
Study and Application of Glowworm Swarm
Optimization in Flexible Job Shop Scheduling

Hongtao Wang1, Dailin Xu2, Chun Yan2 and Hao Pan2,*
1Network Information Center, Wuhan University of Technology, Hubei Wuhan 430070, China

2School of Computer Science and Technology, Wuhan University of Technology, Hubei Wuhan 430070, China
*Corresponding author

Abstract—For satisfying performances of the job-shop
scheduling (JSP) issues and as for those characteristics (such as
easily falling into local optimum, insufficient stability and slower
convergence rate) of the standard GSO, a PDE framework taking
advantages of good global search performance, simple
implementation and rapid convergence rate and a self-adaptive
mechanism based on the S-shape variable-step for its
improvement so that the balance between global search and local
mining may be coordinated and its stability and convergency may
be improved. Simulation experiments were carried out to our
hybrid GSO based on the Brandimarte international standard
examples and comparison and analysis were performed to the
experimental results to verify its reliability and applicability.

Keywords—Job-Shop Scheduling (JSP) issue; Glowworm
Swarm Optimization (GSO); Particle Swarm Optimization (PSO);
Permutation-based Differential Evolution (PDE); self-adaptation

I. INTRODUCTION

Along with the rapid rise of the wave of information, users
are having more and more demands and products are
increasingly diversified and complicated; and the product
quality requirements and time cost control are becoming higher
than ever in market. The modern production pattern towards
more varieties and small batches completely replaced the
traditional one for only guaranteeing the production capacity;
especially, the most significant change is the smart, information
service and small batched process of production [1-2].

Entrepreneurs and scholars are focusing on high efficiency,
flexibility and reliability (3-High for short) for manufacturing
products. Improvement of the production scheduling plan as the
key factor for achieving 3-High is also the core idea of modern
enterprise production management. Production scheduling [3-4]
is to improve the operation efficiency of various parts of a
production line by means of production orders which meet the
technological constraints as can as possible based on good
operation of various machines. In case of any unexpected event,
an efficient operation strategy may contribute the most rational
approach for companies to ensure not only the emergency goals
but also the various required indexes shall be achieved; for
example, the manufacturing period is shortened and the
inventories fall [5-7]. Along with the rapid development of the
automation technology in the field of manufacturing, the case
(the scheduling strategy depends on the human experiences)
gradually gets out of the enterprise's production mode; on the

other hand, selection of the effective and intelligent algorithm
shall be crucial for customization of the process of scheduling
plan.

GSO was utilized to solve the FJSP issue. In view of the
standard GSO untimely falling into the local optimum and
having disadvantages such as insufficient stability and slow
convergence rate, the corresponding improvement method was
put forward base on the S-shape variable-step self-adaptation
mechanism and the PDE framework taking advantages of good
global search performances, simple implementation and rapid
convergence rate to coordinate the balance between global
search and local mining and improve the stability and
convergency of the algorithm.

II. IMPROVEMENT OF THE STANDARD GSO

A. Profile of GSO

As for GSO, glowworm individuals of the initial population
may be randomly dispersed within the definition domain of the
objective function. Each glowworm has its own search range
where glowworms move to the brighter glowworm; similarly,
those dimmer glowworms may also be attracted. While
brightness of a glowworm changes, its own luciferin value
which is proportional to the corresponding fitness of the
objective function at its own position might also corresponding
change; namely, larger fitness indicates a better position of the
glowworm and it is more attractive for other glowworms within
its search range. Glowworm move constantly and their luciferins,
positions and decision ranges always update so that all
glowworm individuals may be gathered within a certain range
around a glowworm whose luciferin is higher after the specified
number of iterations; thus, a few extremum points may be found
for the issue to achieve optimization.

GSO may be generalized as the following four stages:

1) Initialization: The algorithm parameters (including
radius of decision (sr), decision range updating factor (η),
radius of perception (r0), luciferin volatilization factor
[ρ(0<ρ<1)] and fitness extraction ratio (γ)) and positions of
glowworms shall be initialized.

