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Abstract—The concept of motion-history image (MHI) is 
widely adopted by many researchers to solve problems of human 
actions recognition. An improved MHI with only one parameter 
is proposed in this paper, it is easier to be implemented and can 
retain more effective movement information compared with the 
original method. Furthermore, two-dimensional (2-D) Gabor 
feature based on energy blocks (EB-Gabor) is proposed to encode 
the texture information of MHI. The 2-D Gabor feature with high 
dimension is divided into multiple energy blocks and then the 
energy features of these energy blocks can be obtained. The 
energy features are served as the input of Adaboost. 
Experimental results on public benchmark KTH video database 
demonstrate the superiority of the proposed method over the 
state-of-the-art action recognition approaches. 
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I. INTRODUCTION 

Human actions recognition has been widely applied in a 
number of real-world applications, such as video analysis, 
human-computer interaction and smart surveillance. Though 
significant progress has been made in past decades [1], 
recognizing actions is still a quite challenging task due to the 
inherent limitations of traditional data source, such as the 
variations in the lighting conditions, self-occlusions and 
cluttered backgrounds. In order to improve the accuracy of 
actions recognition, researchers have proposed some effective 
algorithms in motion segmentation and feature extraction, such 
as motion-history image (MHI) and two-dimensional (2-D) 
Gabor. 

MHI [2] is the common method to describe how the motion 
is moving in the video sequence. It uses intensity to express the 
recent motion, where bright pixels represent the recent 
movement and dark pixels represent the past movement. 
Recently, a new approach to model and recognize actions was 
proposed in [3], it extracted 7 Hu moments from the MHI at 
each frame and used these features to encode the patterns 
captured from different actions. Murayama et al. [4] described 
the low-level features with the histogram of the oriented 
gradients of MHI, and calculated the similarity between the 
sequences by continuous dynamic programming for unusual 
human actions detection. Moreover, Ahad et al. [5] extended 2-
D MHI to three-dimensional (3-D) and employed Hu moments 
to calculate the feature vectors. Most of above works have 
achieved a good recognition effect, but they all need to do a lot 
of parameters estimation before forming the MHI. 

2-D Gabor [6] could extract the features of both time 
(spatial) and frequency domain. It is used in many applications, 
such as fingerprint recognition, image analysis and face 
detection, etc. For example, by using 2-D Gabor, Liu et al. [7] 
characterized the local appearance and shape on adaptive 
hierarchical depth motion maps (AH-DMMs) for human 
actions recognition. In [8], the 2-D Gabor filter was 
decomposed into one-dimensional (1-D) filters, and each filter 
was implemented on graphics processing units (GPUs). More 
recently, Kim et al. [9] proposed a novel approach to compute 
the 2-D Gabor by reducing the computational redundancy at 
multiple orientations and frequencies. However, the 2-D Gabor 
feature vector has a high dimension which can negatively 
influence the performance efficiency and occupy more memory 
resources. 

To reduce the complexity of parameters estimation, an 
improved MHI is proposed in this paper. Firstly, we extract key 
frames from the original video, and then update the intensity 
value of these key frames, finally, combine the processed 
images to MHI. In addition, we propose a novel approach to 
reduce the dimension of 2-D Gabor by dividing the feature into 
multiple energy blocks and recoding these energy blocks. In 
this way, the texture information can be effectively acquired 
from MHI. 

II. THE PROPOSED METHOD 

A. Improved MHI 

The MHI is a view-based method that shows motion 
trajectories from image brightness. MHI is widely used in the 
field of human actions recognition. The original MHI which is 
expressed as  , ,H x y t

 

can be computed by 
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where x , y  and t  denote the position and time,   decides 
the temporal duration of MHI,   is the decay parameter, and 
the threshold   is given. ( , , )I x y t  is the intensity value of 

pixel location with coordinate ( , )x y  at the tht  frame of the 
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video. The original MHI has three parameters, which requires a 
large number of calculations to estimate the best combination 
of parameters to avoid the loss of useful information. To solve 
the problem, an improved MHI is proposed in this paper, which 
is expressed as 

     
   

( , , ) , , 1 0 , , 0
, ,

, , 1 , ,
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 

 (3) 

where ( , , )I x y t  is a series of gray-value update images which 
can be calculated by 
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where the threshold thd  is given. N  is the total number of 
frames in a video. Therefore, there is only one parameter thd  
in our calculation method, which greatly reduces the 
computational complexity. Figure 1 shows the process of 
parameters estimation. From Figure 1, we can see that the noise 
in the image is gradually disappearing with the threshold thd  
of improved MHI increases. However, if thd  is too large, the 
movement foreground will disappear. So we can get that the 
optimal threshold is 45. In the same way, an optimal 
combination of parameters { 250, 15, 40}      of 
original MHI can be obtained. As shown in Figure 1, the 
improved method can get a clearer trajectory with less 
computation of parameters estimation compared with the 
original method. 

 

 
FIGURE I. THE PROCESS OF PARAMETERS ESTIMATION 

Figure 2 shows an example of a complete calculation 
process of improved MHI: Firstly, segment the video and 
extract key frames. Next, calculate gray-value update images 
by (4) to remove the noise and get a clear movement 
foreground. Finally, calculate the MHI by (3). 

