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Abstract—The water distribution system is a spatially large 
and complex system. Its proper functioning is determined by 
having been correctly developed in its design and in the hydraulic 
calculations. The basic purpose of the calculations is the selection 
of the diameters of the water pipes and the flow of water occurring, 
therein. This requires careful assessment of the results obtained 
and accuracy in the solutions applied. Issues, centred around the 
control of the results of the calculations, are difficult to present, 
algorithmically, as they are based mainly on the experience and 
knowledge of the designer. The authors of the present paper 
decided to use RBF artificial neural networks when calculating the 
water flow rate in particular sections of the aforementioned water 
pipes. In order to solve this problem, QK1 ÷ QK7 deciding classes 
have been defined in order to describe problems related to the 
water flow rate in the pipework. The RBF neural network, based 
on the parameters of the water pipework, selects one of the QK1 ÷ 
QK7 classes; this allows the process of the evaluation of the results 
of the hydraulic calculations, thus obtained, to be automated, 
albeit only partially. 
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I. INTRODUCTION 

The water distribution system is a spatially large and 
complex system and comprises water pipes, their fittings and, in 
some cases, tanks and pumping stations. Its proper functioning 
is determined, not only by the appropriate selection of materials 
for its proper construction but also, by having been correctly 
developed, in its design and in the hydraulic calculations. The 
basic purpose of the calculations is the selection of the diameters 
of the water pipes, since this directly affects the flow of water 
occurring, therein. Designing a water distribution system, for a 
given topography, along with a site plan, as well as with specific 
water conditions, also requires the selection of optimal routes 
and a network structure that prevents water stagnation in the 
pipelines. This requires careful assessment of the results 
obtained and accuracy in the solutions applied. Issues, centred 
around the control of the results of the calculations, are difficult 
to present, algorithmically, as they are based mainly on the 
experience and knowledge of the designer. The authors of the 
present paper have decided to use RBF artificial neural networks, 
in their calculations of particular sections of the aforementioned 
water pipes, in assessing the water flow rate in pipework. In 
looped systems, a quite minor adjustment to the diameter of the 
loop, can radically change the water flow in the adjacent 
pipelines; evaluation of this parameter is, therefore especially 

important. The choice of the selection of one of the QK1 ÷ QK7 
classes, in order to describe problems related to the assessment 
of the water flow rate in pipework, has been defined. Numerical 
experiments were conducted to show how artificial RBF neural 
networks, can be used to assess the water flow rate in pipework, 
by selecting the appropriate QK1 ÷ QK7 class. 

II. ISSUES RELATING TO THE EVALUATION OF THE 

HYDRAULIC CALCULATION RESULTS OF WATER DISTRIBUTION 

SYSTEMS 

The methodology for hydraulic calculations is well known 
and has been discussed, for many years, in other works [1, 2]. 
Due to the high complexity of the computational algorithm, 
computer technology is used. An automatic evaluation of the 
results obtained may be applied to calculation programmes to a 
limited degree, only. The algorithm calculates the given data, 
however, the results obtained may be inadequate, from the point 
of view of the functional requirements of the water distribution 
system. Calculations are usually performed repeatedly while 
striving for a correct solution. One interesting problem seems to 
be the introduction of artificial intelligence techniques, in respect 
of data analysis; this would, at least partially, automate and 
improve the evaluation process of the calculation results 
obtained.  

Artificial, neural networks are used, increasingly, in water 
supply issues. The article [3] provides a review of artificial 
intelligence methods, including artificial neural networks, in the 
design and operation of water distribution systems. The paper 
also [4] proposes recurrent neural networks for calculating the 
flow and looped systems in water supply networks. The use of 
multilayer perceptron, to calculate pressure losses in water pipes, 
is described in the article [5]. 

The method for the verification of results of hydraulic 
calculations, with the use of process diagnostics and artificial 
neural networks, is also presented in this paper [6]. The method 
for assessing pressure levels and the pattern of pressure zones, 
using artificial neural networks, is described in the article, at [7], 
while the solution to the above problem, with the use of the C4.5 
decision tree, is also discussed at [8]. The work [9] describes the 
proposal of an expert system and an artificial neural network, 
designed to assess pressure in the water supply network. 
Problems in the assessment of pressure loss, in which different 
methods of artificial intelligence were used, including expert 
systems, as well as the k-nearest neighbours method, are 
discussed in papers [10, 11, 12].  
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III. METHODOLOGY FOR ASSESSING FLOW RATES IN 

WATER SUPPLY PIPES 

The problem, considered in the present article, is one of 
assessing the flow rate in individual sections of water supply 
pipes, which occurs in the calculation of water distribution 
systems. The diameter of the water pipe, as well as its location 
in the water distribution system, are taken into account in order 
to prevent water stagnation in the pipelines. 

