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1. Introduction

Let X and Y be two non-negative random variables with distribution functions F(x) , G(x) and
reliability functions F̄(x), Ḡ(x), respectively. If f (x) is the actual probability density function(pdf)
corresponding to the observations and g(x) is the density assigned by the experimenter, then the
inaccuracy measure of X and Y is defined by Kerridge(1961) as

I(X ,Y ) = I( f ,g) =−
∫ +∞

0
f (x) logg(x)dx. (1.1)

It has applications in statistical inference, estimation and coding theory. Analogous to the Kerridge
measure of inaccuracy (1.1), Thapliyal and Taneja (2015a) proposed a cumulative inaccuracy mea-
sure as

I(F,G) =−
∫ +∞

0
F(x) logG(x)dx. (1.2)
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The mean inactivity time (MIT) function is of interest in many fields such as reliability, survival
analysis, actuarial studies, etc. MIT of a random variable X is defined as

µ1(t) = E(t−X | X < t).

Ghosh and Kundu(2017) obtained a connection between µ1(t) and I(F,G) as

I(F,G) = E
(

µ1(Y )F(Y )
G(Y )

)
.

Let X1,X2, . . . be a sequence of iid random variables having an absolutely cdf F(x) and pdf f(x). An
observation X j is called a lower record value if its value is less than that of all previous observations.
Thus, X j is a lower record if X j < Xi for every i < j. An analogous definition can be given for
upper record values. Then the record times sequence Tn,n ≥ 1 is defined in the following manner:
T1 = 1, with probability 1, and for n ≥ 2, Tn = min{ j : j > Tn−1,X j < XTn−1}. The lower record
value sequence can be defined by Ln = XTn ,n ≥ 1. Then the density function and cdf of Ln, which
are denoted by fLn and FLn , respectively, are given by

fLn(x) =
[− logF(x)]n−1

(n−1)!
f (x), (1.3)

FLn(x) =
n−1

∑
j=0

[− logF(x)] j

j!
F(x). (1.4)

Record values are applied in problems such as industrial stress testing, meteorological analysis,
hydrology, sporting and economics. In reliability theory, records values are used to study, for exam-
ple, technical systems which are subject to shocks, e.g. peaks of voltages. For more details about
records and their applications, one may refer to Arnold et al.(1992). Several authors have worked
on measures of inaccuracy for ordered random variables. Thapliyal and Taneja (2013) proposed
the measure of inaccuracy between the ith order statistic and the parent random variable. Thapliyal
and Taneja (2015a)developed measures of dynamic cumulative residual and past inaccuracy. They
studied characterization results of these dynamic measures under proportional hazard model and
proportional reversed hazard model. Recently Thapliyal and Taneja (2015b) have introduced the
measure of residual inaccuracy of order statistics and prove a characterization result for it. In this
paper we propose cumulative past measure of inaccuracy and study their characterization results.
The paper is organized as follows: In Section 2, we consider a measure of inaccuracy associated
with FLn and F and obtain some results of its properties. In Section 3, we study dynamic version of
inaccuracy associated with FLn and F . In Section 4, we propose empirical cumulative measure of
inaccuracy in lower record values. Throughout the paper we assume that the terms increasing and
decreasing are used in non-strict sense.

2. Cumulative measure of inaccuracy

The cumulative measure of inaccuracy between FLn (distribution function of nth lower record value
Ln) and F is presented as

I(FLn ,F) = −
∫

∞

0
FLn(x) logF(x)dx
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= −
∫

∞

0
F(x)

n−1

∑
j=0

[− logF(x)] j

j!
logF(x)dx

=
n−1

∑
j=0

∫
∞

0

[− logF(x)] j+1

j!
F(x)dx

=
n−1

∑
j=0

( j+1)
∫

∞

0

[− logF(x)] j+1

( j+1)!
f (x)

1
λ̃ (x)

dx

=
n−1

∑
j=0

( j+1)EL j+2

[
1

λ̃ (X)

]
, (2.1)

where λ̃ (x) = f (x)
F(x) is the reversed hazard rate and L j+2 is a random variable with density function

fL j+2(x) =
[− logF(x)] j+1 f (x)

( j+1)! .
In the following, we present some examples and properties of I(FLn ,F).

