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Abstract. In the 5G mobile communication network virtualization scenario, how to deploy service 
function chaining of the core network efficiently is the key problem to realize the efficient deployment 
of virtual Evolved Packet Core network services. In order to solve the problem that the existing 
deployment methods are difficult to meet the requirement of the mobile communication with low 
latency, this paper proposed a method for service function chaining deployment based on Q-learning. 
This method solved the problem by applying establish a Markov decision process model to the latency 
optimization in the context of VNF deployment, and then design a Q-learning algorithm to found the 
deployment solutions with minimum delay cost of network services. Simulation results show that the 
proposed method achieves better performances in terms of average processing time, request 
acceptance rate, gain and execution time.  

1. Introduction 

As the era of 5G is coming, mobile service is growing significantly diversified and the service 
which used to be provided only by fixed internet has emerged on the mobile termination. With the 
popularity of cloud service, new type of service requires a ‘soft’, ‘green’ and ‘high speed’ 
infrastructure platform. To meet these demands of future network, mobile operators entail numerous 
high volume dedicated hardware devices to improve network capability and performance, which 
could lead to continuous increase in capital expenditure and operating expenditure. In order to 
optimizing the architecture of mobile network, evolved packet core (EPC) involves network function 
virtualization (NFV). NFV can provide a centralized management and orchestration plane, and thus 
improve the flexibility and scalability of network [1]. In [2], Akyildiz I, et. al. proposed that 
introducing NFV in EPC can save 20-35% of the capital expenditure. 

NFV is proposed to decouple the function of network entities and hardware by moving the 
software-oriented network function on commercial data center. Through instantiating a series of 
virtual network function (VNF) as a service function chain (SFC), operators finally obtain a virtual 
EPC (vEPC) on data center, which can implement centralized deployment, orchestration and 
management of VNF and physical resource. Compared to the fixed and static deployment of dedicated 
hardware in current mobile network, NFV platform provision a software-oriented deployment, which 
render the operators to customize SFC according to the personalized demands of tenants.  

To support the diverse online interaction application, 5G standard requires a millisecond E2E 
latency. However, the latency of current 4G LTE system can only reach 10-100ms. To solve this 
problem, this paper is focus on how to utilize the flexibility of NFV platform to meet the low latency 
requirement in network service deployment. 

Most existing works relegate the problem of low latency deployment to a shortest path problem. 
The main solution can be classified to two types: (1) approaches resort to integrate programming for 
global optimal solution; (2) approaches resort to heuristic algorithm for local optimal solution. In 
terms of global method, [3] and [4] proposed a model via linear and non-linear programming 
respectively. These method set the embedding relationship between VNFs and physical servers as the 
decision variable and introduce binary placement constraints to simplify the problem in order to 
improve the computing efficiency and obtain the optimal deployment policy with lowest latency. 
However, this kind of deployment can only describe the embedding relationship by integrate variable, 
which means that the granularity of deployment still remains on ‘network element’ level. These 
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approaches of rigid embedding relationship can not scale resource allocation according to fluctuation 
of network traffic. In the cases of large scale network, they may fall in negative performance. To 
solve this problem, [5] proposes a deployment based on node-splitting method. This method selects 
unit data packet (UDP) in the network as a decision variable to further refine the granularity of 
resource allocation and improve the existing integer programming method request acceptance rate. 
Considering the existing closed method comprehensively, this kind of method has higher solution 
accuracy and can guarantee the optimality of the deployment results, but its computational complexity 
is high. When the scale of the problem increases, it will lead to combination explosion. As a result, 
some researches on heuristic algorithms have emerged in the industry and the algorithm solves the 
problem of high computational complexity of closed-form methods. However, correspondingly, such 
methods can not guarantee the optimality of the results. [7] designs a heuristic algorithm based on 
simulated annealing, which can be used in a short time to find an approximate optional solution,  but 
this method only considers one type of VNF. In [8], a greedy minimum load (GLL) algorithm and 
tabu search (TS) –based algorithm are designed. The former deploys the VNF first on the underlying 
node with the largest available cache resources and the latter keeps searching by TS to find the optimal 
solution which meets the conditions. A deployment method based on Viterbi algorithm is proposed 
in [9]. By modeling the problem as a multi-stage directed graph with joint overhead and then using 
the Viterbi algorithm for the deployment of SFC, the proposed algorithm tends to assign the VNFs 
requested by each SFC on the same underlying node, ignoring the impact of centralized deployment 
on the network processing latency and only optimizing the network’s transmission latency. In 
addition, the methods mentioned above pay more attention to the resource utilization of the 
underlying infrastructure, not considering the features of the mobile communication service. They 
divide the SFC deployment into two phases, that is, the node deployment of VNF is completed first, 
and then the data flow is processed by a sequence constraint of VNF and makes link selection. 
However, this two-stages deployment strategy can not obtain the optimal solution of both nodes and 
links at the same time, but finally obtain the second-best solution. 