Naturally, it is possible to check the water flow rate or water 
flow speed immediately, in the results of calculations for 
individual sections. However, this method does not allow the 
actual reason for this condition to become any the clearer. A 
simple analysis of both the structure of the water supply network 
and the velocity of the water flow, allows the answer to the above 
question to be obtained and the appropriate remedial measures 
to be taken, in the event that incorrect values were used, at some 
earlier point. It has been assumed that a computer programme, 
for calculating water distribution systems, should be able to 
provide an intelligent analysis of calculation results and indicate 
the reason why a particular flow should be considered as 
incorrect. In connection with the above, QK1 ÷ QK7 classes 
have been defined, in order to highlight cases in which there may 
be problems with the proper flow of water through pipework; 
one further class, corresponding to the correct conditions, has 
also been defined [10]:  

 QK1 - correct flow through the water pipe 

 QK2 – incorrect, that is, greatly reduced flow, due to the 
diameter of the duct being over-sized; correction of the 
diameter of the cable, located on the branching of the 
network, should not affect the flow of water in the 
adjacent sections 

 QK3 - flow too rapid, caused by the incorrectly selected 
diameter of the water pipe; diameter too narrow, in 
relation to the flow; correction of the diameter of the 
cable, located on the branching of the network, should 
not affect the flow of water in the adjacent sections   

 QK4 - location of the duct at the end of the water supply 
network, where small sections and water nodes diverge, 
in the case of the minimum diameter; it may be 
necessary, periodically, to rinse the duct in order to 
ensure adequate water exchange 

 QK5 - flow on the section is small in relation to the 
diameter; the wire is located in the looped of the network, 
hence any correction to the diameter may cause a change 
of flow, in other sections  

 QK6 - flow too high in relation to the diameter; cable is 
located in the network loop, hence any correction to the 
diameter may cause a change of flow, in other sections 

 QK7 - cable located in a loop with the water flowing in 
from both sides; low water uptake results in a reduced 
flow 

Using EPANET software [13], hydraulic calculations of 
exemplary water distribution systems were conducted and 
examples were developed, in order to generate a decision tree for 
the assessment of the water flow rate in the pipework. 4331 

training examples, describing individual QK1 ÷ QK7 class, were 
prepared. Each example is described by the following arguments: 

 the inner diameter of the pipework Din  

 water flow rate through the cable Qn 

 water flow velocity V 

 an attribute STR, indicating whether the cable is located 
on the network branching or in the loop 

 EP - an attribute denoting whether there is water outflow 
to the further sections "OUT", in the end node of the 
calculation section, or an inflow from another cable "IN", 
or possibly only water uptake from the final node 
"END", at the end of the network 

A collection of training examples for three subsets: training, 
validating and testing. The selection of examples for particular 
subsets was made, using random sampling, with the assumption 
that the training set would account for 50% and the validating 
and testing sets would account for 25% of all training examples. 

IV. NEURAL NETWORKS WITH A RADIAL BASIS FUNCTION 

The radial network is a structure containing an input layer to 
which the signals are described by the input vector X= [x1, x2,…, 
xN]T, a hidden layer with K radial neurons and an input layer. 
Neurons of the inner layer have radial activation functions, 
which are generally marked as [14, 15]: 

                                  (1) 

where ǁ  ǁ is the distance of the input vector X from the centre of 
the radial C neuron in the N-dimensional space. The most 
commonly used Euclidean measure is used to calculate the 
distance r. 

The role of the neuron, hidden in the RBF networks, consists 
in the radial mapping of the space around the C centre. The 
location of the neuron centre, in the N-dimensional space, is 
determined in the network learning process. The superposition 
of signals, coming from all K neurons, hidden in the RBF 
network, allows all network centres to be mapped thus, 

                      (2) 

where K is the number of neurons in the hidden radial network.  

The number of K neurons in the hidden layer and C centres 
should be determined in the process of the neural network 
training. The condition required for the RBF network to create 
an effective model for any function, however, is the provision of 
a sufficient number of radial neurons in the network structure. 
The number of radial neurons cannot be too large because it will 
not have the ability to generalise. The output value y of the radial 
neuron is determined on the basis of the distance r, by means of 
the radial function. The Gauss Function is used in RBF networks: 
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                            (3) 

where  is the shape factor. 

In the case of a multi-criteria classification, the number of 
neurons in the initial layer is equal to the number of classes; 
however, output should be understood as one variable with 
nominal values. 

The training of radial networks consists of two stages: 

 selection of centres and deviation from the centre, i.e. 
the smoothing coefficient 

 selection of neuron weights in the output layer 

The selection of C centres of the radial neurons was 
conducted using the K-means algorithm [16]. The size of the 
deviation, that is, the coefficient of smoothing, was determined 
by the k-nearest neighbours method.  

