

An Erasure Code-based Approach to Improve Data Recovery and
Update Capability

Hang Zhou, Yahui Yang, Weiping Li

Peking University, Beijing 100871, China

Keywords: Erasure code, Algebraic signature, Shell choose, Dynamic update, Monitor.

Abstract. The growing demand of cloud storage service has raised a great concern to service
providers aiming at high service reliability and usability. In this work, we proposed an erasure code-
based approach SEDP to improve the capability of data recovery and dynamic update for cloud
storage. The coding scheme adopts the main ideology of Shell Sort to maximize the physical distance
of data blocks in each coding group which helps recover damaged data blocks in extreme damage
conditions. The concept of data page is introduced to simplify and standardize dynamic update
procedure. We then designed a smart monitor to patch the cached data pages to the corresponding
data blocks to maintain consistency. The patching work is based on two different granularities, time
period and modification threshold. These two key parameters are tuned by the monitor according to
the information it collects. The prototype is experimentally evaluated in simulated scenarios, focusing
on its performance compared with related works and how the monitor improves the performance as
the system runs continuously.

1. Introduction

Since increasing number of people put their sensitive data files on the cloud, cloud service
providers (CSP) are confronted with challenge in terms of reliability and usability. To achieve
reliability, firstly the service providers need to provide proofs that the stored data is not modified or
partially deleted. Since once the data is uploaded to the cloud, data owners lose direct control of them.
One solution is called Provable Data Possession (PDP) introduced by Atenies et al [1], which uses
challenge-response protocol to do the verification. Based on this scheme there are different variations
[2] [3]. Secondly, the data should be stored in a recoverable way since there are alarming trends in
disk failure rate [14] [15]. A classic method is storing backups in different data nodes using allocation
algorithm like CRUSH [4], which is applied in Ceph. Another popular method is using erasure code
to encode the file and store the parity information, which can save storage and network resources. It
defers in thousand ways when apply the erasure code into real application, such as RS code [5] or
other MDS code STAR [18].

The files on the cloud are not immutable. For example, Individual users will frequently edit their
remote documents online, while enterprise users may periodically reorganize their server logs on the
cloud. To update data files, common practice is to split an update request into delete-and-reupload.
But this solution is a waste of computing resource in erasure code-based system since the whole data
file needs to be partitioned and encoded again. Data files being formed into high recoverable
structured usually leads to large parity blocks and low update efficiency. System needs to tradeoff
between factors such as algorithm complexity and storage expense.

In this work, we designed an approach called SEDP, it uses erasure code-based Shell encoder to
improve data recovery capability. The Shell encoder chooses data blocks at regular distances, similar
to the way the Shell sort chooses elements. Then we use data page to transform dynamic update
request into standard procedure. Since the data pages are cached like patches, a smart monitor is
designed to do periodical patching work and tune the system parameters. The proposed approach aims
to tackle challenges such as recovering data blocks in extreme damage conditions and reducing the
I/O and CPU overhead during update process.

2nd International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 149

614

2. Literature Review

2.1 Erasure Code & Algebraic Signature
Erasure code [6] [7] is also known as the FEC code (Forward Error Correcting codes). It requires

much computing resources but greatly reduces the redundancy of the system and saves a lot of storage
space compared with common replication schemes. The basic idea of erasure code is to encode k data
blocks and get m parity blocks. Within the n=k+m blocks, as long as no more than m of them damaged,
all the original ones can be recovered through the rest of the t(t>=k) using reconstruction algorithm.
When t=k, the code has the property of MDS (Maximum short Separable), then it is called MDS code.
The efficiency of erasure code is usually defined as e=n/k (e>1), as he grows, data recovery ability
becomes stronger due to more parity blocks. RS Code (Reed-Solomon Code) is a typical MDS codes
which needs to be added and multiplied on Galois Field GF (2w). RS Code can be classified into
Vandermonde RS Code [5] and Cauchy RS Code [8] according to different generator matrix. The
Vandermonde RS Code uses discrete logarithm to inverse the generator matrix which causes large
computational overhead. Cauchy RS Code uses Cauchy matrix to turn multiply operation in GF (2w)
into binary multiply only involving XORs, which greatly reduce the computing overhead.