2) Luciferin updating and changing: The luciferin value
of any glowworm is directly related to its position, where the
lower the fitness the smaller the luciferin value is. In addition, a
part of luciferin would be volatilized while a slowworm moves.

2nd International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 146

100

Thus, its luciferin value shall be calculated prior to its next
motion process; and the updating equation is as follows:

       1 1 1i i il t l t J t      (1)

where: li(t)represents the luciferin value of Glowworm i at the
tth iteration; and Ji(t+1) represents the fitness of Glowworm i at
the (t+1)th iteration.

3) Updating the glowworm positions: After updating the
luciferin value of the glowworm every time, it may selected a
glowworm whose luciferin value is larger within its decision
range and then moves closely. There are generally a few
glowworms suitable for its moving; thus, the probability of its
moving towards each neighboring glowworm shall be calculated
by:

   
   

 i

j i
ij

k i
k N t

l t l t
p

l t l t





 (2)

where:
          ,= | ,i

i i j d i jN t j d t r t l t l t 
 ( ij N t

)
represents the eligible neighboring glowworms set for
Glowworm i at the tth iteration; di,j(t) represents the Euclidean
space distance between Glowworms i and j at the tth iteration;

and
 i

dr t
 represents the radius of the decision range of

Glowworm i at the tth iteration.

In accordance with the Roulette rules, the Neighboring
Glowworm j is selected to update the position of Glowworm i in
accordance with the following equation:

       
   

1 j i
i i

j i

x t x t
x t x t s

x t x t

 
   
  

 (3)

4) Updating the scope of the decision range: each
glowworm may dynamically update its the radius of decision
based on its decision range updating factor after a motion
process; and the decision radius is updated in accordance with
the following equation:

       1 min , max 0,i i
d s d t ir t r r t n N t      (4)

where: rs represents the radius of decision; η represents the
dynamic decision range updating factor; and nt represents the
threshold of the size of Ni(t).

B. Advantages and Disadvantages of GSO

After a specified number of iterations, all individuals in the
population of glowworms may move to those glowworms
located in better positions, respectively, which are regarded as
the extremum values of the objective function; and the

optimized extremum value shall be the global optimal solution.
Thus, GSO may be utilized to gain the global optimal solution
for a single-mode optimization function; on the other hand, it
may also be to solve the local optimal solution for a multi-mode
function. During the iteration period, glowworms may not be
affected each other. Thus, this algorithm takes advantages of
concurrent and simple implementation, easy operation and only
a few parameters. In addition, this algorithm has a strong local
search capability because each glowworm has its own
perception range, where the optimal solution may be quickly
found within a certain range.

In spite of many advantages of GSO, it still has defects such
as slow convergence, poor stability and low solution precision.

The optimal solution of GSO primarily depends on each
glowworm moving towards those excellent individuals within
its decision range till the optimal value has been found. The
decision range of each individual depends on its own radius of
perception. If there was no eligible neighboring glowworm
within the decision range for a certain glowworm, it glowworm
would stop search. In extreme cases, if all glowworms were
spaced very sparsely or their luciferin values were equal, GSO
would not be convergent to the peak. Thus, GSO is extremely
dependent on the excellent individuals to lower the detection
and convergence rates for peaking.

Besides, glowworms may gather around the peak and tend to
convergence at the end of iterations, when glowworm
individuals have been very close to the peak. If any glowworm
individual moved by an oversized step, it would cross the peak
not to achieve the convergence; namely, oscillation would
constantly occur near the peak; thus, the solution convergence
rate and precision would be reduced.

III. IMPROVEMENT OF GSO

A. Improvement of GSO Based on the Step Self-adaptive
Mechanism

Attraction between glowworm individuals may be under
control by means of adjustment of their own glowing intensities
so that individuals may move; and such process is optimized by
means of GSO where the step (s) shall be crucial for its
convergence and stability; on the other hand, the convergence
and stability would not be compromised better while a constant
step was applied. A larger step would intensify the probability of
“prematurity” convergence and lead to remarkable oscillation at
the end of the iteration period though the convergence would be
effectively improved; thus, the resulting precision would fall;
otherwise, a too small step would greatly lower the convergence
rate. A kind of S-shape dynamically changing step was applied
here to replace the constant step for the standard GSO with
reference to the feature of sine function based on the standard
GSO.