The selection of weight values of the output neurons was 
made using the standard linear optimisation technique, which is 
a pseudo-inversion algorithm, that is, decomposition, according 
to singular values [14]. The quality of training of the output layer 
was evaluated using the sum-squares error function SOS, as 
described by the formula: 

                              (4) 

where P is the number of training cases, y is the value at the 
output of the neural network and ti is the target value of the 
network for the i-th learning case. 

V. APPLICATION OF RBF NEURAL NETWORKS TO ASSESS 

THE FLOW RATE IN WATER SUPPLY PIPES 

Based on a set of training examples containing an input data 
vector, X= [Din, Qn, V, STR, EP]T and one of the OK1 ÷ QK7 
classes, appropriate for each training session on RBF artificial 
neural networks, was conducted. The evaluation of the neural 
network quality was conducted on the basis of the results of the 
validation set, using the ESOS learning error. An additional 
parameter of the neural network assessment is the accuracy of 
classification   defined as:  

                                        (5) 
where ncor is the number of correctly classified training examples, 
nall is the number of all training examples subjected to 
classification. 

Detailed classification results for the training, validation and 
testing subsets are included in the confusion matrix. This is a 
square matrix in which information, regarding the individual 
classes that the examples actually belong to, is given in rows, 
while information, as to the classes into which they were 

classified, by the classifier, is given in columns. The diagonal 
contains examples that have been correctly categorised, while 
those located beyond the diagonal have been incorrectly 
classified. At the same time, examples beyond the diagonal, 
indicate the classes into which they were incorrectly classified. 

Table 1 presents the training results of the RBF networks for 
assessing flows in water supply pipes. A neural network with 
164 radial neurons, in the hidden layer, was adopted. The above 
neural network has the lowest number of ESOS training errors for 
the validation subset and a very high classification accuracy. 

Figure 1 shows the diagram of the RBF network for the 
assessment of the water flow rate in the pipework, in which the 
activation of neurons in the initial layer is visible, indicating the 
choice of the class assigned to it. 

In the table 1, K - number neurons of the inner layer, ESOS(L) 
- the error for the training subset, ESOS(V) - the error for the 
validation subset, ESOS(T) - the error for the test subset, (L) - 
relevance of the classification for the training subset, (V) - 
relevance of the classification for the validation subset, (T) - 
relevance of the classification for the test subset.  

 
FIGURE I.  A DIAGRAM OF THE RBF NEURAL NETWORK FOR THE 

ASSESSMENT OF THE WATER FLOW RATE 

VI. SUMMARY AND CONCLUSIONS 

The motivation for research was the idea of creating 
additional modules for assessing the results obtained in the 
computer software, for the calculation of water distribution 
systems. Currently, this task is conducted by the software 
designer. In order to obtain the correct solution, calculations are 
conducted many times, hence intelligent solutions would 
certainly be very useful at the design stage. It seems that any 
assessment of the results obtained, indicative of computational 
problems, is an interesting direction for future research, in the 
field of the application of artificial intelligence methods. In this 
present paper, QK1 ÷ QK7 classes have been proposed, of which 
one, namely, QK1, describes the correct conditions, whereas the 
classes OK2 ÷ QK7 indicate various problems related to the 
water flow rate in the pipework.  
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TABLE I.  NEURAL NETWORKS FOR THE ASSESSMENT OF THE WATER FLOW RATE IN THE PIPEWORK 

No. K ESOS (L) ESOS(V) ESOS(T) (L) (V) (T) 

1 24 0.17854 0.18303 0.17187 0.89520 0.88920 0.90758 

2 62 0.11485 0.11599 0.11097 0.97230 0.98061 0.98059 

3 72 0.10599 0.11046 0.10365 0.97507 0.98153 0.98244 

4 88 0.09121 0.09996 0.09386 0.98892 0.98153 0.98891 

5 115 0.09302 0.10166 0.09675 0.98384 0.97599 0.98244 

6 142 0.08269 0.09205 0.08770 0.98892 0.98800 0.98429 

7 148 0.08061 0.09094 0.08659 0.98984 0.98984 0.98521 

8 164 0.07842 0.08831 0.08499 0.99123 0.98984 0.98614 

TABLE II.  RESULTS OF THE CLASSIFICATION OF NETWORK NO. 8 FROM TABLE 1 FOR THE TEST SUBSET 

 QK4 QK1 QK3 QK2 QK5 QK6 QK7 

QK4 166 0 0 0 0 0 0 

QK1 0 136 1 1 2 4 0 

QK3 0 1 133 0 0 0 0 

QK2 0 1 0 241 0 0 0 

QK5 0 1 0 0 148 0 0 

QK6 0 2 0 0 0 129 0 

QK7 0 0 0 0 0 0 116 

 