Example 2.1.
i. If X has a inverse Weibull distribution with the cdf F(x) = exp(−(α

x )
β ), x > 0. Then, we have

I(FLn ,F) =
α

β

n−1

∑
j=0

Γ

(
( j+1)β−1

β

)
j!

.

Figure 1 shows the function I(FLn ,F) for α = β = 2. It is an increasing function of n.
ii. If X is uniformly distributed in [0,θ ]. Then, we obtain

I(FLn ,F) = θ

n−1

∑
j=0

( j+1)
(

1
2

) j+1

.

From Figure 1 it is clear that I(FLn ,F) for standard uniform distribution is increasing function of n
and limn→∞ I(FLn ,F) = 2θ .
iii. If X is exponentially distributed with mean 1

λ
. Then, we obtain

I(FLn ,F) =
1
λ

n−1

∑
j=0

∞

∑
k=0

( j+1)[
1

k+2
] j+2.

From Figure 1 it is clear that I(FLn ,F) for exponential distribution with mean 1
2 is increasing func-

tion of n and limn→∞ I(FLn ,F) = 1.644
λ

.

Proposition 2.1. Suppose that X is a non-negative random variable with cdf F, then we have

I(FLn ,F) =
∫

∞

0

n−1

∑
j=0

( j+1)[FL j+2(x)−FL j+1(x)]dx.

Proof.The proof follows from (1.4) and (2.1).
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Fig. 1. Plot of I(FLn ,F) in inverse Weibull distribution for α = β = 2 (left), uniform distribution on (0,1) (middle) and
exponential distribution with λ = 2(right).

Proposition 2.2. Let X be a non-negative random variable with cdf F, then we have

I(FLn ,F) =
n−1

∑
j=0

1
j!

∫
∞

0
λ̃ (z)

[∫ z

0
[− logF(x)] j F(x)dx

]
dz. (2.2)

Proof. By (2.1) and the relation − logF(x) =
∫

∞

x λ̃ (z)dz , we have

I(FLn ,F) =
n−1

∑
j=0

∫
∞

0

[− logF(x)] j+1

j!
F(x)dx

=
n−1

∑
j=0

∫
∞

0

[∫
∞

x
λ̃ (z)dz

]
[− logF(x)] j

j!
F(x)dx

=
n−1

∑
j=0

1
j!

∫
∞

0
λ̃ (z)

[∫ z

0
[− logF(x)] j F(x)dx

]
dz.

So, the proof is completed.

Proposition 2.3. Let X be a non-negative random variable with cdf F, then an analytical expression
for I(FLn ,F) is given by

I(FLn ,F) =
n−1

∑
j=0

∫
∞

0

[− logF(x)] j+1

j!
F(x)dx =

n−1

∑
j=0

( j+1)C E j+1(X), (2.3)

where

C E j+1(X) =
∫

∞

0

[− logF(x)] j+1

( j+1)!
F(x)dx, (2.4)

is a generalized cumulative entropy (see Kayal (2016)).
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Proposition 2.4. Let a,b > 0 for n = 1,2, . . .. It holds that

I(FaLn+b,FaX+b) = aI(FLn ,F). (2.5)

Proof. From (2.3), we have

I(FaLn+b,FaX+b) =
n−1

∑
j=0

( j+1)C E j+1(aX +b) = a
n−1

∑
j=0

( j+1)C E j+1(X) = aI(FLn ,F). (2.6)

The proof is completed.

Proposition 2.5. Let X be a absolutely continue non-negative random variable with I(FLn ,F)< ∞,
for all n≥ 1. Then we have

I(FLn ,F) =
n−1

∑
j=0

1
j!

