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Abstract:

This paper studies the Bayes estimator, the maximum likelihood esti-
mator and the approximate likelihood estimator of the scale parameter for the
Marshall-Olkin exponential distribution under the progressive type-II censored
sample. All the estimators, Bayes estimator, maximum likelihood estimator and
approximate likelihood estimator are presented and derived in simple forms. It
observed that the Bayes estimator and the maximum likelihood estimator can
not be solved analytically, hence it is solved numerically. Finally the compar-
ison method is presented in order to compare the performance between these
estimators.
Keywords: Progressive censoring; approximate maximum likelihood estima-

tor; Bayes estimator; exponential distribution.
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1 Introduction

Let Z be a random variable from the Marshall-Olkin exponential distribution
(MOE) distribution with the scale parameter � and shape parameter �. The
probability density function (pdf) of Z is given as follow

f(z) =
�e�

z
�

�
�
1� (1� �)e� z

�

�2 ; z � 0; � > 0 and � > 0: (1.1)

and its cumulative distribution function (cdf) is given as

F (z) = 1� �e�
z
��

1� (1� �)e� z
�

� ; z � 0; � > 0 and � > 0: (1.2)

The pdf and cdf of standard MOE distribution are given respectively as
follows:

f(x) =
�e�x

(1� (1� �)e�x)2
; 0 � x <1; � > 0: (1.3)

Received 14 March 2017 
Accepted 5 December 2017

1

Copyright © 2018, the Authors.  Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 1–14 
___________________________________________________________________________________________________________



F (x) = 1� �e�x

(1� (1� �)e�x) ; 0 � x <1; � > 0: (1.4)

where X = Z
� : Note that when � = 1; in Eqs. (1.3) and (1.4) then the MOE

distribution reduces to the standard exponential distribution, and when � = 2;
the MOE distribution reduces to the half logistic distribution. The hazard rate
h(x) for the MOE distribution, is given by

h(x) =
1

1� (1� �) e�x ; x � 0; � > 0:

[6] showed that when � � 1 then the hazard rate h(x) is increasing and if
0 < � < 1; h(x) is decreasing. So the family of MOE distributions is an
increasing failure rate (IFR) family when � � 1 and a decreasing failure rate
(DFR) family when 0 < � < 1: For more details see [10] and [12].

Censored sampling arises in a life-testing experiment when ever the experi-
menter doesn�t observe (either intentionally or unintentionally) the failure times
of all units placed on a life-test. For example consider a life-testing experiment
where n items are kept under observation, these items could be systems, com-
puters, individuals in a clinical trial, in reliability study experiment, so that the
removal of units from the experimentation is pre-planned and intentional, and is
done in order to provide saving in terms of time and cost associated with testing.
The data obtained from such experiments are called censored data. There are
many types of censoring scheme, here we mention some of them, let us consider
n unites are placed on a life-test then, type-I (time) censoring: Suppose it is
decided to terminate the experiment at a pre-determined time t , so that only
failure time of these items that failed prior to this time recorded, the data so
obtained from this process constitute a type-I censored sample. Type-II censor-
ing: If the experiment is terminated at the rth failure, that is at time Xr:n, we
obtain type-II censored sample, here r is �xed, while Xr:n the duration of the
experiment is random. Many articles in this literature have discussed inferen-
tial method under type-I and type-II censoring for various parametric families
of distributions, for more details, see for example, [1, 3, 5, 7, 9,11].

