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Abstract—For satisfying performances of the job-shop 
scheduling (JSP) issues and as for those characteristics (such as 
easily falling into local optimum, insufficient stability and slower 
convergence rate) of the standard GSO, a PDE framework taking 
advantages of good global search performance, simple 
implementation and rapid convergence rate and a self-adaptive 
mechanism based on the S-shape variable-step for its 
improvement so that the balance between global search and local 
mining may be coordinated and its stability and convergency may 
be improved. Simulation experiments were carried out to our 
hybrid GSO based on the Brandimarte international standard 
examples and comparison and analysis were performed to the 
experimental results to verify its reliability and applicability. 

Keywords—Job-Shop Scheduling (JSP) issue; Glowworm 
Swarm Optimization (GSO); Particle Swarm Optimization (PSO); 
Permutation-based Differential Evolution (PDE); self-adaptation 

I.  INTRODUCTION 

Along with the rapid rise of the wave of information, users 
are having more and more demands and products are 
increasingly diversified and complicated; and the product 
quality requirements and time cost control are becoming higher 
than ever in market. The modern production pattern towards 
more varieties and small batches completely replaced the 
traditional one for only guaranteeing the production capacity; 
especially, the most significant change is the smart, information 
service and small batched process of production [1-2]. 

Entrepreneurs and scholars are focusing on high efficiency, 
flexibility and reliability (3-High for short) for manufacturing 
products. Improvement of the production scheduling plan as the 
key factor for achieving 3-High is also the core idea of modern 
enterprise production management. Production scheduling [3-4] 
is to improve the operation efficiency of various parts of a 
production line by means of production orders which meet the 
technological constraints as can as possible based on good 
operation of various machines. In case of any unexpected event, 
an efficient operation strategy may contribute the most rational 
approach for companies to ensure not only the emergency goals 
but also the various required indexes shall be achieved; for 
example, the manufacturing period is shortened and the 
inventories fall [5-7]. Along with the rapid development of the 
automation technology in the field of manufacturing, the case 
(the scheduling strategy depends on the human experiences) 
gradually gets out of the enterprise's production mode; on the 

other hand, selection of the effective and intelligent algorithm 
shall be crucial for customization of the process of scheduling 
plan. 

GSO was utilized to solve the FJSP issue. In view of the 
standard GSO untimely falling into the local optimum and 
having disadvantages such as insufficient stability and slow 
convergence rate, the corresponding improvement method was 
put forward base on the S-shape variable-step self-adaptation 
mechanism and the PDE framework taking advantages of good 
global search performances, simple implementation and rapid 
convergence rate to coordinate the balance between global 
search and local mining and improve the stability and 
convergency of the algorithm. 

II.  IMPROVEMENT OF THE STANDARD GSO 

A. Profile of GSO 

As for GSO, glowworm individuals of the initial population 
may be randomly dispersed within the definition domain of the 
objective function. Each glowworm has its own search range 
where glowworms move to the brighter glowworm; similarly, 
those dimmer glowworms may also be attracted. While 
brightness of a glowworm changes, its own luciferin value 
which is proportional to the corresponding fitness of the 
objective function at its own position might also corresponding 
change; namely, larger fitness indicates a better position of the 
glowworm and it is more attractive for other glowworms within 
its search range. Glowworm move constantly and their luciferins, 
positions and decision ranges always update so that all 
glowworm individuals may be gathered within a certain range 
around a glowworm whose luciferin is higher after the specified 
number of iterations; thus, a few extremum points may be found 
for the issue to achieve optimization. 

GSO may be generalized as the following four stages:  

1) Initialization: The algorithm parameters (including 
radius of decision ( sr ), decision range updating factor (η), 
radius of perception (r0), luciferin volatilization factor 
[ρ(0<ρ<1)] and fitness extraction ratio (γ)) and positions of 
glowworms shall be initialized.  