Aiming at the shortcomings of the above SFC deployment methods, this paper designs a 
deployment method based on Q-learning with the background of  the  mobile core network vEPC, 
and models the SFC deployment problem as Markov decision progress to achieve a joint deployment 
of nodes and links  in the first phase. In order to minimize the latency of network traffic, a dynamic 
adaptive SFC deployment method is propose in this paper. This method can better meet the demand 
of low latency network service in mobile communication network. Experiments show that this 
method has better performance in service request acceptance rate, revenue and algorithm execution 
time. 

2. Problem Description and Network Module 

5G network architecture will utilize SDN/NFV to realize EPC network element function based on 
centralized deployment, orchestration, and management of data center network. EPC network 
element function will be transplanted from costly exclusive hardware to unified high-performance 
commercial server to realize network element function decoupling from the proprietary hardware. 
VEPC implements the main NE functions of EPC’s current architecture in the form of software, 
including MME, SGW, PGW and Home Subscriber Server (HSS), As shown in Fig.1, vEPC separates 
the control and data plane of the traditional core network and divides the EPC service chain into two 
types of services chains—control plain and data plain. Mobile operators can dynamically instantiate 
SFCs according to user needs, making deployment and orchestration more attractive and promoting 
the sharing of the underlying resources. 
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Fig.1 vEPC service chain model 
The mathematical model of VNF service chain deployment is shown in Fig.2. The physical 

network is an operator data center, and the physical resource required for service provided by the 
commercial server is represented as aweighted undirected graph SG . The virtual network which is   

represented as a weighted directed graph VG  is a service function chain consisting of a set of VNF 
sequences. The NFV management and orchestration module maps each VNF to the underlying 
network node according to the resource type and quantity requested by the service chain : V Sf G G
[9]. 

VNF1 VNF2

VNF3

The Physical 
Network :GS

VNF Service Chain: (VNF1→VNF2→VNF3 )

 

Fig.2 SFC deployment model 
2.1 The Underlying Network 

The underlying network which is consisted of physical nodes and links is represented as a weighted 
undirected graph （ ， ）S S SG N E , where SN  is the set of physical nodes and the total number of 
physical nodes in the underlying network is n , k  represents the type of physical resources (eg, 
compute, storage, bandwidth, etc.) provided in the underlying network. The underlying network 
resource matrix n kC   presents the capacity of each type of resource for all physical nodes. ES  

represents the link bandwidth of the physical nodes. The matrix n nB   represents the link bandwidth 

of the physical nodes and the elements ijB  represents the minimum link bandwidth of the 
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communication loop between the physical nodes i  and j  The matrix T
n nD   represents the 

transmission delay of the communication between the physical nodes. 
2.2 Service Chain  

We define an ordered set of VNF sequences as service chains. m  represents the maximum  number 
of  VNFs that can be accommodated in a resource pool. l  represents the total number of VNF types 
requested by the service chain. The numbers 1, 2, , l represents different types of VNFs 
vMME, vHSS, , vSGW  respectively. The VNF composition vector 1 mL  indicates the rank of each 
VNF in the tenant request chain. The resource  matrix of  the VNF service chain request is expressed 
as m kR  , where the row represents the resource vector required for deploying one VNF, and the 

column represents the VNF sequence requested by the service chain. m mA  represents the service chain 

adjacency matrix, where the element ijA  represents the virtual link bandwidth between iVNF  and 

jVNF . 1
P
lD   represents the processing delay cost of each type of VNF. In [6], the experiment shows 

that the control plane and data plane of VNF are extracted and separated based on SDN, and the 
control plane is instantiated separately in the server. Therefore, the processing delay of the VNF is 
not affected by the data plane traffic and it is approximately a constant. Similarly, a weighted logical 
graph （ ， ）V V VG N E  is used to represent the logical view of all the VNF nodes and their 
relationship in the service chain. VN  represents the logical node set of VNFs, and EV  represents the 
logical link set. 
2.3 Service Chain Deployment Relationship 

Define a deployment relationship matrix m nX  that represents that the mapping between VNFs and 

service nodes, where the element {0,1}ijX  is a binary variable that 1ijX  represents the i  type of 

VNF deployed on the service node j . In this paper, the shortest path of strategy of service chain 
deployment is obtained by solving . 