A generalization of type-II censored sample is a progressive type-II
censoring: Suppose n units taken from the same population are placed on a life
test. At the �rst failure time of one of the n units, a number R1 of the surviving
units is randomly withdrawn from the test, at the second failure time, another
R2 surviving units are selected at random and taken out of the experiment, and
so on. Finally at themth failure, the remainingRm = n�m�R1�R2�:::�Rm�1
unit are removed. In this scheme (R1; R2; :::; Rm) is pre-�xed. The resulting m
order failure times, which denote by

X
(R1;R2;:::;Rm)
1:m:n ; X

(R1;R2;:::;Rm)
2:m:n ; :::; X(R1;R2;:::;Rm)

m:m:n ;

are referred to as progressive type-II censored order statistics. The special case
when R1 = R2 = ::: = Rm�1 = 0; so that Rm = n�m this scheme reduces to the
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conventional type-II censoring scheme, also when R1 = R2 = ::: = Rm = 0; so
that m = n , then no censoring happen ( complete data case). For more details
discussion about progressive censoring, one may refer to [2]. If the failure times
are based on an absolutely continuos distribution function F with probability
density function (pdf) f; the joint probability density function of the progressive
censored failure times X1:m:n; X2:m:n; :::; Xm:m:n; is given by

fX1:m:n;:::;Xm:m:n
(x1; x2; :::; xm) = A(n;m� 1)

mY
i=1

f(xi)[1� F (xi)]Ri ;

�1 < x1 < x2 < ::: < xm <1; (1.5)

where f(:) and F (:) are, respectively, pdf and (cdf) of the random sample
and

A(n;m� 1) = n(n� 1�R1)(n� 2�R1 �R2):::(n�m+ 1�R1 � :::�Rm�1):

The rest of the paper is organized as follows. In Section 2, approximate
maximum likelihood estimator (AMLE) of the scale parameter � of MOE dis-
tribution is presented and used as an initial starting points to �nd the maximum
likelihood estimator (MLE) of �: In Section 3, Bayes estimator of � is studied
and presented. Finally, in Section 4, numerical computations and calculations
are presented to compare between these estimators .

2 ApproximateMaximum Likelihood Estimation

In this section, we derive the AMLEs of the scale parameters � of the MOE
distribution under progressively type-II censored sample by using [2] algorithm.
Let Y1:m:n; Y2:m:n; :::; Ym:m:n denote a progressively type-II censored sample
from MOE distribution with pdf and cdf as in Eqs. (1.1) and (1.2) respectively.
Let Xi = Yi=�; i = 1; 2; :::;m , then X 0

is are simply order statistics from a
sample of size n from the standard MOE distribution. One can approximate the
function F (xi) by expanding it in a Taylor series around the point E(Xi:m:n) =
�i:m:n :

It is known that
F (Xi:m:n)

D
= Ui:m:n;

where Ui:m:n is the ith progressively type-II censored order statistic from
uniform U(0; 1) distribution. We then have

Xi:m:n
D
= F�1(Ui:m:n);

with

F�1(u) = ln

�
1� (1� �)u

1� u

�
:
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Consequently,

�i:m:n = E(Xi:m:n) � F�1(i:m:n)

� ln

�
1� (1� �) i:m:n

1� i:m:n

�
;

where i:m:n = E(Ui:m:n). From [2], it is known that

i:m:n = 1�
mY

j=m�i+1

j +Rm�j+1 + :::+Rm
j + 1 +Rm�j+1 + :::+Rm

; i = 1; 2; :::;m: (2.1)

By expanding F (xi) using Taylor series expansion around the point �i:m:n and
keeping only the �rst two terms for approximation we get

F (Xi) � F (�i:m:n ) + (xi � �i:m:n )f(�i:m:n );
= wi + �ixi; (2.2)

where
wi = F (�i:m:n )� �i:m:n f(�i:m:n ); i = 1; 2; :::;m

and
�i = f(�i:m:n ); i = 1; 2; :::;m:

by using Eq. (1.5), one can �nd the MLE of � by di¤erentiating Eq.(2.3) with
respect to � and then solving Eq.(2.4) numerically.

lnL = ln c�m ln��m ln�+
mX
i=1

(Ri + 1) ln [1� F (Xi)]+
mX
i=1

ln [1� (1� �)F (Xi)]

(2.3)

@ lnL

@�
=
�1
��

"
�m�

mX
i=1

(Ri + 2� �)Xi +
mX
i=1

(Ri + 2)(1� �)F (Xi)Xi

#
= 0:

(2.4)
Upon using Eq. (2.4) and (2.2), the AMLE of � based on the progressively

type-II censored sample can be obtained by solving Eq. (2.5)