2) Luciferin updating and changing: The luciferin value 
of any glowworm is directly related to its position, where the 
lower the fitness the smaller the luciferin value is. In addition, a 
part of luciferin would be volatilized while a slowworm moves. 
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Thus, its luciferin value shall be calculated prior to its next 
motion process; and the updating equation is as follows:  

       1 1 1i i il t l t J t                    (1) 

where: li(t)represents the luciferin value of Glowworm i at the 
tth iteration; and Ji(t+1) represents the fitness of Glowworm i  at 
the (t+1)th iteration.  

3) Updating the glowworm positions: After updating the 
luciferin value of the glowworm every time, it may selected a 
glowworm whose luciferin value is larger within its decision 
range and then moves closely. There are generally a few 
glowworms suitable for its moving; thus, the probability of its 
moving towards each neighboring glowworm shall be calculated 
by: 

   
   

 i

j i
ij

k i
k N t

l t l t
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l t l t
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                       (2) 

where: 
          ,= | ,i

i i j d i jN t j d t r t l t l t 
 (  ij N t

) 
represents the eligible neighboring glowworms set for 
Glowworm i at the tth iteration; di,j(t) represents the Euclidean 
space distance between Glowworms i and j at the tth iteration; 

and 
 i

dr t
 represents the radius of the decision range of 

Glowworm i at the tth iteration. 

In accordance with the Roulette rules, the Neighboring 
Glowworm j is selected to update the position of Glowworm i in 
accordance with the following equation:  

       
   

1 j i
i i

j i

x t x t
x t x t s

x t x t

 
   
  

            (3) 

4) Updating the scope of the decision range: each 
glowworm may dynamically update its the radius of decision 
based on its decision range updating factor after a motion 
process; and the decision radius is updated in accordance with 
the following equation: 

       1 min , max 0,i i
d s d t ir t r r t n N t            (4) 

where: rs represents the radius of decision; η represents the 
dynamic decision range updating factor; and nt represents the 
threshold of the size of Ni(t). 

B. Advantages and Disadvantages of GSO 

After a specified number of iterations, all individuals in the 
population of glowworms may move to those glowworms 
located in better positions, respectively, which are regarded as 
the extremum values of the objective function; and the 

optimized extremum value shall be the global optimal solution. 
Thus, GSO may be utilized to gain the global optimal solution 
for a single-mode optimization function; on the other hand, it 
may also be to solve the local optimal solution for a multi-mode 
function. During the iteration period, glowworms may not be 
affected each other. Thus, this algorithm takes advantages of 
concurrent and simple implementation, easy operation and only 
a few parameters. In addition, this algorithm has a strong local 
search capability because each glowworm has its own 
perception range, where the optimal solution may be quickly 
found within a certain range. 

In spite of many advantages of GSO, it still has defects such 
as slow convergence, poor stability and low solution precision. 

The optimal solution of GSO primarily depends on each 
glowworm moving towards those excellent individuals within 
its decision range till the optimal value has been found. The 
decision range of each individual depends on its own radius of 
perception. If there was no eligible neighboring glowworm 
within the decision range for a certain glowworm, it glowworm 
would stop search. In extreme cases, if all glowworms were 
spaced very sparsely or their luciferin values were equal, GSO 
would not be convergent to the peak. Thus, GSO is extremely 
dependent on the excellent individuals to lower the detection 
and convergence rates for peaking. 

Besides, glowworms may gather around the peak and tend to 
convergence at the end of iterations, when glowworm 
individuals have been very close to the peak. If any glowworm 
individual moved by an oversized step, it would cross the peak 
not to achieve the convergence; namely, oscillation would 
constantly occur near the peak; thus, the solution convergence 
rate and precision would be reduced. 

