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Abstract—In this paper, a new virus nonlinear dynamic 
model with time delay is proposed. Moreover, its stability, Hopf 
bifurcation and other dynamical behavior like chaos are studied. 
It is indicated that if the reproductive ratio is less than one, the 
infection-free equilibrium is partially asymptotically stable. 
Analytical and pictorial results show that if the reproductive ratio 
is greater than one, the combined effect of the reproductive ratio 
and the time delay is to create a rich dynamical behavior. 
Observing and analyzing the process from periodic oscillations to 
chaos can explain the different pathological feature of patients 
under different treatment stages. Finally, a simulation example is 
given to illustrate the correctness and assistance of the study on 
the virus dynamics research. 
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I INTRODUCTION 

Over the past ten years, viral infectious disease dynamics [1] 
research has always been expected to be the key of overcoming 
all kinds of human infectious diseases. Considering that 
dynamic models [2] showed dynamic phenomena of rich 
variety, it’s meaningful to establish an accurate mathematical 
model to control infectious diseases [3] and ultimately 
eliminating them.  

Establishing a system model is no doubt the first step, and 
various function models have been used to simulate the 
condition in patient's body [4]. In order to be closer to realistic 
situation, time-delay systems [5] has become a research boom 
in recent years. Therefore, bringing the conception of time 
delay into the virus dynamics model boasts a lot of significance 
[6].  

In this paper, the main contributions are as follows: 1) To 
satisfy the assumption that both the delay of the immune 
response and natural metabolism should be considered 
simultaneously, the new derived viral dynamic model with time 
delay is therefore more realistic. 2) We use nonlinear system 
stability theory and Center Manifold theory to precisely come 
up with the analysis basis and judgment result. 3) Several kinds 
of figures are demonstrated to clearly exhibit the stability 
character and complex dynamic behavior of system. The results 
extend the analysis on delay virus dynamics considered in the 
other papers and suggest useful methods to control virus 
infection. 

II ESTABLISHMENT OF THE VIRUS MODEL 

There has been much experience in mathematical modeling 
of traditional epidemic and viral dynamics [7,8] to learn from. 
Considering the fact that the rate viruses changing to infected 
cells is much higher than the reproductive ratio of the latter 
[9,10], namely the amount of free virus is simply proportional 
to the number of infected cells, a reasonable and bold 
hypothesis that the number of infected cells ( )y t  can also be 

considered as a measure of virus load ( )v t . Thus getting model 

as follows 

                 (1) 

Considering that the immune cells work because of the 
stimulations of infected cells and viruses to the immune 
response, there will be a certain response time, so it will be 
more realistic to bring the time delay into this model. By the 
way, the natural immune cells metabolism will be delayed 
definitely at the same time. So the new viral time-delay 
dynamic model shows as follows 

               (2) 

where the model consists of the number of uninfected cells 
( )x t , the number of infected cells ( )y t  and the number of 

immune cells ( )z t . By the way, the uninfected cells are 

generated at a rate , die at a rate ( )dx t  and become infected 
by the virus at a rate ( ) ( )x t y t . The infected cells are generated 

at a rate  , die at a rate ( )ay t  and are killed by the immune 

cells at a rate ( ) ( )py t z t . The immune cells are generated at a 

rate ( )cy t  , die at a rate ( )bz t  . 
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III STABILITY ANALYSIS AND EXISTENCE OF HOPF 

BIFURCATION 

In this Section, the Lemma 1 shown in the reference [11] 
will be used, and another Lemma will be introduced at first. 

Lemma 2 [12] ( Transverse field conditions of Hopf 
bifurcation) Make ( ) ( ) ( )s i      the characteristic root 
of  

3 2 2
1 2 1 2 3det( ) ( ) =0 sJ sI s A s A s B s B s B e         

the Hopf bifurcation exists if it meets 0( ) 0   and

0 0( )=   and its first differential of time delay  based on 

characteristic root , namely 

1

=

Re( ) 0
k

ds

d  
   

In the following part. The existence of nonnegative 
equilibrium and local stability are going to be researched, and 
by the way, it is easy to verify that the solution of the system is 
uniformly and ultimately bounded. Two equilibriums can be 
derived through calculation. 
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As for the target system, the virus reproductive ratio is 

R
ad


 . If 1R  , 0E , known as uninfected equilibrium 

point, will be the only positive one. If >1R , here comes a new 

equilibrium point,
 1E , known as the balanced infection 

equilibrium point, corresponding to a situation where virus and 
immune cells exist at the same time. 

