practical controller (7), the unknown time-varying PPD parameter must be 
available before it is utilized in a control loop. 

According to (7) and (8), N -step ahead prediction equations are given in follow[10] 
  ( 1) ( ) ( ) ( ) ( )

( 2) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( 1) ( 1)

2 ( 2) ( 2) ( 2)

( 1) ( 1) ( 1)

( )

y k y k k k k

y k+ y k k k k+

=y k k k k k k k+

y k+N =y k N k N k N k N

=y(k N ) k N k N k N

k N k N k N

y k

  
  

     

  
  

  

  
    

   

        
        

      

 




( ) ( ) ( ) ( 1) ( 1) ( 1)k k k k N k N k N     













         

 

(9)
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Let  
( ) [ ( 1), , ( 1)]

( ) [ ( ), , ( 1), , ( 1)]

( ) [11 ,1]

( ) ( ) 0 0 0 0

( ) ( ) ( 1) ( 1) 0 0 0

( )
( ) ( ) ( 1) ( 1)

0

( ) ( ) ( 1) ( 1) ( 1) ( 1)

T
N

T
N u

T

u u

u u

Y k y k y k N

k k k N k N

E k

k k

k k k k

A k
k k k N k N

k k k k k N k N

  

 
   

   

     

   

        



 


   

     


 





   
   

   


，，

( 1) ( 1)
N N

k N k N 


 
 
 
 
 
 
 
 

     

 

Where ( 1)NY k   denotes the N-step ahead prediction vector of the system output, ( )kN  is 

control input increment vector, and Nu  is the control input horizon. 
Then equation (9) can be rewritten in a compact form 

  ( 1) ( ) ( ) ( ) ( )N NY k E k y k A k k    (10)

If ( 1) 0, uu k j j N     , then prediction equation (10) becomes 
  1( 1) ( ) ( ) ( ) ( )

uN NY k E k y k A k k    (11)

where 1

( ) ( ) 0 0 0

( ) ( ) ( 1) ( 1) 0 0

( )
( ) ( ) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( 1) ( 1) ( 1) ( 1)
u

u u

u u N N

k k

k k k k

A
k k k k k N k N

k k k k k N k N

k

 

   

     

     


 


     

     

 
 
 
 
 
 
 
 
 

   


   


. 

In (11), ( )k  are unknown and have to be replaced by their estimated and predicted values ˆ( )k , 

in order to implement prediction equation(11), ( )k must be estimated first. 

3. Estimation and Prediction of Parameters 

3.1 Estimation of ( )k in CFDLc 
Consider the following cost function with an additional penalty on the abrupt rate of estimated 

parameter 
  1

2 2

1 0

( ( )) ( ( ) ( )) ( )
u

NN

d

i j

J k y k i y k i k  


 

       (12)

Where 0  is weighting factor series. Nothing that ( 1)y k  is unavailable at instant k since 
model of controlled plant is unknown.  

Let * * *( 1) ( 1), , ( )
T

NY k+ = y k y k N    , the cost function (12) becomes  

  * *( 1) ( 1) ( 1) ( 1) ( ) ( )
u u

T T
N N N N N NJ Y k Y k Y k Y k k k                  (13)

Substituting (11) into (13) and using the optimality condition 0
( )

uN

J

k




  yield the control law 

  1 *
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( 1)

u N

T T
N dk A k A k I A k E k y k Y k


            (14)

Thus, the control input at current time k is obtained according to the receding horizon principle as 
follows 
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  ˆ ˆ( ) ( 1) ( )
u

T
Nk k g k       (15)

Where  1,0, ,0
T

g =  . 

Thus we need to resort to the CFDLp data model (2), which is an equivalent dynamic data model to 
the original controlled plant (1). 

3.2 Estimation of ( )k in CFDLp 
The value of PPD in CFDLp data model should be obtained by an estimation algorithm for time 

varying parameter, since it is a time-varying parameter. Here, we use the following modified criterion 
function to derive the estimation algorithm 
  2 2ˆ( ( )) ( ( ) ( ) ( 1)) ( ( ) ( 1))J k y k k u k k k              (16)

Where 0  is weighting factor. 

Since 1( )A k in (15) contains unknown PPD parameters ( ), ( 1) ( 1)uk k+ k+N   ， ， , some 
time-varying parameter estimation or prediction algorithm should be developed when it is used in 
applications. Theoretically specking, any estimation algorithm for time- varying parameters can be 
applied to PPD parameter estimation, but we still use the modified projection algorithm to estimation 

( )k here in order to facilitate the theoretical analysis for the control system, that is  
 

2

( 1)ˆ ˆ ˆ( ) ( 1) ( ) ( 1) ( 1) ,
( 1)

u k
k k y k k u k

u k
  


             

  (17)

And ˆ( )k denotes the estimation of ( )k . 

Since ( 1) ( 1)uk+ k+N  ， ，  cannot be calculated from I/O data till sample time k  directly, 

( 1) ( 1)uk+ k+N  ， ，  need to be predicted according to the past estimated sequence 
ˆ ˆ(1) ( )k ， ， .For simplicity, the simple two-level prediction method are cited as follows. 