III.  IMPROVEMENT OF GSO 

A. Improvement of GSO Based on the Step Self-adaptive 
Mechanism 

Attraction between glowworm individuals may be under 
control by means of adjustment of their own glowing intensities 
so that individuals may move; and such process is optimized by 
means of GSO where the step (s) shall be crucial for its 
convergence and stability; on the other hand, the convergence 
and stability would not be compromised better while a constant 
step was applied. A larger step would intensify the probability of 
“prematurity” convergence and lead to remarkable oscillation at 
the end of the iteration period though the convergence would be 
effectively improved; thus, the resulting precision would fall; 
otherwise, a too small step would greatly lower the convergence 
rate. A kind of S-shape dynamically changing step was applied 
here to replace the constant step for the standard GSO with 
reference to the feature of sine function based on the standard 
GSO. 

The maximum number of Iterations and the initial step for all 
individuals are set as Tmax and S0, respectively. The step may 
change adaptively in the S shape along with the growth of the 
number of Iterations (t), which is updated by: 
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 0 min maxsin /s s s t T                      (5) 

where: Smin represents the minimum step threshold; and β 
represents the control parameter.  

While assuming the initial parameters (S0=10 , β=2, Smin=5, 
and Tmax=200), the corresponding step changing curve is 
shown in Figure 1. At the beginning of iterations, the step keeps 
relatively large to effectively accelerate the convergence but 
prevent “prematurity” of the algorithm; on the other hand, the 
step keeps relatively small at the end of iterations and there 
would be a trade-off between its convergency and stability. 
While the step reaches 0, the self-adaptation would grow. 

 
FIGURE I. STEP VS. NUMBER OF ITERATIONS 

For improvement of the search performances of the 
algorithm, how to maintain a trade-off between global 
development and local mining is very important in the process of 
optimization. Fusion of PDE [8-9] as a relatively open 
calculation framework of the local search method is convenient. 
Pan et al. verified the global optimization by means of PDE and 
then local search trials around individuals; and this approach is 
highly desirable. Thus, PDE was applied here to improve 
CSGSO and increase the richness of population. 

In comparison of the traditional differential evolution 
algorithm, PDE defines the position-based addtion & 
subtraction for mutation operation in accordance with 
permutation features. For lowering damage to good structures as 
can as possible and guaranteeing the convergence rate, the 
crossing operation is introduce based on permutation during the 
crossing stage for PDE. 

1) Representation of solution: For easy expression of the 
following solution processes, the solution of the scheduling 
issue was defined here based on the permutation method. If there 
are n procedures, the solution is expressed by P=(π1,π2,...πn) 
where (π1,π2,...πn) represents a permutation including n 
procedures. 

2) Mutation:  

 3 1 2 3V P P P P L                            (6) 

where:  represents the difference between positions of two 
kinds of permutation methods for calculation of the same task; 
and L represents the position deviation vector defined as the 

operational result of 1 2P P
, whose dimensions is the same as 

that of 1P
 or 2P

. 

While assuming P1=(5,7,3,4,1,6,2) and P2=(2,6,4, 3, 7, 5, 1) 
and by taking Task 5 as an example, it is the first task of P1 and 
the sixth task of P2; then their position difference is 5 and the 

corresponding calculation result ( L ) is shown in Figure 2.  
represents a new permutation converted from the current 
permutation in accordance with Position L . While assuming 
P3=(7, 3, 2, 4, 1, 6, 5), the first task of P3 is 7 and the 
corresponding position difference is 5 in L ; thus, Task 7 is 
positioned at Position 1+5=6 in the new permutation (V). The 
complete V is shown in Figure 3. 

5 7 3 4 1 6 2

2 6 4 3 7 5 1

5 3 1 -1 2 -4 -6

1 2L P P 

1P

2P

L


 

FIGURE II. A  OPERATION EXAMPLE 

3V P L 

3P

V



L

 

FIGURE III. A  OPERATION EXAMPLE 

3) Crossing: For maintaining good structures of the 
parent population to the progeny population as can as possible, 
crossing is defined here by the following method: 

Step 1: Random Integers R1 and R2 are generated within 
[1,n], which serve as the position information of the crossing 
segment. 

