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Abstract. The growing demand of cloud storage service has raised a great concern to service 
providers aiming at high service reliability and usability. In this work, we proposed an erasure code-
based approach SEDP to improve the capability of data recovery and dynamic update for cloud 
storage. The coding scheme adopts the main ideology of Shell Sort to maximize the physical distance 
of data blocks in each coding group which helps recover damaged data blocks in extreme damage 
conditions. The concept of data page is introduced to simplify and standardize dynamic update 
procedure. We then designed a smart monitor to patch the cached data pages to the corresponding 
data blocks to maintain consistency. The patching work is based on two different granularities, time 
period and modification threshold. These two key parameters are tuned by the monitor according to 
the information it collects. The prototype is experimentally evaluated in simulated scenarios, focusing 
on its performance compared with related works and how the monitor improves the performance as 
the system runs continuously.  

1. Introduction 

Since increasing number of people put their sensitive data files on the cloud, cloud service 
providers (CSP) are confronted with challenge in terms of reliability and usability. To achieve 
reliability, firstly the service providers need to provide proofs that the stored data is not modified or 
partially deleted. Since once the data is uploaded to the cloud, data owners lose direct control of them. 
One solution is called Provable Data Possession (PDP) introduced by Atenies et al [1], which uses 
challenge-response protocol to do the verification. Based on this scheme there are different variations 
[2] [3]. Secondly, the data should be stored in a recoverable way since there are alarming trends in 
disk failure rate [14] [15]. A classic method is storing backups in different data nodes using allocation 
algorithm like CRUSH [4], which is applied in Ceph. Another popular method is using erasure code 
to encode the file and store the parity information, which can save storage and network resources. It 
defers in thousand ways when apply the erasure code into real application, such as RS code [5] or 
other MDS code STAR [18].  

The files on the cloud are not immutable. For example, Individual users will frequently edit their 
remote documents online, while enterprise users may periodically reorganize their server logs on the 
cloud. To update data files, common practice is to split an update request into delete-and-reupload. 
But this solution is a waste of computing resource in erasure code-based system since the whole data 
file needs to be partitioned and encoded again. Data files being formed into high recoverable 
structured usually leads to large parity blocks and low update efficiency. System needs to tradeoff 
between factors such as algorithm complexity and storage expense.  

In this work, we designed an approach called SEDP, it uses erasure code-based Shell encoder to 
improve data recovery capability. The Shell encoder chooses data blocks at regular distances, similar 
to the way the Shell sort chooses elements. Then we use data page to transform dynamic update 
request into standard procedure. Since the data pages are cached like patches, a smart monitor is 
designed to do periodical patching work and tune the system parameters. The proposed approach aims 
to tackle challenges such as recovering data blocks in extreme damage conditions and reducing the 
I/O and CPU overhead during update process. 
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2. Literature Review 

2.1 Erasure Code & Algebraic Signature  
Erasure code [6] [7] is also known as the FEC code (Forward Error Correcting codes). It requires 

much computing resources but greatly reduces the redundancy of the system and saves a lot of storage 
space compared with common replication schemes. The basic idea of erasure code is to encode k data 
blocks and get m parity blocks. Within the n=k+m blocks, as long as no more than m of them damaged, 
all the original ones can be recovered through the rest of the t(t>=k) using reconstruction algorithm. 
When t=k, the code has the property of MDS (Maximum short Separable), then it is called MDS code. 
The efficiency of erasure code is usually defined as e=n/k (e>1), as he grows, data recovery ability 
becomes stronger due to more parity blocks. RS Code (Reed-Solomon Code) is a typical MDS codes 
which needs to be added and multiplied on Galois Field GF (2w). RS Code can be classified into 
Vandermonde RS Code [5] and Cauchy RS Code [8] according to different generator matrix. The 
Vandermonde RS Code uses discrete logarithm to inverse the generator matrix which causes large 
computational overhead. Cauchy RS Code uses Cauchy matrix to turn multiply operation in GF (2w) 
into binary multiply only involving XORs, which greatly reduce the computing overhead. 

Litwin W, Schwarz T [9] point out that algebraic signature can be applied into erasure code-based 
system to achieve PDP. An algebraic signature is defined assig஑, it is a hash function which can 
compress big files into strings like common MD5 functions do. Given a string	x଴, xଵ, … , x୬‐ଵ, its 
algebraic signature can be represented as Eq.1.   α is a prime number in GF(2w). 