The maximum number of Iterations and the initial step for all
individuals are set as Tmax and S0, respectively. The step may
change adaptively in the S shape along with the growth of the
number of Iterations (t), which is updated by:

Advances in Intelligent Systems Research, volume 146

101

 0 min maxsin /s s s t T    (5)

where: Smin represents the minimum step threshold; and β
represents the control parameter.

While assuming the initial parameters (S0=10 , β=2, Smin=5,
and Tmax=200), the corresponding step changing curve is
shown in Figure 1. At the beginning of iterations, the step keeps
relatively large to effectively accelerate the convergence but
prevent “prematurity” of the algorithm; on the other hand, the
step keeps relatively small at the end of iterations and there
would be a trade-off between its convergency and stability.
While the step reaches 0, the self-adaptation would grow.

FIGURE I. STEP VS. NUMBER OF ITERATIONS

For improvement of the search performances of the
algorithm, how to maintain a trade-off between global
development and local mining is very important in the process of
optimization. Fusion of PDE [8-9] as a relatively open
calculation framework of the local search method is convenient.
Pan et al. verified the global optimization by means of PDE and
then local search trials around individuals; and this approach is
highly desirable. Thus, PDE was applied here to improve
CSGSO and increase the richness of population.

In comparison of the traditional differential evolution
algorithm, PDE defines the position-based addtion &
subtraction for mutation operation in accordance with
permutation features. For lowering damage to good structures as
can as possible and guaranteeing the convergence rate, the
crossing operation is introduce based on permutation during the
crossing stage for PDE.

1) Representation of solution: For easy expression of the
following solution processes, the solution of the scheduling
issue was defined here based on the permutation method. If there
are n procedures, the solution is expressed by P=(π1,π2,...πn)
where (π1,π2,...πn) represents a permutation including n
procedures.

2) Mutation:

 3 1 2 3V P P P P L     (6)

where:  represents the difference between positions of two
kinds of permutation methods for calculation of the same task;
and L represents the position deviation vector defined as the

operational result of 1 2P P
, whose dimensions is the same as

that of 1P
 or 2P

.

While assuming P1=(5,7,3,4,1,6,2) and P2=(2,6,4, 3, 7, 5, 1)
and by taking Task 5 as an example, it is the first task of P1 and
the sixth task of P2; then their position difference is 5 and the

corresponding calculation result (L) is shown in Figure 2. 
represents a new permutation converted from the current
permutation in accordance with Position L . While assuming
P3=(7, 3, 2, 4, 1, 6, 5), the first task of P3 is 7 and the
corresponding position difference is 5 in L ; thus, Task 7 is
positioned at Position 1+5=6 in the new permutation (V). The
complete V is shown in Figure 3.

5 7 3 4 1 6 2

2 6 4 3 7 5 1

5 3 1 -1 2 -4 -6

1 2L P P 

1P

2P

L



FIGURE II. A  OPERATION EXAMPLE

3V P L 

3P

V



L

FIGURE III. A  OPERATION EXAMPLE

3) Crossing: For maintaining good structures of the
parent population to the progeny population as can as possible,
crossing is defined here by the following method:

Step 1: Random Integers R1 and R2 are generated within
[1,n], which serve as the position information of the crossing
segment.

Step 2: the segment between R1 and R2 in Parent Individual
P1 or P2 or the segment before R1 or behind R2 in P1 or P2 is
copied to Progeny Individual C.

Step 3: the task included in Progeny Individual shall be
deleted in another parent individual; and the remaining tasks
(excluded in Progeny Individual C) shall be filled in those
vacant positions of Progeny Individual C. Related descriptions
of crossing are represented in Figure 4.