Litwin W, Schwarz T [9] point out that algebraic signature can be applied into erasure code-based
system to achieve PDP. An algebraic signature is defined assig஑, it is a hash function which can
compress big files into strings like common MD5 functions do. Given a string	x଴, xଵ, … , x୬‐ଵ, its
algebraic signature can be represented as Eq.1. α is a prime number in GF(2w).

 																							sig஑ሺx଴, xଵ, … , x୬ିଵሻ ൌ 	∑ x୴ ∙୬ିଵ
୴ୀ଴ α୴ (1)

Algebraic signature has the properties of homomorphism and algebraicity. These two properties
can be used to prove that the sum of each data block’s algebraic signature equals to the algebraic
signature of the sum of data blocks. Represented assig஑ሺX⨁Yሻ ൌ sig஑ሺXሻ⨁sig஑ሺXሻ. This calculation
is simple and quick using only XOR operations without complex logic operations.

In [10], challenges are sent to get random data bytes from the file and calculated its parity signature
by the verifier. Then the signature will be compared with signature of its corresponding position on
the stored parity blocks, showing whether the file is modified. Since the hash function and secret key
(generator matrix) cannot be reversely cracked, the storage server cannot fake signatures thus the
verification is safe.
2.2 Coding Schemes

A few erasure code-based coding schemes are designed which aims at achieving optimal encoding,
updating and decoding performance. WEAVER Codes [17] can reduce the read overhead by using
twice as much storage spaces as the data collection itself. To reduce the storage overhead and maintain
access efficiency at the same time, Pyramid Codes [12] proposed by Microsoft Research uses local
and global redundancy and multi-hierarchical extension. It is a more flexible scheme compared with
WEAVER Codes. A MDS array erasure code called DA-codes [13] is designed to improve recovery
capability when extreme damage condition happens, it adopts two types of parity placed in two
directions. DA-codes can tolerate up to two disk failures while traditional RAID [16] (Redundant
Arrays of Inexpensive Disk) and its striping techniques can not satisfy. The common point is that all
of the schemes are making tradeoffs between storage space and access efficiency in reliable data
storage systems

A map-based dynamic data integrity verification and recovery scheme (MB-DDIVR) [11] in our
previous work is an approach which can check data integrity and recover the damaged blocks in two
granularities. It followed PDP thus can prevent multiple cloud servers from colluding to fabricate
consistent signatures, the verification work is delegated to a third party assistant (TPA). Cauchy RS
code and algebraic signature are combined in MB-DDIVR. Open-sourced work including Erasure
coding libraries and fast Galois field arithmetic library [19] are applied to help implement two key
functions in MB-DDIVR. a.Encode data blocks and decode(recover) them. b.Check the integrity of
coding groups. These two techniques are also applied to this work. In the previous model evaluation,
MB-DDIVR shows low data recovery capability in some extreme damage condition. Another defect
is that it cost great I/O during update process. SEDP in this paper is designed as a complementary
approach to solve these problems.

Advances in Engineering Research, volume 149

615

3. Methodology

We present our methodology in this section. The Shell encoder and the monitor are deployed on
TPA and all the blocks or pages generated by Shell encoder will be uploaded to the storage cloud
through standard interface.

Partition append shell choose encode upload

Figure 1. Data encoding process
3.1 Data Encode and Decode

The file is firstly partitioned into data blocks of the same size. Then the last unsatisfied block may
be filled with blank bytes because coding phase requires byte alignment. The blocks are then grouped
and encoded using RS erasure code. Taking 52-encode for example, each group contains 5 data blocks
and 2 parity block. Each group will be uploaded separately thus they may be distributed on different
disks. Fig.1 shows the overview of the encode phase.