@ lnL

@�
=

�1
��

"
�m�

mX
i=1

(Ri + 2� �)Xi +
mX
i=1

(Ri + 2)(1� �)Xi (wi + �iXi)
#
= 0;

(2.5)

after simplifying Eq. (2.5), we get
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A�2 +B�+ C = 0: (2.6)

By solving the quadratic Eq. (2.6) with respect to �, we obtain the AMLE
of � as

_

� =
�B +

p
B2 � 4AC
2A

; (2.7)

where

A = �m;

B =
mX
i=1

[(Ri + 2)(1� �)wi � (Ri + 2� �)] yi

C =

mX
i=1

(Ri + 2)(1� �) y2i �i:

The AMLEs of scale parameters of MOE distribution could be used as starting
points of the numerical solution in Newton-Raphson method of Eq.(2.4) to �nd
the MLE of �.

3 Bayes Estimation

In this section, we present the derivation for the Bayes estimator for the scale
parameter � of the MOE distribution. To see this, let Let Z1 � Z2 � ::: � Zm
be a progressively type-II censored sample from MOE distribution with pdf and
cdf as in Eqs. (1.1) and (1.2) respectively. Let us consider the natural conjugate
family of the prior distribution for parameter � as follow:

�(�) /
�
1

�

�a+1
e�

b
� ; � > 0; a > 0 and b > 0: (3.1)

The posterior density of � is given by combining Eq. (1.5) with Eq. (3.1) as

� (�jZ) /
�
1

�

�m+a+1
e
� 1
�

24 mX
i=1

(Ri+1)Zi+b

35 mY
i=1

�
1� (1� �)e�

Zi
�

��(Ri+2)

:

(3.2)
The cdf of the Bayes estimator of � under the square error loss (SEL) is the
posterior mean and given by

_

�B =

1Z
0

�� (�jZ) d�

1Z
0

� (�jZ) d�

: (3.3)
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To �nd the Bayes estimator of � by numerical integration method, we use Eq.
(3.2) and (3.3) which is due to the complex form of the likelihood function. To
obtain the Bayes estimator of �, on can use Eq. (3.3) as given in Eq. (3.4)

_

�B = E (�jZ) =
E�

"
�
mY
i=1

�
1� (1� �)e�

Zi
�

��(Ri+2)
#

E�

"
mY
i=1

�
1� (1� �)e�

Zi
�

��(Ri+2)
# ; (3.4)

where E� denote the expectation with respect to inverse gamma distribution.
Since Eq.(3.4) can not be solved analytically, we use an approximation method
for [13] to �nd the numerical approximate solution. To do this, we assume

k(�) =
@ ln� (�jZ)

@�
= � (m+ a+ 1)�+

mX
i=1

(Ri + 1)Zi+b�
mX
i=1

(1� �) (Ri � 2)Zie�
Zi
��

1� (1� �)e�
Zi
�

� :

(3.5)

From Eq. (3.5) it follows that
^�
� is only mode of the posterior density in Eq.(3.2)

for simplicity let
k(�) = �(�) + 	(�);

where

�(�) = � (m+ a+ 1)�+
mX
i=1

(Ri + 1)Zi + b;

and

	(�) =
mX
i=1

(1� �) (Ri � 2)Zie�
Zi
��

1� (1� �)e�
Zi
�

� :

Since �(�) and 	(�) are decreasing and increasing in (0;1) respectively. There-

fore Eq.(3.5) admits a unique solution for
^�
�:

Let L(�; z) be likelihood function of � based on n observations and �(�jz)
denote the posterior distribution of �. Then posterior mean of �(�) is given by

E [�(�)jZ] =
Z
�(�)�(�jz)d� =

Z
enL

�(�)d�Z
enL(�)d�

; (3.6)

where
L(�) =

1

n
ln�(�jz) (3.7)

and
L�(�) = �(�) +

1

n
ln�(�): (3.8)
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Following [13], the Eq. (3.6) can be approximated as follow