E
(
h̃ j+1(T )

)
, (2.7)

where h̃ j+1(t) =
∫

∞

t [− logF(x)] j+1 dx.
Proof. By using (2.1) and Fubini’s theorem we obtain

I(FLn ,F) =
n−1

∑
j=0

∫
∞

0

[− logF(x)] j+1

j!

[∫ x

0
f (t)dt

]
dx

=
n−1

∑
j=0

∫
∞

0

f (t)
j!

[∫
∞

t
[− logF(x)] j+1 dx

]
dt

=
n−1

∑
j=0

1
j!

E
[
h̃ j+1(T )

]
.

Remark 2.1. Let X be a symmetric random variable with respect to the finite mean µ = E(X), i.e.
F(x+µ) = 1−F(µ− x) for all x ∈ R. Then

I(FLn ,F) = I(F̄Rn , F̄),

where I(F̄Rn , F̄) is the cumulative residual measure of inaccuracy between F̄Rn (survival function of
nth upper record value Rn) and F̄ .

Kayal (2016) defined the MIT of lower record values as

µn(t) = E[t−Ln | Ln ≤ t] =
∫ t

0 FLn(x)dx
FLn(t)

=
∑

n−1
j=0
∫ t

0
F(x)[− logF(x)] j

j! dx

∑
n−1
j=0

F(t)[− logF(t)] j

j!

.

Note that µ1(t) =
∫ t

0 F(x)dx
F(t) is the MIT of the parent distribution. Now we consider a connection

between µn(t) and I(FLn ,F).
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Proposition 2.6. Let X be a non-negative random variable with cdf F, then we have

I(FLn ,F) =
n−1

∑
j=0

E[µn(X j+1)].

Proof. From (2.2) we have

I(FLn ,F) =
n−1

∑
j=0

1
j!

∫
∞

0
λ̃ (z)

[∫ z

0
[− logF(x)] j F(x)dx

]
dz

=
∫

∞

0
λ̃ (z)

n−1

∑
j=0

1
j!

[∫ z

0
[− logF(x)] j F(x)dx

]
dz

=
∫

∞

0
λ̃ (z)µn(z)

[
n−1

∑
j=0

1
j!
[− logF(z)] j F(z)

]
dz

=
∫

∞

0
µn(z)

[
n−1

∑
j=0

1
j!

f (z) [− logF(z)] j

]
dz

=
n−1

∑
j=0

∫
∞

0
µn(z) fL j+1(z) =

n−1

∑
j=0

E[µn(X j+1)].

Hence, the desired result follows.

Proposition 2.7. Suppose that X is a non-negative random variable with cdf F, then we have

I(FLn ,F) =
n−1

∑
j=0

1
j!

[
j

∑
i=0

1
i!

E
[
(− logF(X))i

µ j+1(X)
]
−

j−1

∑
i=0

1
i!

E
[
(− logF(z))i

µ j(X)
]]

.

Proof. By using (1.4) and (2.2) we obtain

I(FLn ,F) =
n−1

∑
j=0

1
j!

∫
∞

0
λ̃ (z)

[∫ z

0
[FL j+1(x)−FL j(x)]dx

]
dz

=
n−1

∑
j=0

1
j!

∫
∞

0
λ̃ (z)

[
µ j+1(z)FL j+1(z)−µ j(z)FL j(z)

]
dz

=
n−1

∑
j=0

1
j!
(

j

∑
i=0

1
i!

∫
∞

0
f (z)[− logF(z)]iµ j+1(z)dz

−
j−1

∑
i=0

1
i!

∫
∞

0
f (z)[− logF(z)]iµ j(z)dz)

=
n−1

∑
j=0

1
j!

[
j

∑
i=0

1
i!

E
[
(− logF(X))i

µ j+1(X)
]
−

j−1

∑
i=0

1
i!

E
[
(− logF(z))i

µ j(X)
]]

.

This completes the proof.
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Remark 2.2. Let X be a non-negative random variable with cdf F and Xi+1 be the (i+1) th lower
record with pdf fLi+1(x). Then for n≥ 1, we have

I(FLn ,F) =
n−1

∑
j=0

j

∑
i=0

1
j!
[E[µ j+1(Xi+1)]−E[µ j(Xi+1)]].