In MB-DDIVR, the encoding process is also based on groups and it focus on designing data
structure within the group. But it ignores the way to group the blocks thus successive blocks after
partition phase will be formed as one group. In some file system such as linux ext* file system, when
the data blocks are written to the disks, they may not be contiguous with each other. But as the file
size grows, their distribution on the hard disks tends to be successive on the whole. When magnetic
tracks are scratched on one disk or successive disks are damaged, the damaged blocks will be centrally
distributed, resulting in a reduction in recovery capability because there is a high probability the
damaged blocks belong to the same coding group. Therefore, the chosen data blocks in each group
should be decentralized as much as possible. The Shell encoder adopts the main ideology of Shell
sort, aiming at maximize the physical distance of data blocks in each encoding group. For example,
the file is partitioned into i blocks denoted by ሺb଴, bଵ, bଶ, … , b୧ିଵሻ and we use k-m scheme to encode
them which means a coding group contains k data blocks and m parity blocks. Then j blocks are
damaged successively denoted by ሺb଴, bଵ, bଶ, … , b୨ିଵሻ. If the coding process goes normal linearly,
then ሺb୨ିሺ୨	୫୭ୢ	୩ሻ, b୨ିሺ୨	୫୭ୢ	୩ሻାଵ, … , b୨ିଵሻ totals to j mod k blocks can be recovered when j mod k >
m, because these blocks belong to the same coding group which has less than m damaged blocks.
When j mod k <= m, no blocks can be recovered. The number of recoverable blocks denoted by N
can be calculated as follows:

 ଵܰሺrecoveredሻ ൌ ൜
,		݇	݀݋݉	݆ ݇	݀݋݉	݆ ൑ ݉
							0										, ݇	݀݋݉	݆ ൐ ݉		 (2)

Then if the coding blocks are chosen in a distance d=i/k, in the best case when j<=dm, all of the
damaged blocks can be recovered. When dm<j<dm+d, total to j-dm groups
ሼሺb଴, bୢ, … b୧ିୢሻ, ሺbଵ, bଵାୢ, …bଵା୧ିୢሻ, …	, ሺb୨ିୢ୫ିଵ, b୨ିୢ୫ିଵାୢ, … b୨ିୢ୫ିଵା୧ିୢሻሽ each has m+1
blocks damaged inside thus they cannot be recovered. N is calculated according to Eq.3.

 		Nଶ ൌ ቐ
														j																			, j ൑ dm																					
dmଶ ൅ dmെ jm		, dm ൏ j ൏ dm൅ d

0																		, j ൒ dm ൅ d
 (3)

Taking i=100, k=5, m=2, j∈ [1,100], we get Avg(N1)=0.4, Avg(N2)=12, the recover ability
increases 29 times by using shell encoder.

To check the integrity, the TPA sends challenges to the server to get random data bytes and
calculate the algebraic signature. The result will be compared with the data bytes on the corresponding
parity blocks. The verification work goes iteratively on each coding group and the damaged groups
will be sent to the decoder to recover the original ones. Algorithm 1 shows the detail procedure.
3.2 Dynamic Data Update

To meet the need for dynamic data update. We adopt linear data pages instead of tree-based
structure or map-based structure in MB-DDIVR. In some DB system such as ORACLE and MYSQL,

Advances in Engineering Research, volume 149

616

data page is a basic IO unit which greatly improves CRUD efficiency. With data pages, complex data
structures can be realized such as different types of index in MYSQL storage engine. Data pages in
this system are files of different size, they are regarded as patches of the original data blocks. With
these pages, the update procedures could be accelerated, standardized and simplified. CRUD
operations could all be regarded as replacement and insertion of pages, defined as ሺP୪ୣ୬୥୲୦

୭୤୤ୱୣ୲ , Typeሻ.
For example, ሺPଵ୬భ

୭భ , Dሻ represents the replacement of a n1-byte page Pଵ with a blank page, it equals

to delete n1 bytes data from the specified offset oଵ. ሺPଶ୬మ
୭మ , Iሻ represents the insertion of a n2-byte

page Pଶ behind offset oଶ, it equals to insert nଶ bytes behind offset oଶ. The data pages may also suffer
from damaging because they are stored as cache files on the hard disk. Thus they are encoded with
their neighbors on the file and generate the parity pages to ensure recover capability. Given Pଶ୬మ

୭మ , a

new page Pଷ୬మ
୭మି୬మ will be cut out from the file and sent together with Pଶ to do encoding. Fig.2 shows

the overview of the update phase. It uses 21-encode scheme.