E [�(�)jZ] =

�
j��j
j� j

�0:5
e

 
n

"
L�(

^

��)�L(
^

�)

#!
;

=

�
j��j
j� j

�0:5
�(

^

��)�(
^

��jz)

�(
^

�jz)
: (3.9)

and

@2L(�)

@�2
=

�2
n�3

24� (m+ a+ 1)�+ mX
i=1

(Ri + 1) zi + b+
mX
i=1

(Ri + 2) (1� �)zie�
zi
��

1� (1� �)e�
zi
�

�
35+

1

n�2

264� (m+ a+ 1) + mX
i=1

(Ri + 2) (1� �)z2i e�
zi
�

�2
�
1� (1� �)e�

zi
�

�2
375 ;

@2L�(�)

@�2
=
@2L(�)

@�2
� 1

n

(m+ a+ 1)
2 

� (m+ a+ 1)�+
mX
i=1

(Ri + 1) zi + b

!2 :

where
^

�� and
^

� maximize L�(�) and L(�) respectively. �� and � are minus

the inverse of the second derivatives of L�(�) and L(�) at
^

�� and
^

� respectively.
We applying this approximation to get the Bayes estimator of the scale

parameter � as follow

L(�) =
1

n

"
�(m+ a+ 1) ln�� 1

�

 
mX
i=1

(Ri + 1) zi + b

!
�

mX
i=1

(Ri + 2) ln
�
1� (1� �)e�

zi
�

�#
:

(3.10)
and

L�(�) = L(�) +
1

n
ln� (3.11)

By substituting Eq. (3.10) and (3.11) in (3.9), the Bayes estimator
^

�AB of
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a function �(�) = � under the SEL takes of the form

^

�AB = E [�jZ] = f
�
j��j
j� j

�0:50B@ ^

�
m+a+1

^

��
m+a+1

1CA e
0@24 mX

i=1

(Ri+1)Zi+b

35 1
^
�

� 1
^
��

!1A

�
mY
i=1

�
1� (1� �)e

�Zi
^
�

�Ri+2

 
1� (1� �)e

� Zi
^
��

!Ri+2
g: (3.12)

4 Numerical Computation

In this section, we present a simulation study and numerical computations to
compare the performances of the di¤erent estimators, the AMLE�s and Bayes es-
timator with the MLE�s of � . To this end, by using the algorithm presented by
[4], we generate progressively type-II censored samples from the standard MOE
distribution where � = 1. We compute the AMLE from Eqs. (2.7). The MLE�s
of � are obtained by solving the nonlinear Eq. (2.4) in which the AMLE was
used as a starting values for Newton-Raphson method . The Bayes estimators of
� are obtained by solving Eq. (3.12). All the computation are computed using
Mathematica 6.0.1 software package over 4000 Monte Carlo simulations. The
simulations are carried out for sample sizes n = 10; 20; 30; 50: Di¤erent choices
of the e¤ective sample size m, and di¤erent progressive censoring schemes are
considered. For simplicity in notation, we have used the same notation as in
[8], as ((m � 1) � 0; n �m) and (n �m; (m � 1) � 0) respectively; for example
(5; 4�0) denotes the progressive censoring scheme (5; 0; 0; 0; 0).
We present the results for the AMLEs, the MLEs and Bayes estimator when

� = 1 for some �xed shape parameter � = 1:5; 2; 2:5; 3: in Table(1-4).
Finally, we present here an example for simulated data from MOE distribu-

tion to see the performance of the di¤erent estimators of the scale parameter �
from the MOE distribution.