Advances in Intelligent Systems Research, volume 146

102

1P

2P

1C

1R 2R

1P

2P

2C

1R 2R

1P

2P

3C

1R 2R

 a  b

 c

1P

2P

2C

1R 2R

 d

FIGURE IV. CROSSING OPERATION EXAMPLES

4) Reparation: Based on mutation and crossing, PDE
rather than DE is more sensitive to reparation; on the other hand,
its characteristics shall be comprehensively taken into account
for solution of an actual issue and reparation shall be depend on
the actual demands. For example, while a batch scheduling issue
is solved by means of PDE, mutation and crossing can guarantee
all solutions during the evolution process shall be feasible so that
reparation shall be unnecessary. On contrast, if a FJSP issue is
solved by means of PDE, the same workpiece may be processed
in various sequences for procedures; thus, the corresponding
reparation shall be prepared in accordance with such constraint
condition. It is assumed that Sequences(1,2,3) shall be satisfied
among Tasks 1, 2 and 3 as for Individual. The reparation (Figure
5) is put into operation to first find out the relative positions of
Tasks 1, 2 and 3 in P1; and then 3 positions may be adjusted
each other.

1P

'
1P

FIGURE V. A REPARATION EXAMPLE

5) Selection operation: By taking the objective function
value as the selection standards, comparison is performed to the
locally searched optimal individual and individuals of the
current population to ensure those better individuals shall move
into the progeny population.

IV. APPLICATION OF HYBRID GSO INTO FJSP

A. Objective Function and Fitness Design

The minimum manufacturing period was regarded as the
index for evaluation performances of FJSP here; and the
objective function is:

  max 1min min min max j n jf C C   (7)

where: n represents the number of workpieces.

The above minimization issue may be directly converted into
the following fitness function:

    Fit f x f x  (8)

B. Solution Steps of Hybrid GSO

Due to the flexibility factor, FJSP rather than traditional JSP
is more complicated. As for solution of FJSP, the technology
processes shall be met, moreover, not only the constraint
relationship between sequences of a few procedures for the same
workpiece but also the processing period and state of any
machine shall be comprehensively taken into account; thus, each
procedure shall be performed by means of a rational machine.
After completion of crossing, individuals may generally occur;
and they will be compared with the original ones to select the
optimal individual for the next generation. Such method
guarantees those excellent individuals shall remain as can as
possible in the evolution process. Integration of the discrete
differential evolution based on permutation and step
self-adaptation mechanism may lead to the hybrid GSO for
operation, whose implementation steps are as follows:

Step 1: initialization of algorithm parameters (such as
number of iterations (Gmax), local search probability (pl) and
number of population);

Step 2: Random generation of Parent Population X by means
of the randomly generated algorithm and calculation of the
target value of the corresponding scheduling strategy for each
individual; and updating the optimal individual
(current_optimal_X). Assuming k=0;

Step 3: Judgment of gen iter ? Yes, implementation of
the population improvement strategy; and assuming gen=0.
Then, go to Step 4; otherwise, directly go to Step 4;

Step 4: implementation of mutation to Population Xk
(currently the kth generation) to gain Population Vk; and
assuming i=1;

Step 5: implementation of crossing to the ith individual of
Population Vk to gain four temporary vectors, respectively;

Step 6: implementation of reparation to the four temporary
vectors to gain 4 new vectors and comparison of fitness values
of 4 new vectors to get the optimal temporary vector, which is
regarded as the ith individual of Population Uk;

Step 7: Judgment of i NP ? Yes, go to Step 8 and assuming
j=1; otherwise, assuming i=i+1, go to Step 5;

Step 8: Random generation of a real number to the jth

individual (
j

kU
) of Population Uk and Judgment of this real

number being less than pl? Yes, go to Step 9; otherwise, go to
Step 11;

Advances in Intelligent Systems Research, volume 146

103

Step 9: To call CSGSO for local search and evaluation of
j

kU
; if an individual (

'j
kU

) better than
j

kU
 is searched,

'j
kU

replaces
j

kU
;

Step 10: Judgment of j NP ? Yes, go to Step 11;
otherwise, assuming j=j+1, go to Step 8.

