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Abstract. In recent years, more and more hash learning methods have been applied to solve large-
scale vision problems. It has been shown that learning hash function by using supervised information 
can boost hashing quality. The state-of-the-art image retrieval hashing methods based on visual 
features lacks of learning ability, the image expression ability is weak and the efficiency of large-
scale image retrieval is low. In this paper, we propose a new supervised hashing framework based on 
deep Residual Networks and Iterative Quantization hashing. Firstly, we exploit the learning abilities 
of deep residual network to mine the inherent hidden relationship of image content, extract deep 
feature descriptors, and increase the visual expression of images Secondly, Iterative Quantization 
Hashing is applied to learn from the high-dimensional image feature and map into low-dimensional 
hamming space and achieve compact Hash codes. Finally, image retrieval is accomplished in low-
dimensional hamming space. Experimental results of MNIST, CIFAR-10, CIFAR-100 and Caltech 
256 show that the expression ability of visual feature is effectively improved and the image retrieval 
performance is substantially boosted compared with other related methods. 

1. Introduction 

With the big data era coming, the Internet images, video, audio, text and other heterogeneous data 
explosive growth. For these rich visual information Picture, how to query and retrieve the images 
needed by the users in the vast image library conveniently, quickly and accurately, and become a 
research hot spots in the field of multimedia information retrieval [1]. The image retrieval technology 
is gradually developed into text-based image retrieval technology based on text-based image retrieval. 
Content-based image retrieval methods give full play to the advantages of the computer over 
repetitive tasks, and liberate people from artificial annotations that require a lot of manpower, material 
and financial resources. After decades of development, content-based image retrieval technology has 
been widely used in search engines, e-commerce, medicine, and other aspects of life. 

Large-scale image retrieval problems, there are high-dimensional, massive data, computing time-
consuming and other issues. In order to achieve efficient retrieval of large-scale images, an 
approximate nearest neighbor (ANN) is proposed [1]. A classic example of solving this problem is 
based on trees such as kd-tree. However for high-dimensional data, most tree-based methods are 
significantly affected and their performance is usually reduced to linear search. 

In recent years, hash learning has been widely used in information retrieval and other related fields 
[2]. In the field of large-scale image retrieval, the hash learning maps the high-dimensional features 
of the image to a compact binary hash codes. Due to the computational efficiency and storage space 
advantages of Hamming distance, Hashing can solve the problem of storage space, computational 
complexity and communication overhead on large-scale image retrieval. 

In this paper, we investigate the recently widely-applied technique, deep learning and Iterative 
Quantization (ITQ) [3], to learn hash. For this investigation, we apply deep Residual Networks 
(ResNet)[4] to extract deep feature description and ITQ to learn hash function for fast image retrieval. 
Experimental results on the MNIST, CIFAR-10, CIFAR-100 and Caltech 256, The method achieves 
better performance than other related methods. The empirical and comparative study shows ResNet 
hash achieves better results than other related methods. 
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2. Related Work 

Hash learning can be divided into unsupervised hash, and supervised hash.  
The unsupervised hash method does not take into account the data of the oversight information, 

including Locality Sensitive Hashing (LSH)[2], spectral hash  (SH)[5], Iterative Quantization (ITQ) [3] 
and so on; LSH generates a set of random linear projection as hash functions. SH first employs PCA on 
the original data, then calculate the analytical Laplacian eigefunctions along the principal directions. 
Hash codes are generated according to the projection based on these eigenfunctions.ITQ is also a PCA-
based hashing method which first conducts PCA on the original data and then finds an orthogonal matrix 
to make the variance of each bit maximized and hash bits pairwise uncorrelated. PCA-Random Rotation 
(PCA-RR)[3] is the basic version of ITQ, which adopts the random orthogonal matrix instead of learning 
based orthogonal matrix proposed in ITQ. 

The supervised hash method utilizes the tag information of the dataset or the similarity point to the 
information as supervisory information. including the supervised nuclear hash(KSH)[6], BRE[7], and so 
on. KSH is a kernel based method which maps the data to binary hash codes by maximizing the 
separability of code inner products between similar and dissimilar pairs. BRE does not require any 
assumptions on data distribution, and directly learns the hash functions by minimizing the reconstruction 
error between the distances in the original feature space and the Hamming distances in the embedded 
binary space. Minimal Loss Hashing (MLH)[8]: By treating the hash code as the latent variables, MLH 
adopts the structured prediction formulation for hash learning.  

Deep Learning: Deep learning aims to learn hierarchical feature representations by building high-
level features from raw data. In recent years, a variety of deep learning algorithms have been proposed 
in computer vision and machine learning [9,10], and some of them have successfully applied to many 
visual analysis applications image classification, object detection, action recognition, face verification, 
and visual tracking. 

