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Abstract—Designing a water distribution system is 
inherently associated with hydraulic calculations, the primary 
purpose of which is to select the diameters of water pipelines. 
Computer programs may choose diameters, but most often, this 
task is up to the designer. It is necessary to control flow velocity; 
at the same time, however, it is also necessary to minimise 
pressure losses in the water mains network. In order to improve 
the above process, an artificial neural network was designed, 
which, after hydraulic calculations, evaluates the accuracy of the 
diameters selected on a classification basis. The output layer of 
the neural network consists of ten neurons corresponding to the 
nominal diameters of the water pipes. Classification of the correct 
pipeline diameter is done using "one-of-N" encoding, that is, only 
one neuron from the output layer is activated, thus selecting the 
correct diameter. Based on data from hydraulic calculations, the 
neural network diagnoses the diameter of the pipelines along 
individual sections of the water supply network and proposes 
appropriate values or accepts the existing ones. 
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I. INTRODUCTION 

Designing a water distribution system always involves 
hydraulic calculations, the primary purpose of which is to 
select the diameters of pipelines to carry the water. In this 
paper, steady-state analysis was applied for peak hour water 
demand (PHD). Flow rates for these conditions are the basis for 
ascertaining the diameters of the water mains [1]. Computer 
programs may choose diameters, but most often, this task is up 
to the designer. An artificial neural network was designed, 
which undertook classification having performed the hydraulic 
calculations and having estimated the accuracy of the selected 
pipeline diameters. 

II. REVIEW OF THE USE OF ARTIFICIAL NEURAL 

NETWORKS IN THE CALCULATIONS OF WATER DISTRIBUTION 

SYSTEMS 

A review of artificial intelligence methods including 
artificial neural networks for the calculation of water 
distribution systems is provided in the article [2]. In the 
hydraulic computation of water distribution systems, artificial 
neural networks are used to assist in the taring of the simulation 
models [3, 4]. In their article [5], proposed recursive neural 
networks for calculating flows and pressure losses in looped 
water distribution systems. During simulations of hydraulic 

water distribution systems, pressure losses in individual water 
pipes are calculated using, among other things the Darcy-
Weisbach formula. This requires calculations of the linear 
resistance coefficient, most often using the iterative method. 
Numerous studies proposed artificial neural networks for 
calculating coefficients of linear resistance [6,7], which allow 
calculation time to be shortened. Calculation modules, based on 
artificial neural networks, were also introduced into simulation 
methods used in the real-time control of water supply networks. 
The task of neural computing, in this case, is to simplify the 
computational model and accelerate calculations [8,9]. In the 
study [10], the purpose of simulation calculations, using neural 
networks, was the optimisation of pressure in the individual 
nodes of the network taking into account the predicted water 
demand. In the article [11], a neural network was described for 
the calculation of pressure losses in water pipes. The method of 
estimation of pressure levels and the pattern of pressure zones, 
using artificial neural networks, is described in the article [12]. 

III. AN INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS  

In this paper, an artificial neural network of the multilayer 
perceptron type was used for classification [13,14]. The 
number of neurons in the output layer corresponds to the 
number of calculated parameters. The number of neurons in the 
hidden layer should be determined in the process of training the 
neural network. Initially, the number of neurons based on 
Kolmogorov's Theory can be assumed: 

1N2K                                      (1) 

where: K – is the initial number of neurons in the hidden layer, 
N- is dimension of the input vector X = [x1, ..., xn]T. In the 
output layer of the network, the Softmax activation function 
was used according to the formula: 

                    (2) 

where M - is the number of neurons of the output layer, S – is 
the value of the function of the post-synaptic potential. 
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This is an exponential function, the value of which is 
additionally normalised so that the sum of the activation of all 
M neurons of the output layer of the network is equal to 1. In 
addition to the fact that network signals are the basis for 
recognising the appropriate class, the output values of 
individual neurons can be interpreted, as an estimation of the 
probabilities that they belong to a given class [15]: 

In the training of the network, the backpropagation error 
method was applied at first and then the quasi-Newton method. 
The training was done with validation, hence the set of all 
training examples was subdivided into training, validation and 
test subsets. In the network training process, a function of the 
Entropy Multiple Error (EME) was adopted. Entropy where 
each class corresponds to one neuron in the output layer (M> 1) 
[14]: 

                     (3) 

where M – is the number of neurons of the output layer, T – is 
the number of examples in the training set, T = 1, ..., T – is the 
number of the training example, d – is the reference value  of 
the neural output signal, y – is the calculated value of the 
neuron in the output layer. 