Step 11: Comparison of the fitness values of the mth

individual (
m
kX

) of Population kX
 and the mth individual

(
m
kU

) of Population U ; if
m
kU

 is better than
m
kX

 in effects,
m
kU

 is used to update
m
kX

.

Step 12: Judgment of m NP ? Yes, go to Step 13;
otherwise, assuming m=m+1, go to Step 11.

Step 13: Judgment of the optimal individual has changed?

Yes, updating _ _current optimal X , and assuming
0gen  ; otherwise, assuming gen=gen+1, updating

current_optimal_X.

Step 14: Judgment of maxG G ? Yes, outputting statistical

results for several iterations; otherwise, assuming 1G G  , go
to Step 3.

C. Solving FJSP by Means of Hybrid GSO

1) Population initialization: As for starting the evolution
algorithm, selection of which method for generation of the
initial population is generally greatly related to its search
efficiency and the quality of its last solution so that it shall be
undoubtedly important. As for solving any FJSP issue, a
feasible solution shall include two aspects, namely encoding
procedures and machines; the former is to specify scheduling
sequences for various procedures; and the latter is to define the
processing machine for each procedure.
While assuming:

NP represents the number of individuals of a Population;

G represents the current number of iterations

(max0,1, ,G G )

,i GX represents the ith individual of the Gth generation of the
Population, and

, , ,,
T

i G i G i GX S R   

where:
, 1, , 2, , , ,, , ,i G i G i G d i GS s s s   




 represents the

encoding part of procedures for ,i GX
;

, 1, , 2, , , ,, , ,i G i G i G d i GR r r r   



 represents the encoding part of

machines for ,i GX
; and d represents the total number of all

procedures to be processed.

The initial population (G=0) was generated here by means of
a random function.

(1) Generation of the temporary population (Y, size:
represents NP and dimensions: D=2d), whose ith individual is

represented by 1, 2, ,[, , ,]T
i i i D iY y y y 

; and

(2) Generation of the jth variable by means of Eq. (9), whose

minimum and maximum are represented by ,minjy
 and ,maxjy

,
respectively.

   , ,0 ,min ,max ,min 0,1j i j j jy y y y rand    (9)

For convenience, the corresponding range

(,min ,max,j jy y   , 1, 2, ,j D ) for each variable of Y is

assumed as  ,  (for example: 1 ). As for the individual

vector (1 2[, , ,]T
DY y y y ), the random variable (jy

) shall
be necessarily converted into a variable conforming to the
scheduling constraints for its rational application in the
PDE-based algorithm; namely:

1 1 2[, , ,]dY y y y


  Procedures encoding:

 1 2, , ,i dS s s s



; and

 2 1 2, , ,d d DY y y y 



  Machines encoding:

 1 2= , , ,i dR r r r



.

2) Encoding and decoding: PDE-based variable-step
GSO was utilized here to solve the FJSP issues, which is
different from any traditional evolution algorithm. Mutation
and crossing of PDE are performed based on permutation to
guarantee the integrity of a structure block to a certain extent.
Thus, it is necessarily guaranteed that each individual of the
initial population shall be of practical significance prior to
starting any iteration; namely, the above

 1 2, , ,i dS s s s




and
 1 2= , , ,i dR r r r




 shall possess real significance.
Finally, the initial population was gained, whose individuals
vector is [,]TX S R



For easy solution, various procedures may be sequenced and

they correspond to a unique integer (ID , 1, 2, ,ID d )
which may exclusively represents a procedure.

After gaining ID for each procedure, the actual meanings

of the encoding vectors (S


 and R


) may be explained as
follows:

S


 represents the sequential processing procedures; and

R


: Variable jr
 represents Procedure js

 may be performed
in the rjth machine of the machine set.

