
Design and Research of the Spoken English Test
System Based on Node.js

Yansong Cui, Zhongyuan Yu and Jianming Huang
Beijing University of Posts and Telecommunications, Beijing, China

Abstract—Online spoken English test system has become one
of the most important methods of examination in the Internet era.
Compared with the traditional software developed by C++/C#,
this paper mainly uses Nw.js development framework based on
Node.js platform, which reduces the cost and difficulty of system
development and enhances software compatibility and flexibility
[1]. The server based on Node.js gets examination papers from
the cloud and sends them to the client while the client records
audio and sends the files coded with Lame back to the server,
between which we use WebSocket for TCP/IP communication.
The test result shows that the system can provide real-time online
spoken English test for up to 5000 users.

Keywords—recording test; Node.js; WebSocket; lame

I. INTRODUCTION

With the rapid development of Internet and computer
technology, intelligent teaching system has gradually become a
hot research topic. Test system that can automatically
download papers, record voices, and upload answers can
greatly improve the efficiency of school tests, which can not
only alleviate the shortages of the supervisor and tedious work
pressure but also raise the examinee's reading interests and
enthusiasm. According to the designed methods proposed in
this article, we used Nw.js to build a client that can run on the
desktop and Lame to code user’s input audio for MP3 files,
then we sent the audio files to the server by WebSocket
protocol, finally developed a multi-user real-time examination
system of low cost and high efficient.

II. SYSTEM STRUCTURE

FIGURE I. SYSTEM STRUCTURE

The test system consists of audio recording equipment,
headphone devices, client and server based on Node.js and
remote background system, as shown in Figure 1.In this system,
the server first sends the HTTP request to the background
system to download and save the test data in Json format. Then
it broadcasts its host information by UDP protocol to all IP
addresses in the same LAN.

The client registers the listening event when it runs by
online student users in the same LAN. Once the broadcast
signal is listened, the TCP handshake with the host will be set
up to download the test papers. After receiving the test papers
in Json format, the client will parse it and get the text messages
and MP3 files, then export them to the client interface and the
headphone terminal. The client gets microphone input and
encodes them into real-time MP3 file stream. At the end of the
test, the audio data is transferred back to the server by TCP,
which will be restored to MP3 files then transmitted back to the
background by HTTP and finally stored to the cloud. All the
features of the process have been implemented by fully testing.

III. SYSTEM KEY TECHNOLOGY

A. Flexible Environment and Adaptable Interface

In order to build a low-cost, efficient and adaptable test
system, traditional C++/C# language are not adopted in this
paper. Instead, this system is developed based on the Node.js
operating platform. Node.js is an event-driven, non-blocking
programming platform based on the V8 engine. The V8 engine
uses some of the latest compilation techniques to greatly
improve its speed with JavaScript. Node.js is lightweight and
efficient, which can be considered as the perfect solution for
real-time application system in a data-intensive distributed
deployment environment [2]. As a result Node.js meets the
requirements for development.

What’s more, we use Nw.js framework. Nw.js is one of the
most popular desktop application development SDKs, which
not only integrates all running environment of the Node.js,
contains a large number of the Node.js module components,
also brings a lot of APIs suitable for the development of the
Windows desktop application. It can be very flexible to
interfaces, window and background thread by parameter
configuration, the biggest advantage of which is compatible
with Windows XP compared with other popular frameworks.

International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 159

484

B. Audio Encoding

1) HTML5 Audio APIs: The test system needs user's
microphone input first. The traditional desktop application
needs to call the interface in system level while trying to obtain
the computer audio input, which is complicated and difficult to
operate. With the rapid development of Web technology in
recent years, HTML5 brings more perfect and powerful APIs
for video and audio input of computers. We can easily access
the user's microphone input by using them because Nw.js has a
Chrome kernel embedded in its Node.js development
environment. These APIs makes full use of the advantages of
simple and flexibility of HTML5, which greatly reduces
development cost [3].

2) Background Coding in WebWorders: While executing a
script in an HTML page, the state of the page is unresponsive
until the script is completely executed. In the program, as the
recording time becomes longer, the output of the file not only
has a larger time delay, but also may block threads, which
affects user’s interacting with the interface.

WebWorkers is a way of browser to make JavaScript
running in the background. You can make some part of the
JavaScript run independently of other scripts by using threads,
background processes, or other processor cores, which will not
affect the performance of the page. Users can continue to do
interactive operations while WebWorkers is running in the
background. In this paper, we imported the Lame library into
WebWorkers, and implemented the real-time operation of edge
recording and coding [4].

3) MP3 Encoded by Lame: The recording of the users in
the test needs to be saved in a uniform and stable format, while
audio files such as WAV are too large to be suitable for actual
transmission. However, MP3 is still a popular kind of audio
format on the Internet, the advantage of which is that its file
has smaller size and less storage capacity than other formats.
Therefore in this paper we chose to keep files of questions and
answers in MP3 format.