Step 2: the segment between R1 and R2  in Parent Individual 
P1 or P2 or the segment before R1 or behind R2 in P1 or P2 is 
copied to Progeny Individual C. 

Step 3: the task included in Progeny Individual shall be 
deleted in another parent individual; and the remaining tasks 
(excluded in Progeny Individual C) shall be filled in those 
vacant positions of Progeny Individual C. Related descriptions 
of crossing are represented in Figure 4. 
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FIGURE IV. CROSSING OPERATION EXAMPLES 

4) Reparation: Based on mutation and crossing, PDE 
rather than DE is more sensitive to reparation; on the other hand, 
its characteristics shall be comprehensively taken into account 
for solution of an actual issue and reparation shall be depend on 
the actual demands. For example, while a batch scheduling issue 
is solved by means of PDE, mutation and crossing can guarantee 
all solutions during the evolution process shall be feasible so that 
reparation shall be unnecessary. On contrast, if a FJSP issue is 
solved by means of PDE, the same workpiece may be processed 
in various sequences for procedures; thus, the corresponding 
reparation shall be prepared in accordance with such constraint 
condition. It is assumed that Sequences(1,2,3) shall be satisfied 
among Tasks 1, 2 and 3 as for Individual. The reparation (Figure 
5) is put into operation to first find out the relative positions of 
Tasks 1, 2 and 3 in P1; and then 3 positions may be adjusted 
each other. 

1P

'
1P

 
FIGURE V. A REPARATION EXAMPLE 

5) Selection operation: By taking the objective function 
value as the selection standards, comparison is performed to the 
locally searched optimal individual and individuals of the 
current population to ensure those better individuals shall move 
into the progeny population. 

IV.  APPLICATION OF HYBRID GSO INTO FJSP 

A. Objective Function and Fitness Design 

The minimum manufacturing period was regarded as the 
index for evaluation performances of FJSP here; and the 
objective function is:  

  max 1min min min max j n jf C C                (7) 

where: n represents the number of workpieces. 

The above minimization issue may be directly converted into 
the following fitness function: 

    Fit f x f x                               (8) 

B. Solution Steps of Hybrid GSO 

Due to the flexibility factor, FJSP rather than traditional JSP 
is more complicated. As for solution of FJSP, the technology 
processes shall be met, moreover, not only the constraint 
relationship between sequences of a few procedures for the same 
workpiece but also the processing period and state of any 
machine shall be comprehensively taken into account; thus, each 
procedure shall be performed by means of a rational machine. 
After completion of crossing, individuals may generally occur; 
and they will be compared with the original ones to select the 
optimal individual for the next generation. Such method 
guarantees those excellent individuals shall remain as can as 
possible in the evolution process. Integration of the discrete 
differential evolution based on permutation and step 
self-adaptation mechanism may lead to the hybrid GSO for 
operation, whose implementation steps are as follows: 

Step 1: initialization of algorithm parameters (such as 
number of iterations (Gmax), local search probability (pl) and 
number of population);  

Step 2: Random generation of Parent Population X by means 
of the randomly generated algorithm and calculation of the 
target value of the corresponding scheduling strategy for each 
individual; and updating the optimal individual 
(current_optimal_X). Assuming k=0;  

Step 3: Judgment of  gen iter ? Yes, implementation of 
the population improvement strategy; and assuming gen=0. 
Then, go to Step 4; otherwise, directly go to Step 4;  

Step 4: implementation of mutation to Population Xk 
(currently the kth generation) to gain Population Vk; and 
assuming i=1;  

Step 5: implementation of crossing to the ith individual of 
Population Vk to gain four temporary vectors, respectively;  

Step 6: implementation of reparation to the four temporary 
vectors to gain 4 new vectors and comparison of fitness values 
of 4 new vectors to get the optimal temporary vector, which is 
regarded as the ith individual of Population Uk;  