Example 4.1
A progressively type-II censored sample of size m = 10 and a complete

sample size n = 31 from MOE distribution with � = 2 and censoring scheme
(1; 2; 3; 4; 5; 0; 0; 0; 0; 6) was generating using Balakrishnan and Sandhu(1995)
algorithm. The generated progressively type-II sample is

f0:321312; 0:352673; 0:838508; 1:57235; 1:5746; 2:07522; 2:20029; 3:348; 4:32915; 4:36173g

it found that AMLE is 1.9938 , the MLE is 1.9986 and �nally Bayes estimator is
1.8041. Its observed that the MLE is the closest estimator to the scale parameter
� = 2 but the Bayes estimator is slightly far from � = 2:

8
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Table 1: The AMLE�s , MLE�s and Bayes estimators of the scale parameter � when
the data are simulated from MOE distribution with � = 1:5

n m Scheme AMLE MLE Bayes
10 5 (4 � 0; 5) 1:2613 1:0459 0:9037

(5; 4 � 0) 1:3789 0:9651 0:7424
(1; 1; 1; 1; 1) 1:3124 1:0200 1:1789

20 5 (4 � 0; 15) 2:4123 0:9965 0:9616
(15; 4 � 0) 2:5789 0:9265 1:0005
(5; 0; 5; 0; 5) 2:4488 1:0008 0:9475

10 (9 � 0; 10) 1:2522 1:0555 0:9104
(10; 9 � 0) 1:3471 0:9873 1:0004
4 � 0; 5; 5; 4 � 0) 1:3099 1:0511 0:9063

15 (5 � 1; 10 � 0) 0:9673 0:9708 0:8797
(10 � 0; 5 � 1) 0:9083 0:9205 0:8353
(5; 14 � 0) 0:9679 0:9678 0:9063
(14 � 0; 5) 0:9574 1:0461 0:9417

30 10 (20; 9 � 0) 1:9691 1:0521 0:9167
(9 � 0; 20) 1:8055 1:0757 0:9214
(3 � 0; 5; 5; 5; 5; 3 � 0)) 1:8864 1:0247 0:8802

15 (15; 14 � 0) 1:3798 1:0824 0:9785
(14 � 0; 15) 1:2456 1:0465 0:9446

20 (10; 19 � 0) 1:0537 0:9748 0:9517
(19 � 0; 10) 1:0067 1:0165 0:9422

25 (5; 24 � 0) 0:9152 1:0231 0:9616
(24 � 0; 5) 0:9078 1:0516 0:9889

50 20 (30; 19 � 0) 1:6283 0:9669 0:8964
(19 � 0; 30) 1:4904 0:9639 0:8908

30 (20; 29 � 0) 1:1372 0:9776 0:9283
(29 � 0; 20) 1:0618 0:9774 0:9281
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Table 2: The AMLE�s , MLE�s and Bayes estimators of the scale parameter � when
the data are simulated from MOE distribution with � = 2

n m Scheme AMLE MLE Bayes
10 5 (4 � 0; 5) 0:9386 0:9020 0:9452

(5; 4 � 0) 1:0951 0:9099 0:9574
(1; 1; 1; 1; 1) 1:0868 1:0538 0:8930

20 5 (4 � 0; 15) 1:6860 1:0651 1:0956
(15; 4 � 0) 1:990 1:0275 1:2417
(5; 0; 5; 0; 5) 1:7447 1:0792 1:0861

10 (9 � 0; 10) 0:9941 1:0232 0:9013
(10; 9 � 0) 1:1896 1:0490 0:9239
(4 � 0; 5; 5; 4 � 0) 1:1396 1:0864 0:9503

15 (5 � 1; 10 � 0) 0:9061 1:0133 0:9269
(10 � 0; 5 � 1) 0:9233 1:0780 0:9888
(5; 14 � 0) 0:9795 1:0834 0:9923
(14 � 0; 5) 0:8994 1:0383 0:9544

30 10 (20; 9 � 0) 1:5942 1:1073 0:9745
(9 � 0; 20) 1:2445 1:0301 0:9788
(3 � 0; 5; 5; 5; 5; 3 � 0)) 1:4291 1:0639 0:9290