Table 1 Main parameters symbol defination 

Parameter Defination 

m  The maximum number of VNFs requested by the tenant 
n  The total number of physical nodes in the underlying network 

k The type of physical resource provided in the underlying network 

l  The requested VNF type in the service chain 

n kC   The capacity of each type of resource for all physical nodes 

m kR  The number of different types of resourcesrequested by the VNF service chain 

n nB  Physical node adjacency relationship

m mA   
The delay of the physical link e E  between the physical network forwarding node

1s  and 2s  
T
n nD   

1
P
lD   

Transmision delay of communication between physical nodes 
Processing delay of each type of VNF 

1 mL   VNF composition of the service 

m nX   Service chain deployment relationship 

 
2.4 Optimization Goals  

The network model proposed in this paper aim to optimize the service delay of service chain 
deployment. Under the condition of resource constrains, we can transform the service chain 
deployment problem into an integer programming problem: 

The target of optimization: 

´m n
X
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min（ ）transmit processDelay Delay                                                      (1) 

Constraint condition: 

1 1m n n mX I I                                                                (2) 

( )Tm n m k n kX R C                                                          (3) 

1 2 1 2, j, , , 1 2 1 2
( , ) E

, 1 , ,
V

i s s i j s s
i j

X X A B s s n s s


                                  (4) 

1, 1{0,1}, 1 , 1i sX s n i m                                              (5) 
Equation (1) is the objective function, whose purpose is to minimize the network service latency. 

Network service latency consists of processing delay and transmission delay. The processing delay 

1

(L(i))
m

process P

i

Delay D


  can be expressed as the sum of the processing delay of the VNFs in the 

whole network. The network transmission delay 1 2, j, ,
( , ) EV

T
transmit i s s i j

i j

Delay X X D


    

1 2 1 2, 1 , ,s s n s s     means the sum of each physical link transmission delay. (2) is the deployment 
relationship constraint, where I is the a vector with elements values of all 1. The model proposed in 
this paper does not support VNF segmentation mapping, that is, it can not segment the VNF and map 
it to different underlying services nodes at the same time. (3) is the node resource capacity constraint, 
which means that all kinds of resources requested in the service chain can not exceed the 
corresponding resources provided by the underlying network node. (4) is a link resource constraint, 
indicating that the virtual link bandwidth between the VNFs does not exceed the minimum link 
bandwidth between service nodes deployed in the underlying network. (5) represents that the 
elements in the deployment relationship matrix m nX  are binarized. In the condition of 

1, 1i sX  , iVNF

is deployed on the service node 1s , otherwise, the deployment of  iVNF is not on the node 1s . 

3. SFC Deployment Method Based on Q-Learning 

3.1 Markov Decision-Making Process Description 
According to the paper [13], the deployment model of VNF service chain nodes can be described 

by discrete-time smooth Markov decision process, and it is expressed as quaternion { , , , }S A r J [14], 
in which S represents the state space of the service chain mapping and the event in the space is the 
deployment status of the service chain at a certain moment. As it is shown in equation (6), ( )X t is the 
deployment status matrix at time t , and A represents the behavior space of the service chain 
deployment ,whose basic event is the change of service chain deployment status. For example, when 
any VNF in the service chain is instantiated or moved on the physical node and r indicates the revenue 
function, if the state ts the moment t satisfies the constraints shown in equations (2)-(5), the 

deployment revenue in this state can be denoted as （ ）transmit processr Delay Delay   , otherwise, the 
deployment benefitsapproaches to a negative real number whose absolute value is sufficiently large. 

J is the total discount return on service chain deployment and satisfies the equation 
0

( )
T

n

J r t


  . 

11 1

, ,

1

(t) , (t) , , [1, ], [1, ]

n

i j i j

m mn

X X

X S X X X i m j n

X X

 
 
 
    
 
 
 
 




 




                 (6) 

3.2 Q-Learning Algorithm Description 
In order to solve the Markov decision process model proposed in the previous section, this section 

presents a solution based on the Q-learning algorithm. The Q-learning system module is shown in 
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Fig.3. At the tmoment, the system performs the behavior ta to the ts state and then reach the 1ts   

state, meanwhile it uploads the revenue function ( , )t tr s a  of the t  moment and updates the behavior 

value function ( , )t tQ s a . Agent saves the updated behavior value function into the behavior 

estimation table ( , )Q s a . Then the system repeats the above operation again for the state 1ts   until 

( , )t tQ s a  reaches the optimal behavior value *( , )t tQ s a . After obtaining the optimal behavior 

estimation table *( , )Q s a , agent will choose the optimal strategy *
Q based on J  and the discount 

benefits of all the combinations of behaviors in the table. 