Deep learning has been used for image retrieval[11-14]. Very recently, Xia et al [15]proposed CNNH, 
a supervised hashing method in which the learning process is decomposed into a stage of learning 
approximate hash codes from the supervised information, and a stage, followed by, of simultaneously 
learning hash functions and image representations based on the learned approximate hash codes. Lai et 
al [14]developed a “one-stage” supervised hashing method for image retrieval, which generates bitwise 
hash codes for images via a carefully designed deep architecture. The proposed deep architecture uses a 
triplet ranking loss designed to preserve relative similarities. However, using triples as supervised 
information in his paper, the quality of triples directly influence the precision of retrieval and large work 
to select. Lin et al [9]present a simple yet effective deep learning framework to create the hash-like 
binary codes for fast image retrieval. It simultaneously learn domain specific image representations and 
a set of hash-like functions However, this method did not consider the quantization error while 
transforming the sequent value into binary and the independence of hash functions. 

ResNet have been successfully applied to a wide range of problems, such as image 
recognition[4,10,16],object detection[4]and so on. ResNet can rather fast decelerate the training of neural 
network, and descriptors send layer by layer, the descriptors r representing ability of output is guaranteed. 
The using of batch normalization and global pool can lead to better generalize network. Inspired by these 
successful applications. ITQ can get a better projection matrix by approximating the smallest error 
between real data and hash codes. In this work we in virtue of the advantage of ResNet and hash learning, 
proposed ResNet network and ITQ to learn binary hash codes applied to large-scale image retrieval. 

Based on the above research, this paper proposes an image retrieval method based on ResNet and 
ITQ,this method referred to as RITQ. The basic idea is to introduce a deep residual network to learn the 
training data, and to use its special network, the hash function needs to satisfy the constraints of 
independence and least quantization error. This paper presents a binary hash function learning algorithm 
that takes into account the independence between hash functions and the quantization error caused by 
thresholding 
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3. Method 

In this sectionwe solve the problem of learning binary codes . Firstly we will apply the improved deep 
residual network extract deep feature description, and then perform binary quantization in the resulting 
space. 
3.1 Based deep residual network extract deep feature description. 

Deep residual network was proposed in 2015 and showed good performance in computer target 
detection, image classification and image segmentation. Compared with other networks, Resnet can 
decelerate neural network training rapidly. Passing, more to ensure that the output of the characteristics 
of expression, the use of normalization and global avg_pool more generalization of the network. The 
size of the input image of the neural network is 224 * 224. The output is size of 256 deep features 
description. 
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Figure1 Extracting features description through ResNet training 

 
Table I. Architectures for ResNet framework. Building blocks are shown in brackets, with the 

numbers of blocks stacked. Down-sampling is performed by conv2_1, conv3_1, and conv4_1 with a 
stride of 2. 

Layer name Con1 Con2_x Con3_x Con4_x Avg_pool
Feature 
layer 

Classification 
layer 

Configuration  3 3,16  3 3,16
5

3 3,16

 
  

 3 3,32
5

3 3,32

 
  

3 3,64
5

3 3,64

 
  

   

3.2 Iterative Quantization Learning Hash Codes 
ITQ method before constructing the objective function, firstly reduce the number of features, extract 

the main information and reduce the training time. In this paper, the principal component analysis 
method is used to reduce the dimensionality of the extracted features nK , suppose the matrix of 

eigenvectors of dimensionality reduction  is reduced after dimensionality nK W .  
By looking for the optimal orthogonal matrix R, ITQ can make a sample with a small Euclidean 

distance quantized into a hash code with a small Hamming distance. Quantifying these samples, the 
samples with small Euclidean distance are quantized to different binary hash codes. By multiplying 
the samples with the random orthogonal matrix, we can find that the samples are rotated to find the most 
suitable orthogonal matrix , It is possible to quantify the sample with a small Euclidean distance to the 
same hash code. In order to get the least loss of quantization error, the hash code is to minimize the error 
between the real sample data and the hash code. Therefore build the objective function 

2
min ( , ) n F

J B R B K WR                                                      (1) 

Where 
F
  denotes the F-norm. 

In order to minimize the objective function and obtain a suitable orthogonal matrix R. Using iterative 
quantization method, firstly using the symbol function to get B, then using the optimization method to 
get R, the iterative quantization steps are as follows: 

Step 1: Initialization R is a random orthogonal matrix. 
Step 2: Fixed R, Update B. The extracted eigenvalues are: sgn( )nB K R . 

m rW R 
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Step 3: Fix B and update R. Minimize the objective function belongs to the Orthogonal Procrustes 
Problem, seeking a Singular Value Decomposition (SVD)[17] for the matrix T

nB K : 
T T

nSVD B K U V     ,where [ ]SVD  represents the singular value decomposition, get TR VU . 