Theorem 3 If 1R  , the virus uninfected equilibrium point 

0E is partially asymptotically stable. 

Proof. The Jacobian matrix of system at the equilibrium 

point 0E can get us the eigenvalues equation. 

( ) =( + )( + )( )D d be a
d




       

a) When reproductive ratio 1R
ad


  , eigenvalues are 

given by 

 

It can be concluded that 0 0 0E
d

   
   

is partially 

asymptotically stable. 

b) When reproductive ratio 1R
ad


  , since there is at 

least one solution of characteristic equation greater than zero, 

the equilibrium 0E is therefore a saddle point. It is concluded 

that snap through buckling happened here, namely when 0E
loses its stability, system jumps to another equilibrium point 
state. This completes the proof. 

In the next part, let’s define the coordinate transformation 

1 1 1( )= ( )  , ( )= ( )  , ( )= ( )x t x t x y t y t y z t z t z       (4) 

Note that equilibrium 1E has been translated to the origin. 

The linearization of system translated to the origin is 

               (5) 

The characteristic equation can be described in the 
following form, 

 
(6) 

also denoted as equation (3). Since the stability of system 
depends on how the roots of characteristic equation distribute, 
we will study the equation by means of Lemma 1. It is clear to 
find that conditions (i)–(v) of Lemma 1 are satisfied.  

Through characteristic equation,  

 (7) 

where 1,2,3;k  0,1,....j  ,the k are a pair of pure 

imaginary root of Eq.(6) when ( ) .j
k   The critical time delay 

parameter k and the critical angle frequency k satisfying (7) 

when 0j  are 
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At the same time, as for the equation in Lemma 1, we can 
verify the transversality condition below based on Lemma 
2[11], 

1

=

Re( ) 0
k

ds

d  
   

Synthesizing all the Lemmas and Theorems above and Hopf 
bifurcation theory, we can obtain that, 

Theorem 4 As for the system (2) in the case when 
reproductive ratio >1R . 

(i) If 3 0C  and 0  , then Eq. ( ) 0F   doesn’t 

have any positive root, the infection equilibrium point 1E is 

asymptotically stable when 0.   

(ii) If 3 0C  , then Eq. ( ) 0F   has at least one 

positive root, and we can calculate critical time delay .k  

a)  When [0, )k  , stability switches occur limited 

times. 

b)  When k  , a Hopf bifurcation happens to 

equilibrium point 1E of system, and periodic solution appears. 

c) Stability switches occur as time delay increases, 

making system unstable if .k   

IV SIMULATION 

In order to study the stability characteristic as shown in 
Section 3, we perform simulation and verification based on 
different reproductive ratio and time delay parameters via 
Matlab. The standard configuration parameters are chosen as 
[7]. 

 

 

FIGURE I.  TIME DELAY = =2.22k  , REPRODUCTIVE RATIO

=1.2R  

 

 
FIGURE II.  TIME DELAY =3.5 , REPRODUCTIVE RATIO =1.2R  
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It can be calculated that =2.22k , =0.0097k . In the 

case when = =2.22k  , Hopf bifurcation happens to virus 

infected equilibrium point 1E , as shown in Figure 1. 

 
(a) 

 
(b) 

FIGURE III.  REPRODUCTIVE RATIO =1.2R . POINCARÈ SHINING 

MAP FIGURE 3.A, OF WHICH (1.6,3.5)  . THE LARGEST 

LYAPUNOV EXPONENT FIGURE 3.B, OF WHICH (0,3.5)   

In the period when =2.22k  , the virus infection 

equilibrium point 1E is not stable, getting into chaotic state 

through period-doubling bifurcation, as shown in Figure 2. 

From Poincarè shining map Figure 3.a and the largest 
Lyapunov exponent Figure 3.b, it is obvious to find that the 
state of equilibrium point has undergone a series of changes due 
to the increase of the time delay parameter, and it fits precisely 
the analysis results of the Section 3 in this article.  