In order to convert the audio stream of the system to the
MP3 format, the audio needs to be digitally encoded. Using a
custom encoding library is not only inefficient but also error-
prone, besides, noise processing and sound fidelity is difficult
to solve, which makes development very difficult.

Lame is the most popular and efficient MP3 encoding
engine. MP3 encoded by Lame has tone pure, broad space,
clear bass and good detail performance. Its original
psychological acoustics model technology guarantees the
authenticity of the audio reduction. Cooperating of VBR and
ABR parameters, it can almost be comparable to CD audio
sound quality while the file size is very small [5]. Therefore
this paper implemented the corresponding sampling, coding
and conversion of binary audio mainly through importing the
library named Lame.js, which converted the original acoustic
signal from user’s microphone to MP3 format, completing the
feature of test system in the end.

C. Network Real-time Communication by TCP

During the test the server needs the test data of multiple
clients, as well as some interactive features such as sending test
signals and providing login information. HTTP request usually
initiate a single request from one end to the other, especially for
large data volumes while the TCP mode with full duplex, real-
time interaction and support of reconnection is more suitable
for this system.

Here we chose the TCP communication module of Node.js
named socket.io. Socket.io encapsulates WebSocket and
polling mechanisms and other real-time communication
methods into a common interface and implements the
corresponding code for these real-time mechanisms at the
server [6]. UDP broadcast technology is also used in this
system, which named udp4, a module of Node.js. It also
establish listening event, which receives the host and test
information of the server.

IV. IMPLEMENTATION OF THE CLIENT

A. Implementation of the Interface

First of all, we need to configure the parameters of the
system by writing the package.json file in Nw.js. The start-up
interface resolution is set to 1366×768 while the minimum
resolution is set to 1024×576, in which range the user can
freely drag the window. The flex attribute is used in different
regions in the page, which makes the left and right blocks keep
the ratio of 1 to 5 while the up and bottom blocks keep the ratio
of 1 to 2. It makes the interface with perfect adaptability.
Canvas is used to make the countdown icon while the rest time
is determined by setting timers, which changes the shape of the
Canvas element, so we can provide users with rich and colorful
interface effect [7]. Part of the interface is shown in Figure 2.

B. Implementation of Recording and Encoding

The program of the test interface first detects that if
getUserMedia() method is effective, and then according to the
way mentioned above, will firstly return a MediaStream object
in the callback function of getUserMedia() method and
secondly pass it to the AudioContext object, finally calls the
corresponding method to create a MediaStreamSource object.

Once the original and operable analog signal is obtained, on
the one hand, it will be passed to the GainNode, which is used
to play the recorded audio to the user in real time, on the other
hand, due to the user need to test the microphone volume
before the test, we need to create a microphone real-time
synchronized audio source. Here create a GainNode, then the
user's real-time input can be heard through headphones, and
you can also call its other methods to control the parameters of
the GainNode.

This signal will be passed to the WebWorkers module
running in the background, where the communication between
the two relies mainly on the postMessage() method. In the
program, firstly the processing of sampling, quantization and
encoding is performed for the analog signal, and then it will be
passed to the Lame encoding module, so that the audio can be
encoded simultaneously in almost synchronous mode. Finally,

Advances in Intelligent Systems Research, volume 159

485

the high quality MP3 audio file is returned to the client. The
specific process is shown in Figure 3.

FIGURE II. HEADPHONE TESTING INTERFACE

FIGURE III. AUDIO STREAM TRANSMISSION

C. Implementation of TCP Communication and File Transfer

By using the socket.io and udp4 modules, the server sends
UDP broadcast to the LAN when its starts, which contains its
own IP, port number and test information. The client first
listens to the broadcast, then gets the corresponding parameters
by calling the connect() method to establish a TCP connection,
at the same time registers a series of socket event listeners for
subsequent interactions [8].

The TCP connection set up by socket.io has great
performance for binary file transfer, where we used the binary
file stream for transmission between the two terminals. The
final output of the audio processing module mentioned above is
file stream in the form of MP3Blob. However, this type cannot
be transmitted directly using the socket. So we used the
FileReader class of Javascript here. When users are ready to
upload the answers at the end of the test, the program firstly
reads the audio files in turn, then readAsDataURL() method of
the event object will be used to convert them to Base64 format.
But the base64 format still contains redundant information, so
we need to use the Buffer class of Node.js. As a result, the data
can be eventually converted to binary Buffer type [9].

D. Exception Handling

Due to the instability of network and other sudden
interference factors in practical application scenario, it could

lead to network paralysis or software accidentally closing.
While this situation can by recovered by configuring the
parameters of reconnection in socket.io. Once the network is
reconnected, TCP connection will be re-established, the
information of communication before can be restored
immediately.