                   																							sig஑ሺx଴, xଵ, … , x୬ିଵሻ ൌ 	∑ x୴ ∙୬ିଵ
୴ୀ଴ α୴                                              (1) 

Algebraic signature has the properties of homomorphism and algebraicity. These two properties 
can be used to prove that the sum of each data block’s algebraic signature equals to the algebraic 
signature of the sum of data blocks. Represented assig஑ሺX⨁Yሻ ൌ sig஑ሺXሻ⨁sig஑ሺXሻ. This calculation 
is simple and quick using only XOR operations without complex logic operations.  

In [10], challenges are sent to get random data bytes from the file and calculated its parity signature 
by the verifier. Then the signature will be compared with signature of its corresponding position on 
the stored parity blocks, showing whether the file is modified. Since the hash function and secret key 
(generator matrix) cannot be reversely cracked, the storage server cannot fake signatures thus the 
verification is safe. 
2.2 Coding Schemes 

A few erasure code-based coding schemes are designed which aims at achieving optimal encoding, 
updating and decoding performance. WEAVER Codes [17] can reduce the read overhead by using 
twice as much storage spaces as the data collection itself. To reduce the storage overhead and maintain 
access efficiency at the same time, Pyramid Codes [12] proposed by Microsoft Research uses local 
and global redundancy and multi-hierarchical extension. It is a more flexible scheme compared with 
WEAVER Codes. A MDS array erasure code called DA-codes [13] is designed to improve recovery 
capability when extreme damage condition happens, it adopts two types of parity placed in two 
directions. DA-codes can tolerate up to two disk failures while traditional RAID [16] (Redundant 
Arrays of Inexpensive Disk) and its striping techniques can not satisfy. The common point is that all 
of the schemes are making tradeoffs between storage space and access efficiency in reliable data 
storage systems 

A map-based dynamic data integrity verification and recovery scheme (MB-DDIVR) [11] in our 
previous work is an approach which can check data integrity and recover the damaged blocks in two 
granularities. It followed PDP thus can prevent multiple cloud servers from colluding to fabricate 
consistent signatures, the verification work is delegated to a third party assistant (TPA). Cauchy RS 
code and algebraic signature are combined in MB-DDIVR. Open-sourced work including Erasure 
coding libraries and fast Galois field arithmetic library [19] are applied to help implement two key 
functions in MB-DDIVR. a.Encode data blocks and decode(recover) them. b.Check the integrity of 
coding groups. These two techniques are also applied to this work. In the previous model evaluation, 
MB-DDIVR shows low data recovery capability in some extreme damage condition. Another defect 
is that it cost great I/O during update process. SEDP in this paper is designed as a complementary 
approach to solve these problems. 

Advances in Engineering Research, volume 149

615



 

3. Methodology 

We present our methodology in this section. The Shell encoder and the monitor are deployed on 
TPA and all the blocks or pages generated by Shell encoder will be uploaded to the storage cloud 
through standard interface. 

 

Partition         append              shell choose                 encode             upload 

Figure 1. Data encoding process 
3.1 Data Encode and Decode 

The file is firstly partitioned into data blocks of the same size. Then the last unsatisfied block may 
be filled with blank bytes because coding phase requires byte alignment. The blocks are then grouped 
and encoded using RS erasure code. Taking 52-encode for example, each group contains 5 data blocks 
and 2 parity block. Each group will be uploaded separately thus they may be distributed on different 
disks. Fig.1 shows the overview of the encode phase. 

In MB-DDIVR, the encoding process is also based on groups and it focus on designing data 
structure within the group. But it ignores the way to group the blocks thus successive blocks after 
partition phase will be formed as one group. In some file system such as linux ext* file system, when 
the data blocks are written to the disks, they may not be contiguous with each other. But as the file 
size grows, their distribution on the hard disks tends to be successive on the whole. When magnetic 
tracks are scratched on one disk or successive disks are damaged, the damaged blocks will be centrally 
distributed, resulting in a reduction in recovery capability because there is a high probability the 
damaged blocks belong to the same coding group. Therefore, the chosen data blocks in each group 
should be decentralized as much as possible. The Shell encoder adopts the main ideology of Shell 
sort, aiming at maximize the physical distance of data blocks in each encoding group. For example, 
the file is partitioned into i blocks denoted by ሺb଴, bଵ, bଶ, … , b୧ିଵሻ and we use k-m scheme to encode 
them which means a coding group contains k data blocks and m parity blocks. Then j blocks are 
damaged successively denoted by ሺb଴, bଵ, bଶ, … , b୨ିଵሻ. If the coding process goes normal linearly, 
then ሺb୨ିሺ୨	୫୭ୢ	୩ሻ, b୨ିሺ୨	୫୭ୢ	୩ሻାଵ, … , b୨ିଵሻ totals to j mod k blocks can be recovered when j mod k > 
m, because these blocks belong to the same coding group which has less than m damaged blocks. 
When j mod k <= m, no blocks can be recovered. The number of recoverable blocks denoted by N 
can be calculated as follows: 