Step 7: Judgment of i NP ? Yes, go to Step 8 and assuming 
j=1; otherwise, assuming i=i+1, go to Step 5;  

Step 8: Random generation of a real number to the jth 

individual (
j

kU
) of Population Uk and Judgment of this real 

number being less than  pl? Yes, go to Step 9; otherwise, go to 
Step 11;  
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Step 9: To call CSGSO for local search and evaluation of 
j

kU
; if an individual (

'j
kU

) better than 
j

kU
 is searched, 

'j
kU

 

replaces 
j

kU
;  

Step 10: Judgment of j NP ? Yes, go to Step 11; 
otherwise, assuming j=j+1, go to Step 8. 

Step 11: Comparison of the fitness values of the mth 

individual (
m
kX

) of Population kX
 and the mth individual 

(
m
kU

) of Population U ; if 
m
kU

 is better than 
m
kX

 in effects, 
m
kU

 is used to update 
m
kX

. 

Step 12: Judgment of m NP ? Yes, go to Step 13; 
otherwise, assuming m=m+1, go to Step 11. 

Step 13: Judgment of the optimal individual has changed? 

Yes, updating _ _current optimal X , and assuming 
0gen  ; otherwise, assuming gen=gen+1, updating 

current_optimal_X. 

Step 14: Judgment of maxG G ? Yes, outputting statistical 

results for several iterations; otherwise, assuming 1G G  , go 
to Step 3. 

C. Solving FJSP by Means of Hybrid GSO 

1) Population initialization: As for starting the evolution 
algorithm, selection of which method for generation of the 
initial population is generally greatly related to its search 
efficiency and the quality of its last solution so that it shall be 
undoubtedly important. As for solving any FJSP issue, a 
feasible solution shall include two aspects, namely encoding 
procedures and machines; the former is to specify scheduling 
sequences for various procedures; and the latter is to define the 
processing machine for each procedure. 
While assuming: 

NP represents the number of individuals of a Population; 

G represents the current number of iterations 

( max0,1, ,G G  ) 

,i GX  represents the ith individual of the Gth generation of the 
Population, and 

, , ,,
T

i G i G i GX S R     

where: 
, 1, , 2, , , ,, , ,i G i G i G d i GS s s s   




 represents the 

encoding part of procedures for ,i GX
; 

, 1, , 2, , , ,, , ,i G i G i G d i GR r r r   



 represents the encoding part of 

machines for ,i GX
; and d  represents the total number of all 

procedures to be processed.  

The initial population (G=0) was generated here by means of 
a random function. 

(1) Generation of the temporary population (Y, size: 
represents NP and dimensions: D=2d), whose ith individual is 

represented by 1, 2, ,[ , , , ]T
i i i D iY y y y 

; and 

(2) Generation of the jth variable by means of Eq. (9), whose 

minimum and maximum are represented by ,minjy
 and ,maxjy

, 
respectively. 

   , ,0 ,min ,max ,min 0,1j i j j jy y y y rand            (9) 

For convenience, the corresponding range 

( ,min ,max,j jy y   , 1, 2, ,j D  ) for each variable of Y  is 

assumed as  ,   (for example: 1  ). As for the individual 

vector ( 1 2[ , , , ]T
DY y y y  ), the random variable ( jy

) shall 
be necessarily converted into a variable conforming to the 
scheduling constraints for its rational application in the 
PDE-based algorithm; namely: 

1 1 2[ , , , ]dY y y y


   Procedures encoding: 

 1 2, , ,i dS s s s



; and 

 2 1 2, , ,d d DY y y y 



  Machines encoding: 

 1 2= , , ,i dR r r r



.  