Proof. The proof follows from Proposition 2.7.

Remark 2.3. In analogy with (2.1), a measure of cumulative past inaccuracy associated with F and
FLn is given by

I(F,FLn) = C E (X)−E

[
U log

(
n−1

∑
j=0

(− logU) j

j!

)
f (F−1(U))

]
,

where C E (X) =−
∫

∞

0 F(x) logF(x)dx is the cumulative entropy(see Di Crescenzo and Longobardi
(2009)).

In the sequel we obtain upper bound of I(F,FLn).

Proposition 2.8. Let X be a non-negative random variable that take values in [0,a]. Then,

I(F,FLn)≤ [a−E(X)]

∣∣∣∣log
(

1− E(Ln)

a

)∣∣∣∣
Proof. The proof follows from Proposition 1.9 of Ghosh and Kundu(2017) with the help of log-sum
inequality.

In the next propositions we recall some lower bounds for I(FLn ,F).

Proposition 2.9. If X denotes an absolutely continue non-negative random variable with mean
µ = EX < ∞. Then for n≥ 1, we have

I(FLn ,F)≥
n−1

∑
j=0

h̃ j+1(µ)

j!
, (2.8)

where the function h̃ j+1(.) is defined in Proposition 2.5.
Proof. From (2.3) we have

I(FLn ,F) =
n−1

∑
j=0

( j+1)C E j+1(X)

=
n−1

∑
j=0

E
(
h̃ j+1(X)

)
j!

.
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Since h̃ j+1(X) is a convex function, applying Jensen’s inequality we obtain

I(FLn ,F)≥
n−1

∑
j=0

h̃ j+1(µ)

j!
.

Proposition 2.10. Let X be a non-negative random variable with cdf F, then we have

I(FLn ,F) =
n−1

∑
j=0

( j+1)C E j+1(X)≥
n−1

∑
j=0

[C E (X)] j+1

j!
, (2.9)

where C E (X) is given in Remark 2.3(For more details see Di Crescenzo and Longobardi (2009)).
Proof. Since (F(x))n ≤ F(x), for all n = 1,2, ..., we have

I(FLn ,F) =
n−1

∑
j=0

∫
∞

0

(− logF(x)) j+1

j!
F(x)dx

≥
n−1

∑
j=0

∫
∞

0

(− logF(x)) j+1

j!
(F(x)) j+1

=
n−1

∑
j=0

∫
∞

0

[(− logF(x))F(x)] j+1

j!
dx

≥
n−1

∑
j=0

1
j!

[∫
∞

0
(− logF(x))F(x)dx

] j+1

,

which immediately follows (2.9).

Remark 2.4. Let X be a non-negative random variable with cdf F , then for n = 1,2, ... we have

I(FLn ,F)≥
n−1

∑
j=0

1
j!

[∫
∞

0
F(x)F̄(x)dx

] j+1

. (2.10)

Proof. By using Proposition 4.3 of Dicresenzo and Longobardi (2009) a lower bound for C E (X)

is

C E (X)≥
∫

∞

0
F(x)F̄(x)dx.

Now, Proposition 2.10 completes the proof.

Proposition 2.11. For a non-negative random variable and n = 1,2, ..., we have

I(FLn ,F)≥
n−1

∑
j=0

1
j!
[µ.gini(X)] j+1 , (2.11)

where µ = E(X) and gini[.] is the Gini index, a celebrated measure of income inequality denoted
by(see Wang 1998)

gini[X ] = 1−
∫

∞

0 [F̄(x)]2dx
E(X)

. (2.12)

Proof. From Proposition 5.1 of Wang (1998), we have∫
∞

0
F(x)F̄(x)dx =

1
2

E (|X−Y |)
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= E(X).gini[X ],

where X and Y are independent and have the same distributions. Hence, Eq (2.10) completes the
proof.