Advances in Intelligent Systems Research, volume 146

104

For example,
 = 4,1, 7,5, 2,8,3,9, 6S


, various

procedures shall be scheduled in accordance with sequential
constraints for FJSP procedures by means of the following
sequences:

21O , 11O , 31O , 22O , 12O , 32O , 13O , 33O and 23O

Conversion of 1Y


 into S


 was performed in accordance
with Largest Position Value (LPV) rules put forward by Wang et
al. The following result may be obtained based on Eq. (9):

1 [0.7, 0.2, 0.3, 0.9, 0.6, 0.5, 0.4, 0.3, 0.1]Y     


 (9)

Each variable jy
 of 1Y


 corresponds to Integer ID j ;

and descending sorting of various variables of 1Y


 leads to a full
permutation on ID . For satisfying the sequential constraints of
various procedures for the same workpiece, the ID permutation

shall be adjusted and 1Y


 shall be adjusted correspondingly to
gain finally S


.

As for transition from 2Y


 to R


,  1 2, , , dL l l l



 shall be

first specified, where jl
(1,2, ,j d ) represents that the

size of the machines set may be selected for Procedure ID

(ID = j). Then, conversion from  ,jy   
 to

1,j jr l    may be performed by means of Eq. (10).

  1
1 1

2j j jr round l y 


     
 

 (10)

So far, conversions from S


 to 1Y


 and 2Y


 to R


 may be
performed and scheduling constraints are satisfied; moreover,
the initial population is of practical significance, where each

individual is [,]TX S R


.

3) Evolution: PDE is to solve FJSP based on permutation;
namely, the scheduling sequences are to be optimized while the
machines encoding has been determined. Thus, evolution was
primarily carried out here in view of procedures encoding (S


)

for solving FJSP; and the machine called for each procedure
shall not change along with evolution.

Mutation: it is a key link for guaranteeing the richness of a

population and it means: an individual vector (,i GX


) is selected
from the parent population as the target vector and a series of
interference policies is performed to this target vector to

generate Mutation Vector
, 1, , 2, , , ,[, , ,]T

i G i G i G D i GV v v v



.

Mutation described in Section 2.2 was performed here to ,i GS


corresponding to ,i GX


 to generate Procedures Encoding

Vector ,
S

i GV


 corresponding to ,i GV


, whose operation
conforms to Eq. (11). The machine selected for each procedure

remain unchanged for the moment; whereas, ,i GR


 is

correspondingly adjusted along with mutation to ,i GS


 to gain a

new full permutation (Machines Encoding Vector ,
R

i GV


);

namely
, , ,= ,

T
S R

i G i G i GV V V 
 

 

.

 1 2, , , ,i i
S

i G i G r G r GV S S S  
   

 (11)

where: 1
ir
 and 2

ir
 represent two integers which are randomly

generated in
 1, NP

 and are not i .

Crossing: it is the basis for individuals of a population to
exchange information. With reference to descriptions in Section

2.2, crossing of ,i GX


 and ,i GV


 may generate 4 new vectors

(namely ,

1

i G
C

, ,

2

i G
C

, ,

3

i G
C

 and ,

4

i G
C

).

Reparation: ,

1

i G
C

, ,

2

i G
C

, ,

3

i G
C

 and ,

4

i G
C

 are possibly not conform
to the sequential constraints which shall be satisfied for various
procedures for the same workpiece, which may be
correspondingly adjusted by means of reparation described in
Section 3.3.1 in this case so that they may be converted into a
feasible solution. Then their fitness function values are
calculated; and the vector whose fitness function value is
maximum is selected as Test Vector

, 1, , 2, , , ,, , ,
T

i G i G i G D i GU u u u   



.

4) Local search: PDE has strong global search capacity
but it may possibly fall into the local optimum. For maintaining
a trade-off between development and mining in the search
space, a neighborhood structure (N6) was established based on
the critical path to ,i GU


, where was searched by means of the

variable-step GSO described in Section 2.1 to find out better
individuals as can as possible for updating ,i GU


.

5) Selection: A test vector (,i GU


) may generally be
gained by means of the above evolution. Generally, the
operation for selecting the vector remaining in the progeny is
called as selection. The strategy of PDE is generally to select an
individual whose fitness value is relatively good from ,i GU



and ,i GX


 and maintain such individual in the progeny; and the
specific operation equation is as follows.