2) Encoding and decoding: PDE-based variable-step 
GSO was utilized here to solve the FJSP issues, which is 
different from any traditional evolution algorithm. Mutation 
and crossing of PDE are performed based on permutation to 
guarantee the integrity of a structure block to a certain extent. 
Thus, it is necessarily guaranteed that each individual of the 
initial population shall be of practical significance prior to 
starting any iteration; namely, the above 

 1 2, , ,i dS s s s



 

and 
 1 2= , , ,i dR r r r




 shall possess real significance. 
Finally, the initial population was gained, whose individuals 
vector is [ , ]TX S R


 

For easy solution, various procedures may be sequenced and 

they correspond to a unique integer ( ID , 1, 2, ,ID d  ) 
which may exclusively represents a procedure. 

After gaining ID  for each procedure, the actual meanings 

of the encoding vectors ( S


 and R


) may be explained as 
follows: 

S


 represents the sequential processing procedures; and 

R


: Variable jr
 represents Procedure js

 may be performed 
in the rjth machine of the machine set. 
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For example, 
 = 4,1, 7,5, 2,8,3,9, 6S


, various  

procedures shall be scheduled in accordance with sequential 
constraints for FJSP procedures by means of the following 
sequences: 

21O , 11O , 31O , 22O , 12O , 32O , 13O , 33O  and 23O  

Conversion of 1Y


 into S


 was performed in accordance 
with Largest Position Value (LPV) rules put forward by Wang et 
al. The following result may be obtained based on Eq. (9): 

1 [0.7, 0.2, 0.3, 0.9, 0.6, 0.5, 0.4, 0.3, 0.1]Y     


      (9) 

Each variable jy
 of 1Y


 corresponds to Integer ID j ; 

and descending sorting of various variables of 1Y


 leads to a full 
permutation on ID . For satisfying the sequential constraints of 
various procedures for the same workpiece, the ID permutation 

shall be adjusted and 1Y


 shall be adjusted correspondingly to 
gain finally S


. 

As for transition from 2Y


 to R


,  1 2, , , dL l l l



 shall be 

first specified, where jl
( 1,2, ,j d  ) represents that the 

size of the machines set may be selected for Procedure ID  

( ID = j ). Then, conversion from  ,jy   
 to 

1,j jr l     may be performed by means of Eq. (10).  

  1
1 1

2j j jr round l y 


     
 

                (10) 

So far, conversions from S


 to 1Y


 and 2Y


 to R


 may be 
performed and scheduling constraints are satisfied; moreover, 
the initial population is of practical significance, where each 

individual is [ , ]TX S R


. 

3) Evolution: PDE is to solve FJSP based on permutation; 
namely, the scheduling sequences are to be optimized while the 
machines encoding has been determined. Thus, evolution was 
primarily carried out here in view of procedures encoding ( S


) 

for solving FJSP; and the machine called for each procedure 
shall not change along with evolution. 

Mutation: it is a key link for guaranteeing the richness of a 

population and it means: an individual vector ( ,i GX


) is selected 
from the parent population as the target vector and a series of 
interference policies is performed to this target vector to 

generate Mutation Vector 
, 1, , 2, , , ,[ , , , ]T

i G i G i G D i GV v v v



. 

Mutation described in Section 2.2 was performed here to ,i GS


 

corresponding to ,i GX


 to generate Procedures Encoding 

Vector ,
S

i GV


 corresponding to ,i GV


, whose operation 
conforms to Eq. (11). The machine selected for each procedure 

remain unchanged for the moment; whereas, ,i GR


 is 

correspondingly adjusted along with mutation to ,i GS


 to gain a 

new full permutation (Machines Encoding Vector ,
R

i GV


); 

namely 
, , ,= ,

T
S R

i G i G i GV V V 
 

 

.  

 1 2, , , ,i i
S

i G i G r G r GV S S S  
   

                 (11) 

where: 1
ir
 and 2

ir
 represent two integers which are randomly 

generated in 
 1, NP

 and are not i .  

Crossing: it is the basis for individuals of a population to 
exchange information. With reference to descriptions in Section 

2.2, crossing of ,i GX


 and ,i GV


 may generate 4 new vectors 

(namely ,

1

i G
C

, ,

2

i G
C

, ,

3

i G
C

 and ,

4

i G
C

). 