Corollary 2.1. Let X be a non-negative random variable with survival function F̄(x), then we have

I(FLn ,F)≥
n−1

∑
j=0

1
j!

c j+1e( j+1)H(X), (2.13)

where c = exp
(∫ 1

0 log(x| logx|)dx
)
= 0.2065 and H(X) = −

∫
∞

0 f (x) log f (x)dx is the Shannon
entropy of X.

Proof. The proof follows by recalling (2.9) and Proposition 4.2 of Di Crescenzo and Longob-
ardi(2009).

Now we can prove an important property of inaccuracy measure using some properties of
stochastic ordering. For that we present the following definitions:

1. The random variable X is said to be smaller than Y according to stochastically ordering
(denoted by X ≤st Y ) if P(X ≥ x) ≤ P(Y ≥ x) for all x. It is known that X ≤st Y ⇔ E(φ(X)) ≤
E(φ(Y )) for all increasing functions φ such that the expectations exist.

2. The random variable X is said to be smaller than Y in likelihood ratio ordering(denoted by
X ≤lr Y ) if g(x)

f (x) is increasing in x.
3. A random variable X is said to be smaller than a random variable Y in the decreasing convex

order, denoted by X ≤dcx Y , if E(φ(X))≤ E(φ(Y )) for all decreasing convex functions φ such that
the expectations exist.

4. A non-negative random variable X is said to have decreasing reversed hazard rate DRHR if
λ̃F(x) =

f (x)
F(x) is decreasing in x.

Theorem 2.1. Suppose that the non-negative random variable X is DRHR, then

I(FLn+1 ,F)− I(FLn ,F)≤
n+1

∑
i=1

ELi

[
1

λ̃ (X)

]
. (2.14)

Proof. Let fLn(x) be the pdf of n-th lower record value XLn . Then, the ratio fLn (x)
fLn+1 (x)

= −n
logF(x) is

increasing in x. Therefore, Xn+1 ≤lr Xn, and this implies that Xn+1 ≤st Xn, i.e. F̄n+1(x)≤ F̄n(x) (For
more details see Shaked and Shanthikumar( 2007,Chapter 1)). This is equivalent (see Shaked and
Shanthikumar (2007,p.4)) to have

E(φ(Xn+1))≤ E(φ(Xn)),

for all increasing functions φ such that these expectations exist. Thus, if X is DRHR and λ̃ (x) is its
reversed hazard rate, then 1

λ̃ (x)
is increasing in x . As a consequence, from (2.1) we have

I(FLn+1 ,F) =
n

∑
j=0

( j+1)EL j+2

[
1

λ̃ (X)

]
≤

n

∑
j=0

( j+1)EL j+1

[
1

λ̃ (X)

]
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=
n−1

∑
i=−1

(i+2)ELi+2

[
1

λ̃ (X)

]
=

n−1

∑
i=0

(i+2)ELi+2

[
1

λ̃ (X)

]
+EL1

[
1

λ̃ (X)

]
= I(FLn ,F)+

n+1

∑
i=1

ELi

[
1

λ̃ (X)

]
. (2.15)

Thus the proof is completed.

Theorem 2.2. Let X and Y be two non-negative random variables such that X ≤dcx Y , then we have

I(FLn ,F)≤ I(GLn ,G).

Proof. Since h̃ j+1(x) is a decreasing convex function in x. Then the proof immediately follows from
(2.7).

Proposition 2.12. Let X be a non-negative random variable with absolutely continuous cumulative
distribution function F(x). Then for n = 1,2, ... we have

I(FLn ,F)≥
n−1

∑
j=0

j+1

∑
i=0

(−1)i( j+1)
i!( j+1− i)!

∫
∞

0
[F(x)]i+1dx.

Proof. Since − logF(x)≥ 1−F(x), the proof follows by recalling (2.1).

Proposition 2.13. Let X be a non-negative random variable with absolutely continuous cumulative
distribution function F(x). Then for n = 1,2, ... we have

I(FLn ,F)≤
n−1

∑
j=0

1
j!