1 1( , ) ( , ) [ ( , ) max ( , ) ( , )]t t t t t t t t t t tQ s a Q s a r s a Q s a Q s a                                (7) 
* *

1 1( , ) [ ( , ) max ( , )]t t t t t tQ s a E r s a Q s a                                                (8) 

The update rule of ( , )t tQ s a  is shown in equation (7) , where ( , )t ts a  represents the moment-

behavior pair of the deployment process at the tmoment, ( , )t tr s a  indicates the instant benefits of the 

t  moment, and t is the learning factor satisfying [0 1]，t  . When the optimal behavior value 
function satisfies the Bellman’s optimal value equation shown in equation (8), agent stops the 
iteration and *( , )t tQ s a  represents the optimal behavior value at moment t . 

Q‐learning Agent

Time‐space  MDP model 
(current space st)

Behavior at State st+1

Function value 
estimation Q(st,at)

Benefit functionr(st,at)

 

Fig.3 the reinforcement learning model 
In the deployment process, it is assumed that the logical network and physical network view is 

shown in Fig.4. The logical layer in the figure indicates the VNF and the links needed to be mapped 
at the t  moment. In the physical network, the nodes are distinguished by different numbers. The 
parameters （）ijd t  indicates the instantaneous delay of the link , [1, ]（，）,i j i j n  and the processing 
delay of the nodes is indicated marked below the nodes. The bold arrows in the figure shows the 
behavior chosen by the agent at the moment t . As shown in the figure, VNF1 is mapped to node 2, 
VNF2 is mapped to node 1, and the virtual link between VNF1 and VNF2 is mapped to the physical 
link between node 1 and node 2. Because Q-learning uses the idea of dynamic planning, the system 
automatically updates the network view at the beginning of each iteration to obtain the immediate 
latency. Compared with the traditional static deployment method, the proposed algorithm can interact 
with the network view continuously during the iteration process. When problems such as node 
downtime and network congestion occur in the system, the method based on Q-learning can 
dynamically adjust the deployment strategy according to the current network environment.  
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Fig.4 t  moment network view 

Table 2 VNF automated deployment algorithm based on Q-learning 

Input : 
The requested information of service chain l ; the underlying network view ; The 

parameters of VNF 

Output : The delay-benefits optimal deployment strategy *
Q of service chain l  

(1) 
Initialize the Markov decision process state , behavior space A  and transition 

probability matrix according to the input 

(2) 
Combine VNFs and get the order constraint l  of the service chain l  according to the 

requested information of the service chain l  
(3) Initialize the selection strategy Q  according to the order constraint l  

(4) 
Initialize the learning factor 0 . Initialize the initial state 0s  randomly and let 0t   at 

the same time 
(5) Initialize the behavior value funtion estimation table ( , )t tQ s a  randomly 

(6) Establish 0-1programming model 
(7) Initialize the instant benefitsfunction ( , )t tr s a according to 0-1 programming 

(8) while *( , ) ( , )t t t tQ s a Q s a  

(9) 
Decide the behavior ta  of the current state ts  at the moment t  according to the strategy 

Q , and observe the state 1ts   of the next moment 

(10) Update ( , )t tQ s a  of  the current state-behavior pair according to equation (8) 

(11) Update the learning factor, and let 1t t   
(12) end 
(13) Calcuate the discount benefits of  the service deployment P and J  

(14) Output the optimal deployment sloution *
Q  

4. Simulation and Performance Analysis 

This section uses the total network delay, the requested acceptance and the execution time of the 
algorithm time as the performance evaluation indicators to fully evaluate the performance and 
complexity of the proposed algorithm, with the greedy GLL algorithm[8], TS-based algorithm[8], 
and Viterbi algorithm[9] for comparison. 
4.1 Simulation Settings 

In this experiment, the underlying network view and SFC requests are generated randomly by the 
discrete event simulator of the GT-ITM tool. The underlying network nodes and VNF parameters are 

SG

S
P
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set according to Table 3 and Table 4. The arrival of an SFC request is subject to a Poisson distribution 
with arrival strength 0-1000. Each SFC request consists of one or more VNFs, with the number of 
VNFs subject to an evenly distributed range of [2, 5]. The algorithms are implemented by Matlab, on 
the PC with Intel i7 4790 and 4 GB memory. 