 
FIGURE II. THE CALCULATION PROCESS OF IMPROVED MHI 

B. 2-D Gabor Based on Energy Blocks 

2-D Gabor feature has good spatial locality and orientation 
selectivity, so it is widely used in image processing field. The 
basic function of 2-D Gabor filter can be computed by 
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where ( , )x y  is the pixel position in the spatial domain,   is 
the orientation of Gabor filter,   is the radial center frequency, 
and   is the standard deviation of the Gaussian function along 
the x-axis and y-axis. For feature extraction of MHI, the images 
are convolved with the Gabor filter as 

, ,( , ) ( , )* ( , )G x y MHI x y x y                        (7) 

Equation (7) can be expressed as the sum of the real part 

,Re{ ( , )}G x y   and the imaginary part ,Im{ ( , )}G x y   as 

, , ,( , ) Re{ ( , )} Im{ ( , )}G x y G x y G x y                  (8) 

,Re{ ( , )}G x y   is used to characterize the local appearance 

and shape on MHI. In general, 40 filters [10] are used to 
calculate Gabor Real features. 

Gabor Real feature vector with 40 filters is 12016040 
(the size of MHI is 120160) which has a high dimension. 
Usually, principle component analysis (PCA) is adopted to 
reduce dimension，and this method is defined as Gabor-PCA. 
In this paper, a novel Gabor feature based on energy blocks is 
proposed which is defined as EB-Gabor. The EB-Gabor can be 
calculated by 
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Figure 3 shows the process of EB-Gabor segmentation. 
Figure 3 (a) expresses the N-dimensional EB-Gabor and it is 
evenly divided into n  energy blocks as shown in Figure 3 (b). 


FIGURE III. EB-GABOR SEGMENTATION 

After feature extraction, Adaboost [11] is adopted for 
classification which is widely used in human actions 
recognition. The kernel of Adaboost is to train different 
learning algorithms for the same training set, and then combine 
these algorithms to construct a stronger final learning algorithm. 

III. EXPERIMENTS AND ANALYSIS 

In this section, the proposed method is evaluated on KTH 
video database. The current video database containing six types 
of human actions (walk, jog, run, box, hand wave and clap) 
performed several times by 25 subjects. 

A. The Performance of Improved MHI 

In order to show the performance of improved MHI, 45 
videos of every action are chosen for training and the other 45 
videos are chosen for testing. Firstly, we calculate the MHI 
with the original method ( 250, 15, 40     ) and the 

improved method ( 45thd  ) respectively, and then extract 
EB-Gabor and use Adaboost for classification. 
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FIGURE IV. THE AVERAGE RECOGNITION RATE OF IMPROVED MHI 

AND ORIGINAL MHI 

Figure 4 shows the average recognition rate of the 
improved MHI and the original MHI with the Adaboost of 
{10, 20,30,...,150}  times iterations. The recognition rate of the 
improved MHI has reached 96.5% with the Adaboost of 120 
times iterations, which is 6.5% higher than that of the original 
MHI whose best recognition rate is 90%. What’s more, the 
recognition result of the proposed method is always better than 
the original method in any Adaboost iterations, which fully 
states that the proposed method has higher validity and stronger 
robustness than the old method. 

B. The Performance of EB-Gabor 

In order to show the performance of the proposed EB-
Gabor, Gabor-PCA is used for comparison in this paper. The 
energy reserved of original data after PCA algorithm is shown 
in Figure 5. From Figure 5, we can see that the higher the 
dimension of Gabor-PCA is, the more the energy reserved of 
original data is. Therefore, we adopt 260 dimensional Gabor-
PCA which can save 99% energy. 
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FIGURE V. THE ENERGY RESERVED OF ORIGINAL DATA 

Figure 6 shows the average recognition rate of EB-Gabor 
and Gabor-PCA with the Adaboost of {10, 20,30,...,150}  times 
iterations. The recognition rate of EB-Gabor has reached 96.5% 
with the Adaboost of 120 times iterations, which is 8.6% higher 
than that of Gabor-PCA whose best recognition rate is 87.9%. 
It is obvious that the EB-Gabor always behaves better than 
Gabor-PCA in any Adaboost iterations. By comparing, we 
have confirmed the effectiveness of the proposed method. The 
confusion matrix is shown in Table 1. It can be seen that most 
of six actions are classified very well with an accuracy of 
around 97.8%. 
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FIGURE VI. THE AVERAGE RECOGNITION RATE OF EB-GABOR 

AND GABOR-PCA 
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TABLE I. CONFUSION MATRIX OF OUR METHOD FOR KTH VIDEO 
DATABASE 
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C. Comparison with the State-of-the-arts 

Furthermore, we compare the performance of our method 
with several state-of-the-art methods on the KTH video 
database and report the results in Table 2. It can be seen that 
our method outperforms the mentioned methods. 

TABLE II. COMPARISON WITH THE STATE-OF-THE-ARTS ON KTH 
VIDEO DATABASE 

Method Year Accuracy 

Kamiński et al. [12] 2017 81.8% 

Li et al. [13] 2017 91.6% 

Zhao et al. [14] 2017 93.9% 

Wang et al. [15] 2016 94.5% 

Cho et al. [16] 2016 94.8% 

Our method 2017 96.5% 

IV. CONCLUSIONS 

This paper presents an effective method for human action 
recognition using improved MHI and EB-Gabor. The improved 
MHI can capture more details of motion and shape clues by 
calculating gray-value update images. Furthermore, EB-Gabor 
is proposed to encode the texture information of MHI, it 
extracts energy features on the basis of 2-D Gabor. The 
experimental results on the benchmark KTH video database 
show that the proposed method outperforms the state-of-the-art 
approaches and achieves a highest accuracy of 96.5% with 6-
class human actions. 
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