     ଵܰሺrecoveredሻ ൌ ൜
,		݇	݀݋݉	݆ ݇	݀݋݉	݆ ൑ ݉
							0										, ݇	݀݋݉	݆ ൐ ݉		                                  (2) 

Then if the coding blocks are chosen in a distance d=i/k, in the best case when j<=dm, all of the 
damaged blocks can be recovered. When dm<j<dm+d, total to j-dm groups 
ሼሺb଴, bୢ, … b୧ିୢሻ, ሺbଵ, bଵାୢ, …bଵା୧ିୢሻ, …	, ሺb୨ିୢ୫ିଵ, b୨ିୢ୫ିଵାୢ, … b୨ିୢ୫ିଵା୧ିୢሻሽ  each has m+1 
blocks damaged inside thus they cannot be recovered. N is calculated according to Eq.3. 

                                     		Nଶ ൌ ቐ
														j																			, j ൑ dm																					
dmଶ ൅ dmെ jm		, dm ൏ j ൏ dm൅ d

0																		, j ൒ dm ൅ d
                                    (3) 

Taking i=100, k=5, m=2, j∈ [1,100], we get Avg(N1)=0.4, Avg(N2)=12, the recover ability 
increases 29 times by using shell encoder. 

To check the integrity, the TPA sends challenges to the server to get random data bytes and 
calculate the algebraic signature. The result will be compared with the data bytes on the corresponding 
parity blocks. The verification work goes iteratively on each coding group and the damaged groups 
will be sent to the decoder to recover the original ones. Algorithm 1 shows the detail procedure. 
3.2 Dynamic Data Update 

To meet the need for dynamic data update. We adopt linear data pages instead of tree-based 
structure or map-based structure in MB-DDIVR. In some DB system such as ORACLE and MYSQL, 
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data page is a basic IO unit which greatly improves CRUD efficiency. With data pages, complex data 
structures can be realized such as different types of index in MYSQL storage engine. Data pages in 
this system are files of different size, they are regarded as patches of the original data blocks. With 
these pages, the update procedures could be accelerated, standardized and simplified. CRUD 
operations could all be regarded as replacement and insertion of pages, defined as ሺP୪ୣ୬୥୲୦

୭୤୤ୱୣ୲ , Typeሻ. 
For example, ሺPଵ୬భ

୭భ , Dሻ represents the replacement of a n1-byte page  Pଵ with a blank page, it equals 

to delete n1 bytes data from the specified offset oଵ. ሺPଶ୬మ
୭మ , Iሻ represents the insertion of a n2-byte 

page Pଶ behind offset oଶ, it equals to insert nଶ bytes behind offset oଶ. The data pages may also suffer 
from damaging because they are stored as cache files on the hard disk. Thus they are encoded with 
their neighbors on the file and generate the parity pages to ensure recover capability. Given Pଶ୬మ

୭మ  , a 

new page Pଷ୬మ
୭మି୬మ will be cut out from the file and sent together with Pଶ to do encoding. Fig.2 shows 

the overview of the update phase. It uses 21-encode scheme. 

 

Figure 2. Dynamic update phase 
When there comes download request, the cached pages will be replaced or inserted to the specified 

offset. It is important that the page offsets Oሺo଴, oଵ, oଶ, … , o୬ିଵሻ	of the same block need to be sorted 

in reverse order and handled in sequence. The reason is once ቀPଵ୬భ
୭భ , Dቁ is handled, oଶሺoଶ ൐ oଵሻ in 

ሺPଶ୬మ
୭మ , Iሻ expires and needs to be recalculated because the last operation changes the data length ahead 

of it. 
3.3 Smart Monitor 

“A Thousand Gapping Wounds” can be used to describe the status of the blocks during the update 
phase. In a common DB transaction, modified pages will be cached as files instead of writing to DB 
instantly, handling pages in this scheme will also be delayed due to limited computing resource. As 
the data blocks are updated frequently, several cached data pages may point to different indexes of a 
same data block at the same time. At that point if a download request comes, the assembling time will 
be relatively long. Hence the monitor is designed to solve this problem. It periodically patches the 
data pages to corresponding blocks to make the file consistent with users’ operations. As long as the 
patching work is done, the monitor redo the encoding. This patching operation will be carried out 
based on two different granularities, time period	α	and modification amount threshold	β. These are 
two key parameters in this scheme and they are tuned by the monitor according to information it 
collects. Table I specifies the relation between parameters and environment variables. 