Figure 2. Dynamic update phase
When there comes download request, the cached pages will be replaced or inserted to the specified

offset. It is important that the page offsets Oሺo଴, oଵ, oଶ, … , o୬ିଵሻ	of the same block need to be sorted

in reverse order and handled in sequence. The reason is once ቀPଵ୬భ
୭భ , Dቁ is handled, oଶሺoଶ ൐ oଵሻ in

ሺPଶ୬మ
୭మ , Iሻ expires and needs to be recalculated because the last operation changes the data length ahead

of it.
3.3 Smart Monitor

“A Thousand Gapping Wounds” can be used to describe the status of the blocks during the update
phase. In a common DB transaction, modified pages will be cached as files instead of writing to DB
instantly, handling pages in this scheme will also be delayed due to limited computing resource. As
the data blocks are updated frequently, several cached data pages may point to different indexes of a
same data block at the same time. At that point if a download request comes, the assembling time will
be relatively long. Hence the monitor is designed to solve this problem. It periodically patches the
data pages to corresponding blocks to make the file consistent with users’ operations. As long as the
patching work is done, the monitor redo the encoding. This patching operation will be carried out
based on two different granularities, time period	α	and modification amount threshold	β. These are
two key parameters in this scheme and they are tuned by the monitor according to information it
collects. Table I specifies the relation between parameters and environment variables.

Function G(x) in Table I is a normalization function which calculates the variation of the inside
parameter and normalize it to 0.5~2, which means G(x)’s result will at most double or halve the
parameters it influences. G(x) prevents the parameters from changing too rapidly, ensuring the system
have a smooth transition.

Table.1 ensuring the system have a smooth transition.
Environment variable Patching Parameter Relation

ଵܲ	update period
ଶܲ	download period
ଷܲ	response time
ଵܵ	data page size

α time period
ఈܦ default period

α ൌ ቐ
ఈܦ ∙ ܩ ൬

ଵܲ ଶܲ

ܵଶ ଷܲ
൰	 , α ൒ ఈܦ

ఈܦ 																		, α ൏ ఈܦ

β modification amount threshold
ఉܦ default threshold β ൌ ቐ

ఉܦ ∙ ܩ ൬
1

ܵଶ ଷܲ
൰			 , β ൒ ఈܦ

ఉܦ 																			, β ൏ ఈܦ

Advances in Engineering Research, volume 149

617

4. Evaluation

In order to evaluate the performance of the proposed model (SEDP), we have conducted
experiments to compare with other models. MB-DDIVR is the only approach we currently found
which supports data recovery and handles dynamic update request at the same time. Thus we compare
SEDP with MB-DDIVR in 3 different aspects including data recovery performance, data update
performance and data download (read) performance. Before the samples are taken, to avoid
interference in the time measurements, irrelevant top 5 CPU-consuming processes are killed using
Linux command ‘ps aux | grep –v system | sort –nrk 3,3| head –n 5 | xargs kill –s 9’ and then the
model is restarted. System I/O buffers are flushed using Linux command ‘sync’. We then wrote Linux
shell scripts to automatically run the simulation for several successive times in a single thread and
calculate the average value.

Here is our server and network configuration. CentOS 6.5 64-bit, 2G memory, single core 2.20GHz
CPU, average 1.2MB/s download speed and 0.23MB/s upload speed.
4.1 Data Recovery Ability

Block size and coding schema will make difference to the experiments result described in the
previous sections. To control the variables in the established experimental model, preparatory
experiment is performed. Fig 3 compares three different encoding schema and it plots the relation
between time overhead and block size ratio in the data encoding process. As the block size ratio
increases, less coding group will be generated during the encoding. Thus there exists less file binding
handles, which slightly helps save time overhead but will not make big difference to the overall result.
To make the following experiments representative and typical, the block size ratio is set to 1% and
4-3 encoding schema is chosen. These parameters are at intermediate level according to Fig 3.

 Figure 3. Data recovery performance Figure 4. Data recovery ability
To compare the recovery capability of SEDP with MB-DDIVR in different damage conditions,

we simulate two types of damage distribution in experiment 1, centralized and randomized. Centrally
distributed damage means contiguous data blocks are deleted or modified while randomly distributed
means the positions of damaged blocks are independent. The damage work is performed by the
automatic shell script. Fig.4 plots the proportion of recovered blocks as the damage rate increases.
We can observe that the recover percentage of SEDP is 24.1 %(0.29-0.22/0.29) lower compared with
MB-DDIVR in random damage condition. The reason is MB-DDIVR uses map-based storage table
to store more parity blocks for each group. However, when the damage is centralized, SEDP can
recover all the blocks as long as the damage proportion is lower than 42.8% which can be regarded
as damage tolerance. While under this condition MB-DDIVR can only recover average 4% of the
blocks, which corresponds to our derivation of Eq.2 and Eq.3.