15 (15; 14 � 0) 1:1135 0:9660 0:9409
(14 � 0; 15) 0:9927 1:0389 0:9505

20 (10; 19 � 0) 0:9603 1:0162 0:9499
(19 � 0; 10) 0:8905 1:0176 0:9534

25 (5; 24 � 0) 0:8628 1:0114 0:9583
(24 � 0; 5) 0:8800 1:0548 0:9527

50 20 (30; 19 � 0) 1:3174 1:0124 0:9467
(19 � 0; 30) 1:1037 1:0036 0:9358

30 (20; 29 � 0) 0:9920 0:9813 0:9386
(29 � 0; 20) 0:8799 0:9625 0:9208
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Table 3: The AMLE�s , MLE�s and Bayes estimators of the scale parameter � when
the data are simulated from MOE distribution with � = 2:5

n m Scheme AMLE MLE Bayes
10 5 (4 � 0; 5) 0:9035 0:9951 0:8130

(5; 4 � 0) 1:1074 0:9838 0:8435
(1; 1; 1; 1; 1) 1:0596 1:0848 0:8867

20 5 (4 � 0; 15) 1:2635 0:9471 0:9439
(15; 4 � 0) 1:6357 0:9897 0:9587
(5; 0; 5; 0; 5) 1:4150 1:0985 0:9753

10 (9 � 0; 10) 0:9181 1:0214 0:9126
(10; 9 � 0) 1:1171 1:0365 0:9253
(4 � 0; 5; 5; 4 � 0) 1:0253 1:0547 0:9399

15 (5 � 1; 10 � 0) 0:9514 1:0522 0:9724
(10 � 0; 5 � 1) 0:8945 1:0167 0:9426
(5; 14 � 0) 0:9223 0:9991 0:9262
(14 � 0; 5) 0:8543 0:9922 0:9210

30 10 (20; 9 � 0) 1:3269 0:9923 0:9816
(9 � 0; 20) 1:0632 1:0455 0:9238
(3 � 0; 5; 5; 5; 5; 3 � 0)) 1:1806 0:9642 0:9403

15 (15; 14 � 0) 1:0496 0:9737 0:9022
(14 � 0; 15) 0:9034 1:0077 0:9322

20 (10; 19 � 0) 0:9484 1:0021 0:9450
(19 � 0; 10) 0:8769 1:0077 0:9520

25 (5; 24 � 0) 0:9086 1:0429 0:9939
(24 � 0; 5) 0:8777 1:0294 0:9829

50 20 (30; 19 � 0) 1:1446 1:0026 0:9448
(19 � 0; 30) 0:9577 1:0185 0:9563

30 (20; 29 � 0) 0:9853 1:0269 0:9868
(29 � 0; 20) 0:8892 1:0225 0:9829
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Table 4: The AMLE�s , MLE�s and Bayes estimators of the scale parameter � when
the data are simulated from MOE distribution with � = 3

n m Scheme AMLE MLE Bayes
10 5 (4 � 0; 5) 0:9059 0:9966 0:8345

(5; 4 � 0) 1:0794 0:9807 0:8140
(1; 1; 1; 1; 1) 0:9935 1:0159 0:8480

20 5 (4 � 0; 15) 1:0716 0:9929 0:8014
(15; 4 � 0) 1:5046 1:0134 0:8309
(5; 0; 5; 0; 5) 1:2137 1:0464 0:8563

10 (9 � 0; 10) 0:9093 1:0437 0:9406
(10; 9 � 0) 1:0836 1:0194 0:9181
(4 � 0; 5; 5; 4 � 0) 1:0389 1:0694 0:9616

15 (5 � 1; 10 � 0) 0:9782 1:0469 0:9757
(10 � 0; 5 � 1) 0:9318 1:0303 0:9623
(5; 14 � 0) 0:9382 0:9909 0:9248
(14 � 0; 5) 0:9218 1:0253 0:9589

30 10 (20; 9 � 0) 1:3086 1:0526 0:9552
(9 � 0; 20) 0:9542 1:0331 0:9225
(3 � 0; 5; 5; 5; 5; 3 � 0)) 1:1440 1:0475 0:9331