If disconnection happens in some steps especially during
the exam, a file is needed to storage current client information,
which should include the test machine's overall progress, the
page address, the completed recording data and so on.
According to this information structure, we adopted the Json
format to save these information. Every time the software goes
to a new step, information will be written into the debug with
fs.writeFile() method of Node.js. And the Json file is read first
by the client before it starts every time, once the abnormal state
saved previously is detected, it will read all the test information
and the client status will be recovered fully before the break.
After fully testing, the client after the start can be back to the
previous interface and maintain correct parameters even in any
one place unexpectedly.

V. SYSTEM TEST

The system was tested after the completion of the
development, which mainly investigating the system's
functional integrity, cross-operating system compatibility,
resource appropriation, and the stability of the system on
computers of different configurations.

A. Performance Test

Based on the functional requirements of the test system, the
performance test selected the typical application scenario to
simulate the real user initiating the system access request,
including the main steps in the examination process. After
installing the software on the computer with the common
operating system, the simulation is conducted according to the
test process. The specific contents are shown in Table 1.

The CPU, I/O and memory resources utilization of client
computer in the testing process is smooth, without downtime,
which is basically stable. After sufficient testing, the system
can be fully compatible with the above operating system, and
can meet all the functions designed. The specific test data is
shown in Figure 4 and Figure 5.

As can be seen from the figures, when the system is
running on computers of different configuration, their average
CPU usage is less than 25%, while their average memory usage
rate is lower than 40%, and the system average delay is under
40ms. It shows that the system has a good performance and can
satisfy actual application scenario.

TABLE I. CONTENT OF PERFORMANCE TEST

Name Content

Link link, sign in, paper download, audio saving, files upload

Indicator average response time, CPU occupancy, memory occupancy

System WindowsXP,Windows7,Windows10

Advances in Intelligent Systems Research, volume 159

486

FIGURE IV. THE OCCUPANCY RATE OF DIFFERENT CPU AND

MEMORY.

FIGURE V. AVERAGE DELAY OF DIFFERENT TEST TIMES.

B. Stress Test

The system also needs loading capacity test, where we used
TCP/UDP Test Tool designed for WebSocket. The target
server IP, port number, name of the socket events, information
and parameters such as maximum number of connections can
be configured in the software. It also supports for multiple
codes, and can display real-time connection status and the
amount of data. The specific test interface is shown in Figure 6.

We set the number of users to 500, 2000 and 5000
through the stress test tool to simulate the application scenarios
and sent the data of different size. Respectively according to

FIGURE VI. STRESS TEST OF DIFFERENT USERS

FIGURE VII. THE SUCCESS RATE OF DIFFERENT DATA AND

NUMBER OF CONNECTIONS

the results in Figure 7 we can see under the high density of
users the system also has high stability. It supports up to 5000
users to send data at the same time, which can meet the needs
of school application scenario.

VI. CONCLUSION

This paper mainly introduces the test system based on the
Node.js, which after full testing can satisfy the needs of schools,
letting the client automatically download test papers, record
answers and upload test files. It not only makes daily English
teaching easier, also improves the students' interest in learning,
making a step forward in the direction of intelligent education.
The system is small in size, fast in operation, good in cross-
platform and stable in performance, and has wide application
and commercial value.

REFERENCE
[1] [1]Tan Xue. Interactive design and implementation of automatic railway

ticketing system. [D]. China Academy of Railway Sciences,2016.

[2] [2]Node.js: A new Web application build technology. [J]. Wang Jinlong,
Song Bin, Ding Rui. Modern Electronics Technique. 2015(06)

[3] [3]Chen Letian. Design and implementation of video module of online
learning platform based on HTML5 video control technology. [D].
Tianjin Normal University,2017.

[4] [4]Yu Qiyang. Embedded JavaScript engine parallelization research and
design. [D]. University of Electronic Science and Technology of
China,2013.

[5] [5]Hu Xuemei. To improve the real-time CD recording speed of lossless
audio coding. [D]. University of Electronic Science and Technology of
China,2015.

[6] [6]Chen Xiqiu. The implementation of two-way real-time
communication between the server and the browser based on the
Socket.IO framework. [J]. Journal of Changjiang Engineering
Vocational College,2016,33(01):31-32.

[7] [7]A Review of “The Modern Web: Multi-Use Web Development with
HTML5, CSS3, and Javascript”[J] . LisaA. Ennis. Journal of Web
Librarianship . 2014 (1)

[8] [8]J. Domańska,A. Domański,T. Czachórski,J. Klamka. Fluid flow
approximation of time-limited TCP/UDP/XCP streams[J]. Bulletin of
the Polish Academy of Sciences Technical Sciences,2014,62(2).

[9] [9]Munawar Hafiz,Samir Hasan,Zachary King,Allen Wirfs-Brock.
Growing a language: An empirical study on how (and why) developers
use some recently-introduced and/or recently-evolving JavaScript
features[J]. The Journal of Systems & Software,2016,121.

Advances in Intelligent Systems Research, volume 159

487