Reparation: ,

1

i G
C

, ,

2

i G
C

, ,

3

i G
C

 and ,

4

i G
C

 are possibly not conform 
to the sequential constraints which shall be satisfied for various 
procedures for the same workpiece, which may be 
correspondingly adjusted by means of reparation described in 
Section 3.3.1 in this case so that they may be converted into a 
feasible solution. Then their fitness function values are 
calculated; and the vector whose fitness function value is 
maximum is selected as Test Vector 

, 1, , 2, , , ,, , ,
T

i G i G i G D i GU u u u   



. 

4) Local search: PDE has strong global search capacity 
but it may possibly fall into the local optimum. For maintaining 
a trade-off between development and mining in the search 
space, a neighborhood structure (N6) was established based on 
the critical path to ,i GU


, where was searched by means of the 

variable-step GSO described in Section 2.1 to find out better 
individuals as can as possible for updating ,i GU


. 

5) Selection: A test vector ( ,i GU


) may generally be 
gained by means of the above evolution. Generally, the 
operation for selecting the vector remaining in the progeny is 
called as selection. The strategy of PDE is generally to select an 
individual whose fitness value is relatively good from ,i GU


 

and ,i GX


 and maintain such individual in the progeny; and the 
specific operation equation is as follows. 

          (11) 
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6) Improvement of the population by means of the 
pre-scheduling strategy: While evolution algorithm is put into 
operation to search the optimal solution of a scheduling issue, 
no better quality solution may always be found out by means of 
several continuous iterations. Such phenomenon is inevitable 
currently for the evolution algorithm. A pre-scheduling strategy 
was put forward to improve the population in view of such case. 

As for Population X


 to be improved, S


 presents the 
scheduling sequences for all processing procedures. Now, the 

decoding process may be performed to improve R


 so that 
various procedures may be completed as soon as possible and 
the entire manufacturing period may be shortened. The 
operation processes are as follows: 

1) The first procedure of S


 is taken; 

2) The processing equipment to complete the procedure as 
soon as possible is selected as the processing machine in the 
machine set for this procedure; 

3) The state of the above machine is set as BUSY; 

4) Similarly, the above steps are repeated to determine 
machines for the 2nd, 3rd, ……procedures till processing 
machines for all procedures are determined. 

V.  EXPERIMENTAL STUDY ON SOLVING FJSP BY MEANS OF 

HYBRID GSO 

A. Related Experimental Settings 

The above HGSO was performed here by means of our 
MATLAB program whose operation environment is as follows: 
i3 CPU; frequency: 2.1G; memory: 4GB 

For verifying the feasibility of the improved HGSO solving 
FJSP, 10 international standard examples (Mk01-Mk10) 
designed by Brandimarte were utilized as our simulation objects. 
Because the randomness of the algorithm would give rise to a 
certain calculation error, each test case was continuously 
simulated for 20 times. With reference to the existing research 
results, the setting parameters of the algorithm are presented in 
Table 1. The minimum manufacturing period is the optimization 
objective for all measurement experiments. 

TABLE I. SETTING PARAMETERS OF THE ALGORITHM 

Size of evolution population 1000 
Number of Iterations  500 

Number of Iterations for local search 50 
Fitness extraction ratio  0.6 

Luciferin volatilization factor  0.4 
Control parameter 0.08 

B. Experimental Results and Analysis 

Some operation results for solving BRdata by means of 
LEGA and our HGSO are presented in Table 2. LEGA was put 
forward by Ho et al. by fusion of the machine study mechanism 

and GA. n m  represents the numbers of workpieces and 
machines in the issue; LB and UB represent the lower and upper 

bounds of the optimal solution, respectively; 
*
bestC  represents the 

optimal value in the literature; Cbest  represents the optimal 
solution (namely the optimized manufacturing period) for our 
HGSO; Aver represents the average operation result; and t  
represents the average operation period for CPU to continuously 
be put into operation for 20 times in the same environment, 
whose unit is second. 