A set of 4331 training examples was prepared and 
experiments were conducted with RBF artificial neural networks, 
in order to find the right number of neurons in the hidden layer. 
An RBF network with 164 radial neurons was obtained. The 
above network, as used in the computer software programme for 
hydraulic calculations, will assign a class to each water pipe and 
will indicate whether the flow is correct or incorrect. This type 
of classification, additionally describes the problem occurring 
within a given section of the water pipe. The results obtained in 
the training of the RBF neural networks show that networks of 
this type demonstrate clearly defined classes very well and can 
be used in computer programmes. 

REFERENCES 
[1] R. K. Gupta, “Analysis and Control of Flows in Pressurized Hydraulic 

Networks”, PhD, UNESCO-IHE Institute, Delft 2006. 

[2] K. Lansey and L.W. Mays, “Hydraulics of water distribution systems”, in: 
Water distribution systems handbook, L.W. Mays, Ed. New York: 
McGraw-Hill, 2000, pp.4.1-4.29. 

[3] A. Czapczuk, J. Dawidowicz, and J. Piekarski, “Metody sztucznej 
inteligencji w projektowaniu i eksploatacji systemów zaopatrzenia w 
wodę”, Annual Set of the Environment Protection, vol. 17, no. 2, 2015, 
pp. 1527-1544 (in Polish). 

[4] C. Xu, F. Bouchart, and I.C. Goulter, “Neural networks for hydraulic 
analysis of water distribution systems, Innovation in Computer Methods 
for Civil and Structural Engineering”, Cambridge: Civl-Comp Press, 1997, 
pp. 129-136. 

[5] A. Czapczuk, J. Dawidowicz and J. Piekarski, “Application of Multilayer 
Perceptron for the Calculation of Pressure Losses in Water Supply Lines”, 
Annual Set of the Environment Protection, vol. 19, 2017, pp. 200-210.  

[6] J. Dawidowicz, “Diagnostyka procesu obliczeń systemu dystrybucji wody 
z zastosowaniem modelowania neuronowego“, Rozprawy Naukowe no. 
268,  Białystok: Oficyna Wydawnicza Politechniki Bialostockiej, 2015 (in 
Polish).  

[7]  J. Dawidowicz, “Evaluation of a pressure head and pressure zones in 
water distribution systems by artificial neural networks”, Neural 
Computing & Application, 2017, doi:10.1007/s00521-017-2844-8. 

[8] J. Dawidowicz, “System ekspertowy do oceny układu systemu dystrybucji 
wody sporządzony za pomocą wnioskowania indukcyjnego“, Annual Set 
of the Environment Protection, vol. 14, pp.650-659, 2012. 

[9] J. Dawidowicz, “Metody sztucznej inteligencji w diagnostyce wysokości 
ciśnienia w węzłach oraz układów sieci wodociągowych w procesie 
obliczeń hydraulicznych“, in Inteligentne systemy w inżynierii i ochronie 
środowiska, Poznan: PZiTS, 2007, pp.85-94 (in Polish). 

[10] A. Czapczuk, “System ekspertowy do oceny przepływów i strat ciśnienia 
w układzie dystrybucji wody“, PhD, Warszawa: Wydział Inżynierii 
Środowiska Politechnika Warszawska, 2013 (in Polish).  

[11] A. Czapczuk and J. Dawidowicz, “Indukcja drzewa decyzyjnego do oceny 
strat ciśnienia na przewodach sieci wodociągowych“, Gaz, Woda i 
Technika Sanitarna, vol. 89, no. 1, 2015, pp. 11-14 (in Polish).  

[12] S. Biedugnis and A. Czapczuk, “The application of the ‘K-nearest 
neighbour’ method to evaluate pressure loss in water supply lines”, 
Krakow: Technical Transactions, vol. 115, iss. 1, pp. 141-149, 2018,  DOI: 
10.4467/2353737XCT.18.011.7962. 

[13] L .A. Rossman, “EPANET 2 User’s manual“, EPA/600/R-00/057, 
National Risk Management Research Laboratory, Cincinnati: U.S. 
Environmental Protection Agency, OH, USA 2000. 

[14] C. M. Bishop, “Neural networks for pattern recognition”, Oxford: 
University Press, 1996. 

[15] S. Haykin, “Neural networks: a comprehensive foundation”, New Jersey: 
Prentice Hall Int., 1999. 

[16] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: K-Means Clustering 
Algorithm", Applied Statistics, vol. 28, 1979, pp. 100-108. 

Advances in Intelligent Systems Research, volume 146

49