 (11)

Advances in Intelligent Systems Research, volume 146

105

6) Improvement of the population by means of the
pre-scheduling strategy: While evolution algorithm is put into
operation to search the optimal solution of a scheduling issue,
no better quality solution may always be found out by means of
several continuous iterations. Such phenomenon is inevitable
currently for the evolution algorithm. A pre-scheduling strategy
was put forward to improve the population in view of such case.

As for Population X


 to be improved, S


 presents the
scheduling sequences for all processing procedures. Now, the

decoding process may be performed to improve R


 so that
various procedures may be completed as soon as possible and
the entire manufacturing period may be shortened. The
operation processes are as follows:

1) The first procedure of S


 is taken;

2) The processing equipment to complete the procedure as
soon as possible is selected as the processing machine in the
machine set for this procedure;

3) The state of the above machine is set as BUSY;

4) Similarly, the above steps are repeated to determine
machines for the 2nd, 3rd, ……procedures till processing
machines for all procedures are determined.

V. EXPERIMENTAL STUDY ON SOLVING FJSP BY MEANS OF

HYBRID GSO

A. Related Experimental Settings

The above HGSO was performed here by means of our
MATLAB program whose operation environment is as follows:
i3 CPU; frequency: 2.1G; memory: 4GB

For verifying the feasibility of the improved HGSO solving
FJSP, 10 international standard examples (Mk01-Mk10)
designed by Brandimarte were utilized as our simulation objects.
Because the randomness of the algorithm would give rise to a
certain calculation error, each test case was continuously
simulated for 20 times. With reference to the existing research
results, the setting parameters of the algorithm are presented in
Table 1. The minimum manufacturing period is the optimization
objective for all measurement experiments.

TABLE I. SETTING PARAMETERS OF THE ALGORITHM

Size of evolution population 1000
Number of Iterations 500

Number of Iterations for local search 50
Fitness extraction ratio 0.6

Luciferin volatilization factor 0.4
Control parameter 0.08

B. Experimental Results and Analysis

Some operation results for solving BRdata by means of
LEGA and our HGSO are presented in Table 2. LEGA was put
forward by Ho et al. by fusion of the machine study mechanism

and GA. n m represents the numbers of workpieces and
machines in the issue; LB and UB represent the lower and upper

bounds of the optimal solution, respectively;
*
bestC represents the

optimal value in the literature; Cbest represents the optimal
solution (namely the optimized manufacturing period) for our
HGSO; Aver represents the average operation result; and t
represents the average operation period for CPU to continuously
be put into operation for 20 times in the same environment,
whose unit is second.

Direct comparison was carried out to the relative error

( * *100 best best bestdev C C C  
) and results in other literatures.

Figure 6 shows the Gantt chart for an optimal solution
scheduling by means of HGSO.

TABLE II. OPERATION RESULTS OF BRDATA

Issue n m (LB,UB)
LEGA HGSO

*
bestC Aver bestC

Aver t dev

Mk01 10 6  36,42 40 41.5 40 40.0 1.7 0

Mk02 10 6  24,32 29 29.1 26 26.1 2.5 10.3

Mk03 15 8  204, 211 204 204.0 204 204.0 1.3 0

Mk04 15 8  48,81 67 67.3 60 60.4 4.8 10.4

Mk05 15 4  168,186 176 178.1 173 175.3 8.2 1.7

Mk06 10 15  33,86 67 68.8 60 60.2 16.2 11.7

Mk07 20 5  133,157 147 152.9 139 140.0 20.5 5.4

Mk08 20 10  523,523 523 523.3 523 523.0 2.6 0

Mk09 20 10  299,369 320 327.7 307 307.0 34.6 4.1

Mk10 20 15  165,296 229 235.7 200 204.6 41.4 12.2

Table 2 presents optimal solutions, average optimal
solutions, average operation periods and relative errors while
HGSO were put into operation for several times to those test
examples in various sizes. In comparison of those optimal
solutions for LEGA, optimal solutions for 7 examples are better
for HGSO; in addition, optimal solutions are gained for another
3 examples for the listed algorithms. On the whole, our HGSO
rather than LEGA achieved better performances.