The basis for classifier rating is an overall classification 
error defined as: 

                                   (4) 

where nmis - is the number of misclassified training examples, 
nall - is the number of all training examples subjected to 
classification. 

Another quality measure is relevance of the classification  
defined as a complement to the value of one of the overall 
classification errors, namely: 

                   (5) 

where ncor - is the number of correctly classified training 
examples. 

IV. A REVIEW OF ARTIFICIAL NEURAL NETWORK 

STRUCTURES IN THE EVALUATION OF THE DIAMETERS OF 

WATER SUPPLY PIPES 

The use of artificial neural networks requires the 
preparation of data with an appropriate number of training 
examples. To this end, information on 36 existing medium and 
small sized water distribution systems was gathered; hydraulic 
calculations were then carried out for them. The results of the 
calculations were used to compile training data. For hydraulic 
calculation, the methodology took into account with 

withdrawals occur along the pipe qsec and the flow rate at the 
beginning Qs and at the end Qe of the calculated section of the 
water pipe, with the length L with the absolute roughness 
coefficient k, being assumed. Searching for a suitable, 
multilayer perceptron structure was started from a network with 
one hidden layer and with a set of 5 input variables: L, Qs, Qe, 
qsec, k.  

The individual neurons of the output layer correspond to the 
nominal diameters of the water pipes that were adopted as 
follows: 

 DN90, DN110, DN160, DN225 for PE100 
polyethylene pipes of the SDR17 series (EN 12201-
2:2011), 

 DN250, DN300, DN350, DN400, DN450, DN500 for 
ductile iron pipes (EN 545: 2010). 

Sensitivity analysis of individual input variables, that is, 
their effect on the training error of the neural network, 
indicated that the variable qsec can be omitted because its 
absence does not cause a significant deterioration of the neural 
network. Searching for a proper neural network structure with 
one hidden layer was started from 9 neurons in the hidden layer, 
with their number being then increased by the initial value in 
subsequent attempts to teach larger networks. A larger network 
was constructed when the neural network did not improve or 
where only insignificant improvement was observed after long 
learning cycles, suggesting an insufficient number of neurons, 
processing layers, or learning algorithms becoming obstructed 
by the local minimum. Networks with the same structure were 
trained several times to prevent them from becoming 
obstructed by the local minimum (Hornik 1991).  

As a result of the training process of neural networks as a 
final solution has been selected neural network included in 
Table 1, pos. 4. The above neural network has the lowest 
number of the training error EEME for the validation subset and 
a very high accuracy of classification. In the table 1, K – is the 
number of neurons in the hidden  layer of the multilayer 
perceptron, EEME (L) – is an error in the training subset, EEME(V) 
– is an error in the validation subset, EEME(T) – is an error in 
the test subset, (L) – is the relevance of classification for the 
training subset, (V) – is the relevance of the classification for 
a validation subset, (T) – is the relevance of the classification 
for a test subset. 

Adopted artificial neural network consists of the following 
elements: 

 the input layer with neurons for 4 input variables: L, Qs, 
Qe, k. 

 one hidden layer constructed of 36 neurons with a 
logistic activation function, 

 an output layer made up of 10 neurons with the 
Softmax activation function, corresponding to the 
diameters of the pipes. 

Table 2 shows the results of the classification in the form of 
an confusion matrix for the neural network from Table 1, pos. 4 
for the test subset.  
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TABLE I.  NEURAL NETWORKS FOR THE ASSESSMENT OF THE DIAMETER OF WATER PIPES 

No. K EEME (L) EEME(V) EEME(T) (L) (V) (T) 