Assumed that the estimated values ˆ ˆ(1) ( )k ， ，  have been calculated by (17) at time k . Using 
these estimated values, an auto-regressive model (AR) for prediction is constructed as follows 
 

1 2
ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( 1) ( ) ( 1),

pn pk k k k k k k n                (18)

Where , 1, ,i pi n    is coefficient, and pn  is the fixed model order, which is usually set to be 2~7 

as recommened by [10] 
Using (18), prediction equation becomes 

 
1 2

ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( ) ( 1) ( ) ( ),
pn pk j k k j k k j k k j n                   (19)

Where 1, , 1.uj N    

Defining 1( ) ( ), , ( )
p

T

nk k k      , it is determined by following equation 

 
2

ˆ( 1) ˆ ˆ( ) ( 1) ( ) ( 1) ( 1) ,
ˆ( 1)

Tk
k k k k k

k

    
 

         
  (20)

Where ˆ ˆˆ( 1) ( 1), , ( )
p

T

n pk k k n        , and (0,1]   is a positive constant. 

3.3 Control Scheme of CFDLc-MFAPC 
Integrating the control law algorithm 

  ˆ( ) ( ) ( )u k k k      (21)
By integrating the control algorithm (21), the parameter estimation algorithm (17), and the 

prediction algorithm (14) and(15), the CFDL based model-free adaptive predictive control 
(CFDL-MFAPC) scheme is designed as follows 
  1

1 1 1
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1)

u N

T T
N dk A k A k I A k E k y k Y k+


           (22)

  ( ) ( 1) ( )
u

T
Nk k g k       (23)
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2

( 1)ˆ ˆ ˆ( ) ( 1) ( ) ( 1) ( 1) ,
( 1)

u k
k k y k k u k

u k
  


             

  (24)

  ˆ ˆ( ) (1),k   if ˆ ˆ( )k   or ˆ( )k b    (25)

Gives the control scheme of CFDLc-MFAPC for the nonlinear system (1). ˆ0, 0,k     is a 

small positive constant, and (1)  is the initial value of ˆ k（ ）. 

Remark 4 The reason why we reset the 1ˆ ( )k b    as (18) is that the controller gain of 
ˆ ( )k should not be too small. Otherwise, it cannot be used anymore since it is a controller gain. On 

the contrary, the controller gain cannot be very large either. Otherwise, it is not implementable or 
energy saving device. The sign of ˆ ( )k is always negative and ˆ k（ ）is positive according to the 
resetting conditions in algorithm (18)-(20), which are added into this CFDLc-MFAPC scheme to 
make the scheme have the tracking ability for the time varying parameter. 

4. Simulation Comparison 

In this section, numerical example is given to show the effectiveness and the advantages of 
CFDLc-MFAPC methods by comparisons with other typical DDC methods, PID, CFDLc-MFAC and 
MFAC, respectively. 

It is worthy pointing out that the following models are only used to generate the I/O data, and no 
any dynamics of the plants is involved in the controller design. 

Example  Hammerstein system[15] 
  2 3( ) 1.5 ( ) 1.5 ( ) 0.5 ( )

( 1) 0.6 ( ) 0.1 ( 1) 1.2 ( ) 0.1 ( 1)

x k u k u k u k

y k y k y k x k x k

  
      

  (26)

CFDLc-MFAPC: The initial value and parameter setup of the scheme (26)-(30) is ˆ (1) 0.2,    
90  . 

CFDLc-MFAC: The initial value and parameter setup is ˆ(1) 0.2,    1  . 

MFAC: The initial value and parameter setup of the scheme is ˆ(1) 1,   1  . 

PID: The initial value and parameter setup of the scheme is 0.32,pk   0.18ik  , 0.12dk  . 
The comparisons of tracking performance are depicted in Fig.1, and the corresponding control 

inputs are shown in Fig. 2. The numerical indexes are listed in Table I, including the ITAE 
  4 50

1
( ( ) )IAE ii k

e e k


     (27)

And sum of squares of control input rate 
  200 2

1
( )TSS k

u u k


     (28)

 

Fig.1. Tracking Performance 
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Fig.2. Control Input 

Table 1 The indexes of the four methods  
 CFDLc-MFAPC CFDLc-MFAC MFAC PID 

eIAE  0.6141 1.4580 0.8718 1.607 

TSSu  0.3470 0.7176 0.4573 0.6099 
 

From Fig.1, it can be seen that the four data driven control methods are effective, and the control 
performance of CFDLc-MFAPC is superior in terms of the indexes shown in Table I. According to 
the detail view in Fig. 1, we can also see that the CFDLc-MFAPC has relatively shortest rising time 
and its overshoot could be neglected, while these specifications in both PID, MFAC and 
CFDLc-MFAC are not so satisfactory. 

5. Conclusion 

In this work, a novel CFDLc-MFAPC scheme, using dynamic-linearization both on the ideal 
controller and the controlled plant (CFDLc and CFDLp)of MFAPC, is proposed for a class of 
nonlinear systems, and parameters of the dynamic linearization data models, both the controller and 
the controlled plant, are estimated merely utilizing the on-line measured I/O data of the controlled 
plant. Compared with the existing methods, the control performance is more stable and the control 
effect is more reliable. The correctness and effectiveness of the proposed scheme is verified by 
demonstrated by extensive simulation comparisons. Since the entire control system design only 
depends on the measured I/O data of closed-loop system rather than the first principles model or the 
identified model, it is a pure data driven or model free control method, and the problems of 
unmodeled dynamics and conventional robustness in traditional MBC framework are absent. 
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