Step 4: Loop through steps 2 and 3.The objective function J is minimized by iteratively updating B 
and R. 

4. Experimental results 

In this section, we validate our RITQ hashing learning framework on several public datasets of image 
retrieval, including MNIST, CIFAR-10, CIFAR-100 and Caltech 256. For each dataset, the images are 
split into a training set and a query set. We use the training set to learn the network parameters and use 
the query set to compare the competing methods. Note that, in all of the experiments, the query image is 
searched within the query set itself by applying the leave-one-out procedure. We compare our methods 
with eight state-of-the-art approaches: 
4.1 Data Sets 

We evaluate our method on two standard large image datasets with semantic labels: MNIST, CIFAR-
10, CIFAR-100 and Caltech 256. 

 MNIST Dataset[39]contains 10 categories of the handwritten digits form 0 to 9. There are 60k training 
images, and 10k test images. All the digits are normalized to gray-scale images with size 28 28 . We 
use 10K images as the query set and the other 60K as the training samples. 

CIFAR-10 dataset [40]consists of 60,k 32×32 color images which are categorized into 10 classes (6k 
images per class). It is a single-label dataset in which each image belongs to one of the ten classes. We 
use 10K images as the query set and the other 50K as the training samples. 

CIFAR-100 Dataset[40]t contains 100 object categories and each class consists of 6,00 images, 
resulting in a total of 60,000 images. The dataset is split into training and query sets, with 50,000 and 
10,000 images respectively. 

Caltech 256 Dataset[41] contains a total of 30,607 images, split between 256 distinct object categories 
and a background category. We randomly selected 70% as training sets, the rest as the query sets. 

For hashing methods which use hand-crafted features, we represent each image in datasets by a 512-
dimensional GIST vector. For deep hashing methods, we first resize all images to be 224×224 pixels and 
then directly use the raw image pixels as input. For data pre-processing, we follow the standard way of 
feature normalization by making each dimension of the feature vectors to have zero mean and equal 
variance. 
4.2 Experimental Baselines 

We compare our method with several state-of-the-art hashing methods. These methods can be 
categorized into five classes: 

Data-dependent hashing methods with hand-crafted features, including locality-sensitive 
hash(LSH)[2], Locality-Sensitive Binary Codes from Shift-Invariant Kernels(SKLSH)[18]. 

• Unsupervised hashing methods with hand-crafted features, including principal component 
analysis(PCA), spectral hashing(SH)[5], spherical hashing (SpH)[19], Iterative Quantization(ITQ)[3], 
principal component analysis -random rotation(PCA-RR)[3], Density sensitive hashing(DSH)[20]. 

• Supervised hashing methods with Deep hashing methods, including Deep Learning of Binary 
Hash Codes (DLBH)[9]. 

To evaluate the quality of hashing, we use evalution metrics: Mean Average Precision (MAP). 
4.3 Results of Search Accuracies 

In table 2 and table 3, we report the Map results with different code lengths on MNIST, CIFAR10, 
CIFAR100, Caltech 256. Our RITQ hashing is abbreviated as RNH. In these tables, the best results are 
in boldface. From these tables, we can see that RITQ hashing achieves better results than data-dependent 
hashing method, unsupervised hashing methods and deep hashing in most cases. For example, with 
respect to MAP, compared to the corresponding second best competitor(DLBH), the proposed method 
shows a relative increase of 5.3 % ∼ 14.7 % ,9% ∼ 19.2% , 42% ∼ 50% on CIFAR 10 , CIFAR 100, 
Caltech 256,respectively. RITQ hashing shows slightly but consistently better search accuracies than 
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other methods, which verifies that incorporating both the approximate hash codes and image tags in 
training helps to learn a better shared image representation and enhance the hashing performance. These 
results verify that using Residual Networks simultaneously learning useful representation of images and 
ITQ get hash codes of preserving similarities can benefit each other. 
 

Table II. Image retrieval results (Map) with various number of bits on the MNIST dataset and the 
CIFAR 10. The scale of test query set is 1k (1k per class). The proposed method outperforms the 

state-of-the methods. 

 
Table III. Image retrieval results (Map) with various number of bits on the CIFAR 100 dataset and 
the Caltech 256. The scale of test query set are 1k (1k per class), 10(10 per class), respectively. The 

proposed method outperforms the state-of-the methods. 

5. Conclusion 

In this paper, we have proposed a novel supervised hashing method for image retrieval based on 
ResNet and ITQ, called RITQ, Hashing generates bitwise hash codes for images via a carefully designed 
deep architecture. RITQ hashing can learn better codes than other methods without end-to-end 
architecture. Experiments on real datasets show that RITQ hashing can outperform other methods to 
achieve the state-of-the-art performance in image retrieval applications. 
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