Function G(x) in Table I is a normalization function which calculates the variation of the inside 
parameter and normalize it to 0.5~2, which means G(x)’s result will at most double or halve the 
parameters it influences. G(x) prevents the parameters from changing too rapidly, ensuring the system 
have a smooth transition.  

Table.1 ensuring the system have a smooth transition. 
Environment variable Patching Parameter Relation 

ଵܲ	update period 
ଶܲ	download period 
ଷܲ	response time 
ଵܵ	data page size 

α time period 
ఈܦ default period 

α ൌ ቐ
ఈܦ ∙ ܩ ൬

ଵܲ ଶܲ

ܵଶ ଷܲ
൰	 , α ൒ ఈܦ

ఈܦ 																		, α ൏ ఈܦ
 

β modification amount threshold 
ఉܦ default threshold β ൌ ቐ

ఉܦ ∙ ܩ ൬
1

ܵଶ ଷܲ
൰			 , β ൒ ఈܦ

ఉܦ 																			, β ൏ ఈܦ
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4. Evaluation 

In order to evaluate the performance of the proposed model (SEDP), we have conducted 
experiments to compare with other models. MB-DDIVR is the only approach we currently found 
which supports data recovery and handles dynamic update request at the same time. Thus we compare 
SEDP with MB-DDIVR in 3 different aspects including data recovery performance, data update 
performance and data download (read) performance. Before the samples are taken, to avoid 
interference in the time measurements, irrelevant top 5 CPU-consuming processes are killed using 
Linux command ‘ps aux | grep –v system | sort –nrk 3,3| head –n 5 | xargs kill –s 9’ and then the 
model is restarted. System I/O buffers are flushed using Linux command ‘sync’. We then wrote Linux 
shell scripts to automatically run the simulation for several successive times in a single thread and 
calculate the average value. 

Here is our server and network configuration. CentOS 6.5 64-bit, 2G memory, single core 2.20GHz 
CPU, average 1.2MB/s download speed and 0.23MB/s upload speed.  
4.1 Data Recovery Ability 

Block size and coding schema will make difference to the experiments result described in the 
previous sections. To control the variables in the established experimental model, preparatory 
experiment is performed. Fig 3 compares three different encoding schema and it plots the relation 
between time overhead and block size ratio in the data encoding process. As the block size ratio 
increases, less coding group will be generated during the encoding. Thus there exists less file binding 
handles, which slightly helps save time overhead but will not make big difference to the overall result. 
To make the following experiments representative and typical, the block size ratio is set to 1% and 
4-3 encoding schema is chosen. These parameters are at intermediate level according to Fig 3.  

   

            Figure 3. Data recovery performance                           Figure 4. Data recovery ability 
To compare the recovery capability of SEDP with MB-DDIVR in different damage conditions, 

we simulate two types of damage distribution in experiment 1, centralized and randomized. Centrally 
distributed damage means contiguous data blocks are deleted or modified while randomly distributed 
means the positions of damaged blocks are independent. The damage work is performed by the 
automatic shell script. Fig.4 plots the proportion of recovered blocks as the damage rate increases. 
We can observe that the recover percentage of SEDP is 24.1 %( 0.29-0.22/0.29) lower compared with 
MB-DDIVR in random damage condition. The reason is MB-DDIVR uses map-based storage table 
to store more parity blocks for each group. However, when the damage is centralized, SEDP can 
recover all the blocks as long as the damage proportion is lower than 42.8% which can be regarded 
as damage tolerance. While under this condition MB-DDIVR can only recover average 4% of the 
blocks, which corresponds to our derivation of Eq.2 and Eq.3. 

Fig.5 plots the average recovery time when the damage percentage increases. SEDP has shorter 
recover time while MB-DDIVR spends additional time to maintain its map-based block structure. 
During integrity check and data recovery process on TPA described in Algorithm1, the main overhead 
is network I/O due to data uploading and downloading, which is inevitable. We only record the time 
cost by the key steps, from the beginning of integrity check to the end of recovery.  