V CONCLUSIONS 

In this article, a new virus nonlinear dynamic model with 
time delay which could be more realistic is proposed, and its 
stability, dynamical behavior like Hopf bifurcation. The 
research has clearly shown that adjusting the cells’ reproductive 
ratio and time delay will affect viral infection. The analysis 
results will not only help us effectively grasp the complex 

dynamic behavior, but also provide the theory basis for 
treatment and operational plan in reality situation. Simulation 
example and lots of figures have verified the theoretical results 
given in this article. It is expected that the approach can be 
further used for the realistic treatment of the infectious diseases. 

ACKNOWLEDGEMENTS 

This work is supported by the National Natural Science 
Foundation of China (Nos.61425002, 61772100, 61702070, 
61672121, 61572093, 61402066, 61402067, 61370005, 
31370778), Program for Changjiang Scholars and Innovative 
Research Team in University   (No.IRT_15R07), the Program 
for Liaoning Innovative Research Team in University 
(No.LT2015002), the Basic Research Program of the Key Lab 
in Liaoning Province Educational Department 
(No.LZ2015004). 

REFERENCES 
[1] Gandon, S., Day, T., Metcalf, C.J.E., Grenfell, B.T.: Forecasting 

Epidemiological and Evolutionary Dynamics of Infectious Diseases. 
Trends in Ecology & Evolution 31(10), 776-788 (2016).  

[2] Tien, M.H., D’Souza, K.: A generalized bilinear amplitude and frequency 
approximation for piecewise-linear nonlinear systems with gaps or 
prestress. Nonlinear Dynamics, 88(4), 2403-2416 (2017).  

[3] Nakatani, H.: Global Strategies for the Prevention and Control of 
Infectious Diseases and Non-Communicable Diseases. Journal of 
Epidemiology 26(4), 171-178 (2016).  

[4] Cai, L., Li, X.: Stability and Hopf bifurcation in a delayed model for HIV 
infection of cells. Chaos, Solitons & Fractals 42(1), 1-11 (2009).  

[5] 5.  Park, M.J., Kwon, O.M., Ju, H.P., Lee, S.M., Cha, E.J.: Stability of 
time-delay systems via Wirtinger-based double integral inequality. 
Automatica 55(C), 204-208 (2015).  

[6] Chen, L., Zhao, T., Li, W., Zhao, J.: Bifurcation control of bounded noise 
excited Duffing oscillator by a weakly fractional-order [FORMULA] 
feedback controller. Nonlinear dynamics 83(1-2), 529-539 (2016). 

[7] Wang, K., Wang, W., Pang, H., Liu, X.: Complex dynamic behavior in a 
viral model with delayed immune response. Physica D Nonlinear 
Phenomena 226(2), 197-208 (2007).  

[8] Yang, H., Wei, J.: Analyzing global stability of a viral model with general 
incidence rate and cytotoxic T lymphocytes immune response. Nonlinear 
Dynamics 82(1-2), 713-722 (2015).  

[9] Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent 
Virus Infection despite Chronic Cytotoxic T-Lymphocyte Activation in 
Gamma Interferon-Deficient Mice Infected with Lymphocytic 
Choriomeningitis Virus. Journal of Virology 74(22), 10304-10311 
(2000).  

[10] Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic 
and nonlytic immune responses in viral infections. Trends in Immunology 
23(4), 194-200 (2002).   

[11] Cooke, K.L., Pauline, V.D.D.: On zeroes of some transcendental 
equations. Funkcialaj Ekvacioj 29(1), 77-90 (1986).  

[12] Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of 
period-doubling bifurcation and chaos in discrete nonlinear dynamical 
systems. Chaos Solitons & Fractals 18(4), 775-783 (2003).  

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000
Poincare shining map

lags

|y
| w

he
re

 x
=

27
1y

0 0.5 1 1.5 2 2.5 3 3.5
-4

-2

0

2

4

6

8
largest Lyapunov exponents of system

parameter lags

la
rg

es
t 

Ly
ap

un
ov

 e
xp

on
en

ts

Advances in Intelligent Systems Research, volume 146

114