Fig.5 plots the average recovery time when the damage percentage increases. SEDP has shorter
recover time while MB-DDIVR spends additional time to maintain its map-based block structure.
During integrity check and data recovery process on TPA described in Algorithm1, the main overhead
is network I/O due to data uploading and downloading, which is inevitable. We only record the time
cost by the key steps, from the beginning of integrity check to the end of recovery.

Advances in Engineering Research, volume 149

618

 Figure 5. Data recovery performance Figure 6. Data update download performance
4.2 Update & Download Performance

To observe the update and download performance in SEDP and how it is effected by the monitor,
we make different requests and continuously sent them to the system and then record the average
response time. It assumes that the period of the requests Pଵ, Pଶ and the size of update requests 	Sଵ have
Poinsson distribution with meanλ୧, denoted as

																											Pଵ~Poinssonሺλଵሻ, Pଶ~Poinssonሺλଶሻ, Sଵ~Poinssonሺλଷሻ	 (4)
Each time the current request is sent, the automatic script calculates the size of next request and

generate the request body by random characters using Linux command ‘cat’, then the script calculate
next interval and reset the timer. Fig.6 shows the simulation result. It is obvious that SEDP has high
update efficiency, which means the cached data pages greatly reduce the network I/O and disk I/O
compared to block-size update in MB-DDIVR. In the aspect of download performance, SEDP has a
poor performance 20.3 %(68.2-56.1/68.2) lower in the initial stage. But the average download time
gradually goes down and is finally levelling out at 58.2s. When the average response time tends to be
stable around after 80min running time, we record the environment variables and the system
parameters. Pଵ, Pଶ,, Sଵ Calculated by monitor approximate to 		λଵ, λଶ, λଷ(3s, 120s, 3MB), the threshold
β and patching period α are tuned to 42.3MB and 72.5s. The comprehensive result shows that update
performance could be improved 5.3(27.1/7.0) times at the cost of 20.3% download performance
decrease.

5. Conclusion and Future Work

In this paper, we have proposed an effective model for storage systems, SEDP, which helps cloud
providers have an idea of how to store their data in a recoverable way. We focus on how to improve
the recover capability and update the data effectively. The model is designed to be “Plug and Play”,
which can be applied to read-only system. By turning on the monitor module, it can also handle with
dynamic update request without making big changes inside the structure.

Compared with related works in the information security industry and in data storage literature,
our model is positioned as a complementary approach. It uses different encoding scheme compared
with MB-DDIVR and it adopts data page instead of map-based table to realize dynamic update. By
conducting the first experiment, we show that SEDP have better recovery capability when the damage
blocks are centrally distributed. The second experiment shows that SEDP is an update-friendly model.
It can effectively handle with frequent update request at the cost of little download efficiency loss.
Therefore, if files are frequently updated and the update-download ratio is high, SEDP shows a better
overall performance. Otherwise MB-DDVIR will still be a good solution.

In future work, we will consider applying different granularities into the shell choosing phase to
make the system more flexible and damage tolerable. We also intend to refine the smart monitor by
taking more relevant factors into consideration.

Advances in Engineering Research, volume 149

619

6. Appendix

Algorithm 1 Integrity check & data recovery process on TPA
Input: blocksize, filename, k-m encode, checkinglevel

Output: unrecovered blocks D[]
1: G = getAllGroups(filename);

2: for each g = (ܾ଴,… , ܾ௞ା௠ିଵ) ∈ G

3: set coveredBytes = 0

4: while coveredBytes < blocksize/ checkinglevel do

5: length = randomInt(blocksize/2);

6: coveredBytes += length

7: for i ∈ ሼ0,… , k െ 1ሽ
8: 	 ଵܵ ൌ 	 ଵܵ⨁ signatureሺܾ௜, coveredBytes, lengthሻ
9: end for

10 for j ∈ ሼk,… , k ൅ mെ 1ሽ
11 									ܵଶ ൌ ܵଶ⨁ signature൫ ௝ܾ, coveredBytes, length൯
12 end for

13 if erasureEncode(ଵܵ) != ܵଶ then

14 if erasureDecodeGroup(g) == ‘success’

15 uploadGroup(g)

16 else

17 D.add(g)

18 break

19 end if

20 end while

21 end for

Algorithm 2 Patching process
Input: file

Initialization: modified groups G = []