Direct comparison was carried out to the relative error 

(  * *100 best best bestdev C C C  
) and results in other literatures. 

Figure 6 shows the Gantt chart for an optimal solution 
scheduling by means of HGSO. 

TABLE II. OPERATION RESULTS OF BRDATA 

Issue n m (LB,UB)
LEGA HGSO 

*
bestC Aver bestC

 
Aver t dev

Mk01 10 6  36,42 40 41.5 40 40.0 1.7 0 

Mk02 10 6  24,32 29 29.1 26 26.1 2.5 10.3

Mk03 15 8  204, 211 204 204.0 204 204.0 1.3 0 

Mk04 15 8  48,81 67 67.3 60 60.4 4.8 10.4

Mk05 15 4  168,186 176 178.1 173 175.3 8.2 1.7

Mk06 10 15  33,86 67 68.8 60 60.2 16.2 11.7

Mk07 20 5  133,157 147 152.9 139 140.0 20.5 5.4

Mk08 20 10  523,523 523 523.3 523 523.0 2.6 0 

Mk09 20 10  299,369 320 327.7 307 307.0 34.6 4.1

Mk10 20 15  165,296 229 235.7 200 204.6 41.4 12.2

Table 2 presents optimal solutions, average optimal 
solutions, average operation periods and relative errors while 
HGSO were put into operation for several times to those test 
examples in various sizes. In comparison of those optimal 
solutions for LEGA, optimal solutions for 7 examples are better 
for HGSO; in addition, optimal solutions are gained for another 
3 examples for the listed algorithms. On the whole, our HGSO 
rather than LEGA achieved better performances. 

 
FIGURE VI. CONVERGENCE OF MK02 EXAMPLE 
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FIGURE VII. THE CORRESPONDING PROCESSING GANTT CHART 

FOR THE OPTIMAL SCHEDULING FOR MK01 

For visual presentation of calculation results, Figure 6 
presents comparison of convergence curves for Mk01 by means 
of HGSO and LEGA, which indicate that HGSO’s objective 
function value falls faster than that of LEGA though their 
optimal solutions are the same; and the numbers of iterations for 
the same optimal solution (40) are 460 for LEGA and 235 for 
HGSO, respectively; thus, HGSO has better convergence. 

Figure 7 presents the corresponding Gantt chart for an 
optimal solution for Mk01 by means of HGSO, where data in 
bars represent workpieces for procedures and the sequential bars 
marked the same data represent various procedures in turn for 
the same workpiece. Figure 8 indicates that this scheme may 
satisfy all constraints for FJSP. 

VI.  CONCLUSIONS 

As for those defects (such as weak global search 
performances, easily falling into local optimum, insufficient 
stability and slower convergence rate) for solving FJSP issues 
by means of GSO, some improvement measures were taken to 
the standard GSO. Our conclusions are as follows:  

1) In view of those defects (such as slow convergence rate 
and easily falling into local search) of GSO, the PDE framework 
taking advantages of good global search performances, easy 
implementation and rapid convergence rate was utilized to gain 
a trade-off between the global development and local mining 
and improve the convergence rate.  

2) In view of those defects (such as poor stability and slow 
convergence) of GSO, the step self-adaptive mechanism was 
utilized to improve the constant step for the standard GSO and 
its feasibility and effectiveness were verified by means of 
simulation experiments. 

3) Our HGSO was applied into FJSP for performance of 
local search based the neighborhood structure (N6); and the 
pre-scheduling strategy was utilized to deal with the optimal 
solution unchanging for long time; and the detailed solution 
processes were described. Based on Brandimarte standard 
examples, simulation was performed for many times. 
Comparison and analysis of operation results for HGSO and 
LEGA proved that HGSO shall be feasible and effective for 
solving FJSP. 
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