15 (15; 14 � 0) 1:0708 1:0157 0:9468
(14 � 0; 15) 0:9047 1:0250 0:9551

20 (10; 19 � 0) 0:9276 0:9700 0:9202
(19 � 0; 10) 0:8942 1:0069 0:9566

25 (5; 24 � 0) 0:9218 1:0246 0:9809
(24 � 0; 5) 0:9069 1:0215 0:9799

50 20 (30; 19 � 0) 1:1299 0:9929 0:9411
(19 � 0; 30) 0:8886 0:9968 0:9417

30 (20; 29 � 0) 0:9618 0:9897 0:9545
(29 � 0; 20) 0:8584 0:9802 0:9462
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5 Conclusion

This paper studied the estimators of the unknown scale parameter � under pro-
gressively type-II censored samples from the MOE distribution. It is observed
that the MLE and Bayes estimators cannot be solved analytically. The AMLE
is used as starting point in �nding the MLE and [13] method is used to �nd the
numerical approximate solution of Bayes estimator. It found that the perfor-
mance of the MLE and the AMLE are very closed to each other but the Bayes
estimator is slightly far from the MLE and AMLE.

Acknowledgement

The author would like to thank the Deanship of Scienti�c Research at Maj-
maah University for supporting this work . Also the author would like to thank
the editors for their cooperation and grateful to the anonymous referee for a
careful checking of the details and for helpful comments that improved this
paper.

References

[1] N. Balakrishnan, Order Statistics from the Half Logistic Distribution, Jour-
nal of Statistical Computation and Simulation 20 (1985) 287-309.

[2] N. Balakrishnan, and R. Aggarwala, Progressive Censoring: Theory,
Method and Applications, Birkhauser, Boston (2000).

[3] N. Balakrishnan, and C. Cohen, Order Statistics and Inference: Estimation
Methods, Academic Press, Boston (1991).

[4] N. Balakrishnan, and R. A. Sandhu, A Simple Simulational Algorithm for
Generating Progressive Type-II Censored Samples,The American Statisti-
cian 49 (1995) 229-230.

[5] N. Balakrishnan, E. Cramer, U. Kamps, and N. Schenk, Progressive Type-
II Censored Order Statistics from Exponential Distributions, Statistics 35
(2001) 537-556.

[6] M. E. Ghitany, E. K. Al-Hussaini, and R. A. A-Jarallah, Marshall-Olkin
Extended Weibull Distribution and its Application to Censored Data, Jour-
nal of Applied Statistics 32(10) (2005) 1025-1034.

13

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 1–14 
___________________________________________________________________________________________________________



[7] C. Kim, and K. Han, Estimation of the scale parameter of the half-logistic
distribution under progressive type-II censored sample, Stat Paper 51
(2010) 375-387.

[8] H. K. T. Ng, P. S. Chan, and N. Balakrishnan, Estimation of Parameters
from Progressively Censored Data Using EM Algorithm, Computational
Statistics and Data Analysis 39 (2002) 371-386.

[9] B. Pradhan, and D. Kundu, On Progressively Censored Generalized Expo-
nential Distribution, Test 18 (2009) 497-515.

[10] M. M. Salah, On Marshall-Olkin Exponential Order Statistics and Associ-
ated Inferences, Ph.D Thesis, The University of Jordan, Amman, Jordan
(2010).

[11] M. M. Salah, Moments From Progressive Type-II Censored Data Of
Marshall-Olkin Exponential Distribution, International Journal of Applied
Mathematical Research, 1 (4) (2012) 771-786.

[12] M. M. Salah, M. Z. Raqab, and M. Ahsanullah, Marshall-Olkin Exponential
Distribution: Moments of Order Statistics, Journal of Applied Statistical
Science 17(1) (2009) 81-92.

[13] L. Tierney, and J. Kadane, Accurate approximations for posterior moments
and marginal densities. Journal of American Statistical Association 81
(393) (1986) 82-86.

14

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 1–14 
___________________________________________________________________________________________________________