FIGURE VI. CONVERGENCE OF MK02 EXAMPLE

Advances in Intelligent Systems Research, volume 146

106

FIGURE VII. THE CORRESPONDING PROCESSING GANTT CHART

FOR THE OPTIMAL SCHEDULING FOR MK01

For visual presentation of calculation results, Figure 6
presents comparison of convergence curves for Mk01 by means
of HGSO and LEGA, which indicate that HGSO’s objective
function value falls faster than that of LEGA though their
optimal solutions are the same; and the numbers of iterations for
the same optimal solution (40) are 460 for LEGA and 235 for
HGSO, respectively; thus, HGSO has better convergence.

Figure 7 presents the corresponding Gantt chart for an
optimal solution for Mk01 by means of HGSO, where data in
bars represent workpieces for procedures and the sequential bars
marked the same data represent various procedures in turn for
the same workpiece. Figure 8 indicates that this scheme may
satisfy all constraints for FJSP.

VI. CONCLUSIONS

As for those defects (such as weak global search
performances, easily falling into local optimum, insufficient
stability and slower convergence rate) for solving FJSP issues
by means of GSO, some improvement measures were taken to
the standard GSO. Our conclusions are as follows:

1) In view of those defects (such as slow convergence rate
and easily falling into local search) of GSO, the PDE framework
taking advantages of good global search performances, easy
implementation and rapid convergence rate was utilized to gain
a trade-off between the global development and local mining
and improve the convergence rate.

2) In view of those defects (such as poor stability and slow
convergence) of GSO, the step self-adaptive mechanism was
utilized to improve the constant step for the standard GSO and
its feasibility and effectiveness were verified by means of
simulation experiments.

3) Our HGSO was applied into FJSP for performance of
local search based the neighborhood structure (N6); and the
pre-scheduling strategy was utilized to deal with the optimal
solution unchanging for long time; and the detailed solution
processes were described. Based on Brandimarte standard
examples, simulation was performed for many times.
Comparison and analysis of operation results for HGSO and
LEGA proved that HGSO shall be feasible and effective for
solving FJSP.

REFERENCES
[1] Chen Tongjiang. The Research on Deepening the Application Strategies

in Manufacturing Informatization [D]. Huazhong University of Science
and Technology, 2010.

[2] Michael Pinedo, et al. Scheduling: principle, algorithms and system [M].
Tsinghua University Press, 2007.

[3] CHENG Qi, et al. Research on Information Resource Management
Methods for Large Manufacturing Enterprise [J]. Machine Design and
Manufacturing Engineering, 2012, 41(9): 20-22.

[4] Gu Xinlin, Zhang Dong, et al. Integration for manufacturing servitization
and informationization [J]. Computer Integrated Manufacturing Systems,
2010, 16 (11): 2530-2536.

[5] Kammer M, Akker M V D, Han H. Identifying and exploiting
commonalities for the job-shop scheduling problem [J]. Computers &
Operations Research, 2011, 38(11): 1556-1561.

[6] Wang Chao, Liu Jieping, Chang Weitao, et al. Progress on Technology of
JSP Dynamic Scheduling [J]. Equipment Manufacturing Technology,
2011 (4): 144-148.

[7] Liu Xiangde. Research on Some Critical Issues about Job Shop Real-time
Scheduling [D]. Chongqing University, 2013.

[8] Wang Shenwen, Ding Xinli, et al. Survey of Differential Evolution [J].
Journal of Wuhan University (Natural Science Edition), 2014, 60 (4):
283-292.

[9] Wang Wanliang, Wang Lei, Wang Haiyan, et al. Dynamic Job Shop
scheduling based on hybrid differential evolution algorithm [J]. Computer
Integrated Manufacturing Systems, 2012, 18 (3): 531-539.

Advances in Intelligent Systems Research, volume 146

107