Table 3 The parameter configuration of service network node 
CPU Storage capacity Throughput 
32 100GB 10Gbps 

Table 4 VNFparameter configuration 
VNF CPU I/O Storage requirements 
SGW 4 80 30 
PGW 4 80 30 
MME 6 40 50 
HSS 2 100 200 

4.2 Performance Analysis 

 

Fig.5 The average processing time of requests comparison 
Fig.5 describes the total network delay with SFC request intensity changes. It can be seen from the 

figure that as the arrival strength of service requests increases, the total network delay increases. 
Under the same conditions, the proposed algorithm has the least increase in the total delay of the 
network. The node selection strategy of GLL is to select the available nodes with the most remaining 
resources. This method reduces the queuing time of service requests and reduces the processing delay, 
however, it does not consider the co-ordinated optimization of processing delay and transmission 
delay and can only obtain the minimum local optimal solution to processing delay. Similarly, the TS-
based deployment method the solution space of the node selection problem by the local tabu search, 
avoiding the algorithm getting into the local optimum. The above two algorithms do not fully consider 
the state of the link which the data stream passes through, resulting in the long transmission delay of 
the underlying link. The Viterbi algorithm uses the dynamic programming idea to solve the sequential 
optimization problem and it adopts a static optimization algorithm when considering the link 
transmission delay optimization, without considering the randomness and uncertainty of the network 
delay parameter. At this point, the proposed Q-learning algorithm effectively co-ordinates the 
transmission delay and processing delay optimization, and considers the randomness of the 
experimental parameters. The experimental results show that this method has better performance 
under both large-scale and small scale requests. 
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Fig.6 Request acceptance rate comparison 
Fig.6 shows the change of request acceptance rate with the arrival strength of service requests. 

Due to the limited physical resources in the underlying network, as the strength of service request 
arrival increases, the system will not be able to provide sufficient resources. Therefore, the demand 
acceptance will decrease as the request intensity increases. The GLL and TS method have a limited 
choice of nodes with more remaining resources during deployment, and they will replace the node 
when the node usage is high. Each node in the network has a surplus of resources as the request 
intensity increases. Since this part of the resources can not carry a completed VNF, a large amount of 
resource fragments are formed, which results that the system is not able to fully utilize the physical 
resources. The Viterbi method does not consider the randomness of parameters such as delay, if a 
node is invalid and the network is congested, it can not dynamically adjust the deployment policy 
according to the instantaneous network traffic, leading to the failure of the requested deployment. We 
can see from the simulation results that the proposed method can fully utilize the physical resources 
with the consideration of network parameters’ randomness to deal with the deployment of network 
requests in emergency situations. 

 

Fig.7 Algorithmexecution time comparison 
The execution time of the algorithm depends on the size of the underlying network and SFC 

requests. As shown in Fig.7, the underlying network has 1000 nodes and the size of the SFC request 
varies from 10-100. With the longest processing time, the GLL method uses node-link two-stages 
mapping strategy: in the first stage, greedily select the optimal underlying node for VNF deployment 
so as to optimize the network processing delay; in the second stage, map the virtual link on the 
physical link with the least delay between nodes. This two-stages method can not deploy nodes and 
links at the same time. In the traversal process of two stages, each feasible solution needs to be judged 
whether it meets the conditions in the programming problem and the computational complexity is 
high. TS method based on greedy algorithm increases the search direction, but it can not change the 
flaw of two-stages algorithm. The Viterbi method adopts the idea of dynamic programming to search 
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for the shortest path of deployment recursively and its complexity of the algorithm is 2( )n m , but 
there is no Agent to adjust the optimal-searching gradient in the process of recursive optimization and 
it belongs to non-directional search. In summary, the method based on Q-learning algorithm can 
obtain the immediate benefits according to the iterative equation (7) and greedily search for the 
deployment strategy in the most profitable direction, avoiding traversing the state space blindly, 
improving the efficiency of optimization and shortening the algorithm convergence time.  

5. Summary 

The introduction of SDN and NFV into the mobile core network enhances the scalability of the 
mobile communication network and enables the flexible deployment and on-demand generation of 
services. This paper mainly studies the problem of the shortest path of SFC deployment in virtualized 
environment. In view of the problem that the traditional SFC deployment method does not consider 
the dynamic optimization and delay co-ordination optimization, this paper proposes a vEPC service 
function chain deployment method based on Q-learning algorithm. Based on the traditional algorithm, 
the proposed method optimizes the processing delay and transmission delay of the deployment 
problem, and considers the randomness of the delay parameter, so it can dynamically adjust the 
deployment strategy to adapt to the impact of parameter changes. Experiments show that the 
deployment algorithm proposed in this paper has the computational complexity of polynomial time 
and significantly improves the total network delay, service request acceptance rate and algorithm 
execution time. 
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