1 9 0.293010 0.339211 0.409987 0.889465 0.883746 0.891195 

2 18 0.244072 0.256846 0.330387 0.906092 0.897047 0.909018 

3 27 0.234540 0.252878 0.296792 0.904229 0.895717 0.903166 

4 36 0.205843 0.241232 0.300815 0.913009 0.899175 0.905560 

5 45 0.221163 0.271595 0.323957 0.918994 0.908220 0.913541 

6 54 0.226723 0.237513 0.296843 0.907688 0.895451 0.904762 

TABLE II.  RESULTS FOR THE CLASSIFICATION OF PIPELINE DIAMETERS FOR THE TEST SUBSET 

 DN 90 DN 110 DN 160 DN 225 DN 250 DN 300 DN 350 DN 400 DN 450 DN 500

Total 615 656 5190 403 401 333 297 216 198 121 

Correct 597 584 471 392 387 330 264 183 97 109 

Incorrect 1 0 2 0 3 0 0 0 0 1 

Undetermined 17 72 46 11 11 3 33 33 111 11 

DN90 597 0 0 0 0 0 0 0 0 0 

DN110 1 584 1 0 0 0 0 0 0 0 

DN160 0 0 471 0 0 0 0 0 0 0 

DN225 0 0 1 392 3 0 0 0 0 0 

DN250 0 0 0 0 387 0 0 0 0 0 

DN300 0 0 0 0 0 330 0 0 0 0 

DN350 0 0 0 0 0 0 264 0 0 0 

DN400 0 0 0 0 0 0 0 183 0 0 

DN450 0 0 0 0 0 0 0 0 87 1 

DN500 0 0 0 0 0 0 0 0 0 109 

 

Figure 1 shows a diagram of network for the classification 
of pipeline diameters showing the activation of the neuron in 
the output layer and indicating selection of the diameter 
assigned to it.  

 
FIGURE I.  A DIAGRAM OF NEURAL NETWORK FOR THE 

EVALUATION OF THE DIAMETER OF WATER SUPPLY 
PIPELINES 

Table 3 shows the values of neuron activation with the 
Softmax of the output layer of the neural network for one of the 
training examples. Determination of the affiliation to one of the 

classes consists in the selection of the neuron of the output 
layer, in which a value close to 1 appears; with the other 
neurons, the values should be close to 0, however this is 
practically unobtainable. For this reason, two threshold values 
are introduced, viz., the acceptance threshold and the rejection 
threshold, to which the activation level of the neurons of the 
output layer is compared. The activation level above the 
acceptance threshold results in the object being accepted into 
the class, while the activation value below the reject threshold 
indicates that the object is not affiliated to any class. In this task, 
the acceptance threshold is set at 0.95, while the rejection 
threshold is set at 0.05. If this condition is not met, the case is 
described as indefinite, that is, the network is unable to classify 
the object into any class. In the example in Table 5, the 
activation level is 0.8281449, which causes the example to 
remain unclassified, but it can be assumed- and with very high 
probability - that the diameter is DN110. As a consequence, the 
neuron activation values for the unclassified pipelines should 
be analysed during calculations also.  
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TABLE III.  ACTIVATION VALUES OF NEURONS IN THE OUTPUT 
LAYER OF THE NEURAL NETWORK FOR THE EVALUATION OF 

PIPELINE DIAMETERS 

Pipeline diameter 
assigned to the 

output layer neuron 

Activation of the output layer 
neuron 

DN90 0.00000000000000000 

DN110 0.82814490000000000 

DN160 0.17185510000000000 

DN225 0.00000000000000000 

DN250 0.00000000000000003 

DN300 0.00000000000000000 

DN350 0.00000000000000000 

DN400 0.00000000000000100 

DN450 0.00000000000000001 

DN500 0.00000000000000002 
Activation sum: 1.00000000000000000 

V. SUMMARY 

The above methodology and neural network was developed 
having in mind programmes for the hydraulic calculation of 
water distribution systems in which it will evaluate the results 
obtained from the viewpoint of the pipeline diameters adopted. 
Based on data from hydraulic calculations, the neural network 
diagnoses the diameter of the pipelines on the individual 
sections of the water supply network and proposes appropriate 
values or accepts the existing ones. The neural network 
obtained is characterised by a high index of classification 
accuracy, that is, in evaluating the diameter. However, it should 
be borne in mind that there may be cases of non-classification 
of the diameter or of misclassification, albeit this is somewhat 
unlikely. In the results of the calculations, the neuron activation 
value from the output layer of the neural network should appear 
for each diameter. The neural network was designed solely to 
assist the process of selecting diameters. The final decision on 
the selection of a diameter belongs to the person undertaking 
the calculations. 
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