Advances in Engineering Research, volume 149

618



 

 

         Figure 5. Data recovery performance              Figure 6. Data update download performance 
4.2 Update & Download Performance 

To observe the update and download performance in SEDP and how it is effected by the monitor, 
we make different requests and continuously sent them to the system and then record the average 
response time. It assumes that the period of the requests Pଵ, Pଶ and the size of update requests 	Sଵ have 
Poinsson distribution with meanλ୧, denoted as 

																											Pଵ~Poinssonሺλଵሻ, Pଶ~Poinssonሺλଶሻ, Sଵ~Poinssonሺλଷሻ	                             (4) 
Each time the current request is sent, the automatic script calculates the size of next request and 

generate the request body by random characters using Linux command ‘cat’, then the script calculate 
next interval and reset the timer. Fig.6 shows the simulation result. It is obvious that SEDP has high 
update efficiency, which means the cached data pages greatly reduce the network I/O and disk I/O 
compared to block-size update in MB-DDIVR. In the aspect of download performance, SEDP has a 
poor performance 20.3 %( 68.2-56.1/68.2) lower in the initial stage. But the average download time 
gradually goes down and is finally levelling out at 58.2s. When the average response time tends to be 
stable around after 80min running time, we record the environment variables and the system 
parameters. Pଵ, Pଶ,, Sଵ Calculated by monitor approximate to 		λଵ, λଶ, λଷ(3s, 120s, 3MB), the threshold 
β and patching period α are tuned to 42.3MB and 72.5s. The comprehensive result shows that update 
performance could be improved 5.3(27.1/7.0) times at the cost of 20.3% download performance 
decrease.  

5. Conclusion and Future Work 

In this paper, we have proposed an effective model for storage systems, SEDP, which helps cloud 
providers have an idea of how to store their data in a recoverable way. We focus on how to improve 
the recover capability and update the data effectively. The model is designed to be “Plug and Play”, 
which can be applied to read-only system. By turning on the monitor module, it can also handle with 
dynamic update request without making big changes inside the structure. 

Compared with related works in the information security industry and in data storage literature, 
our model is positioned as a complementary approach. It uses different encoding scheme compared 
with MB-DDIVR and it adopts data page instead of map-based table to realize dynamic update. By 
conducting the first experiment, we show that SEDP have better recovery capability when the damage 
blocks are centrally distributed. The second experiment shows that SEDP is an update-friendly model. 
It can effectively handle with frequent update request at the cost of little download efficiency loss. 
Therefore, if files are frequently updated and the update-download ratio is high, SEDP shows a better 
overall performance. Otherwise MB-DDVIR will still be a good solution. 

In future work, we will consider applying different granularities into the shell choosing phase to 
make the system more flexible and damage tolerable. We also intend to refine the smart monitor by 
taking more relevant factors into consideration. 
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6. Appendix 

Algorithm 1 Integrity check & data recovery process on TPA 
Input: blocksize, filename, k-m encode, checkinglevel 

Output: unrecovered blocks D[] 
1: G = getAllGroups(filename); 

2: for each g = (ܾ଴,… , ܾ௞ା௠ିଵ) ∈ G 

3: set coveredBytes = 0 

4: while coveredBytes < blocksize/ checkinglevel do 

5: length = randomInt(blocksize/2); 

6: coveredBytes += length 

7: for i ∈ ሼ0,… , k െ 1ሽ 
8: 	 ଵܵ ൌ 	 ଵܵ⨁ signatureሺܾ௜, coveredBytes, lengthሻ 
9: end for 

10 for j ∈ ሼk,… , k ൅ mെ 1ሽ 
11 									ܵଶ ൌ ܵଶ⨁ signature൫ ௝ܾ, coveredBytes, length൯ 
12 end for 

13 if erasureEncode( ଵܵ) != ܵଶ then 

14 if erasureDecodeGroup(g) == ‘success’ 

15 uploadGroup(g) 

16 else 

17 D.add(g) 

18 break 

19 end if 

20 end while 

21 end for 

 
 

Algorithm 2 Patching process 
Input: file 

Initialization: modified groups G = [] 

1: P = getAllCachedPages(file) 

2: sortByOffsetDesc(P) 

3: for each ݌௜ ∈ ܲ 

4: ௜݃ = getBelongGroup(݌௜) 

5: ܾ௜ = getCorrespondBlock(݌௜, ௜݃) 

6: patchToBlock(݌௜, ܾ௜) 

7: G.add( ௜݃) 

8: end for 

9: erasureEncodeGroups(G) 

10: uploadGroups(G) 

11: deletePages(P) 
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