1: P = getAllCachedPages(file)

2: sortByOffsetDesc(P)

3: for each ݌௜ ∈ ܲ

4: ௜݃ = getBelongGroup(݌௜)

5: ܾ௜ = getCorrespondBlock(݌௜, ௜݃)

6: patchToBlock(݌௜, ܾ௜)

7: G.add(௜݃)

8: end for

9: erasureEncodeGroups(G)

10: uploadGroups(G)

11: deletePages(P)

References

[1]. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable
data possession at untrusted stores. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security. ACM (2007)

Advances in Engineering Research, volume 149

620

[2]. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession.
ACM Trans. Inf. Syst. Secur. (TISSEC) 17(4), 15 (2015)

[3]. Hao, Z., Yu, N.: A multiple-replica remote data possession checking protocol with public
verifiability. In: Proceedings of 2nd International Symposium Data, Privacy, E-Commerce, pp.
84–89 (2010)

[4]. S. A. Weil, S. A. Brandt, E. L. Miller and C. Maltzahn, "CRUSH: Controlled, Scalable,
Decentralized Placement of Replicated Data," SC 2006 Conference, Proceedings of the
ACM/IEEE, Tampa, FL, 2006, pp. 31-31.

[5]. Reed I S, Solomon G. Polynomial Codes Over Certain Finite Fields [J]. Journal of the Society
for Industrial & Applied Mathematics, 1960, 8(2):300-304

[6]. Plank J S. Erasure Codes for Storage Applications. Tutorial Slides Presented at FAST-2005: the
4th USENIX Conference on File and Storage Technologies, 2005.

[7]. Sloane, N. J A. The theory of error correcting codes / [M]. North-Holland Pub. Co., 1978.

[8]. Roth R M, Lempel A. On MDS codes via Cauchy matrices [J]. IEEE Transactions on Information
Theory, 1989, 35(6):1314-1319.

[9]. Litwin W, Schwarz T. Algebraic signatures for scalable distributed data structures[C]//Data
Engineering, 2004 Proceedings 20th International Conference on. IEEE, 2004: 412-423.

[10]. Schwarz, T.S.J., Miller, and E.L.: Store, forget, and check: using algebraic signatures to check
remotely administered storage. In: 26th IEEE International Conference on Distributed
Computing Systems, 2006. ICDCS 2006. IEEE (2006)

[11]. Sun zizhou, Yang yahui, Shen qingni, Wu zhonghai, Li xiaochen. MB-DDIVR: A map-based
dynamic data integrity verification and recovery scheme in cloud storage [C]//Proceeding of 17th
International Conference on Information and Communications Security. Springer, 2015:335-345.

[12]. Huang C, Chen M, Li J. Pyramid Codes: Flexible Schemes to Trade Space for Access
Efficiency in Reliable Data Storage Systems [J]. Acm Transactions on Storage, 2007, 9(1):79-
86.

[13]. R. Hu, G. Liu and J. Jiang, "An Efficient Coding Scheme for Tolerating Double Disk
Failures," High Performance Computing and Communications (HPCC), 2010 12th IEEE
International Conference on, Melbourne, VIC, 2010, pp. 707-712.

[14]. E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large disk drive population,”
in FAST-2007: 5th USENIX Conference on File and Storage Technologies. USENIX
Association, 2007.

[15]. J. Elerath, “Hard-disk drives: The good, the bad, and the ugly,” ACM Queue, 2009

[16]. D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays ofinexpensive disks
(RAID)”. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pgs. 109-116,1988.

[17]. J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems”,
the 4th USENIX Conference on File and Storage Technolgoies (FAST 2005), San Francisco, CA,
Dec. 2005

[18]. C. Huang, and L. Xu, “STAR: an Efficient Coding Scheme for Correcting Triple Storage Node
Failures”, the 4th USENIX Conference on File and Storage Technolgoies (FAST 2005), San
Francisco, CA, Dec. 2005.

Advances in Engineering Research, volume 149

621

[19]. James S. Plank, Kevin M. Greenan, “Jerasure: Erasure Coding Library” http://jerasure.org,
http://lab.jerasure.org/jerasure/jerasure

[20]. James S. Plank, “Fast Galois Field Arithmetic Library in C/C++”,
http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593

Advances in Engineering Research, volume 149

622