∫
∞

0
[− logF(x)] j+1dx.

Assume that X̃θ denotes a nonnegative absolutely continuous random variable with the distribu-
tion function Hθ (x) = [F(x)]θ , x≥ 0. We now obtain the cumulative measure of inaccuracy between
HLn and H as follows:

I(HLn ,H) = −
∫ +∞

0
HLn(x) log(H(x))dx

=
n−1

∑
j=0

θ
j+1
∫ +∞

0

[− logF(x)] j+1

j!
[F(x)]θ dx. (2.16)

Proposition 2.14. If θ ≥ (≤)1, then for any n = 1,2, ... we have

I(HLn ,H) =
n−1

∑
j=0

( j+1)C E j+1(X̃θ )≤ (≥)
n−1

∑
j=0

θ
j+1( j+1)C E j+1(X). (2.17)

Proof. Suppose that θ ≥ (≤)1, then it is clear [F(x)]θ ≤ (≥)F(x), and hence we have

I(HLn ,H) =
n−1

∑
j=0

( j+1)C E j+1(X̃θ )≤ (≥)
n−1

∑
j=0

θ
j+1( j+1)C E j+1(X).
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3. Dynamic cumulative measure of inaccuracy

In the reliability theory dynamical measures are useful to describe the information content carried
by random lifetimes as age varies. In this section, we study dynamic version of I(FLn ,F). If a system
that begins to work at time 0 is observed only at deterministic inspection times, and is found to be
down at time t, then we consider a dynamic cumulative measure of inaccuracy as

I(FLn ,F ; t) = −
∫ t

0

FLn(x)
FLn(t)

log
(

F(x)
F(t)

)
dx

= logF(t)µn(t)−
∫ t

0

FLn(x)
FLn(t)

log(F(x))dx

= logF(t)µn(t)+
1

FLn(t)

n−1

∑
j=0

∫ t

0

[− logF(x)] j+1

j!
F(x)dx. (3.1)

Note that limt→∞ I(FLn ,F ; t) = I(FLn ,F). Since logF(t)≤ 0 for t ≥ 0, we have

I(FLn ,F ; t) ≤ 1
FLn(t)

n−1

∑
j=0

∫ t

0

[− logF(x)] j+1

j!
F(x)dx

≤ 1
FLn(t)

n−1

∑
j=0

∫ +∞

0

[− logF(x)] j+1

j!
F(x)dx =

I(FLn ,F)

FLn(t)
.

In the following theorem, we prove that I(FLn ,F ; t) uniquely determine the distribution function.

Theorem 3.1. Let X be a nonnegative continuous random variable with distribution function F(.).
Let the dynamic cumulative inaccuracy of the nth lower record value denoted by I(FLn ,F ; t) < ∞ ,
t ≥ 0. Then I(FLn ,F ; t) characterizes the distribution function.

Proof. From (3.1) we have

I(FLn ,F ; t) = logF(t)µn(t)+
1

FLn(t)

n−1

∑
j=0

∫ t

0

[− logF(x)] j+1

j!
F(x)dx. (3.2)

Differentiating both side of (3.2) with respect to t we obtain:

d
dt
[I(FLn ,F ; t)] = λ̃F(t)µn(t)− λ̃FLn

(t)I(FLn ,F ; t)

= λ̃F(t)µn(t)− c(t)λ̃F(t)I(FLn ,F ; t)

= λ̃F(t) [µn(t)− c(t)I(FRn ,F ; t)] .

Taking derivative with respect to t again we get

´̃
λF(t) =

(λ̃F(t))2
[
ć(t)I(FLn ,F ; t)+ c(t)Í(FLn ,F ; t)−1+ c(t)λ̃F(t)µn(t)

]
Í(FLn ,F ; t)

.
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(3.3)

Suppose that there are two functions F and F∗ such that

I(FLn ,F ; t) = I(F∗Ln
,F∗; t) = z(t).

Then for all t, from (3.3) we get

´̃
λF(t) = ϕ(t, λ̃F(t)),

´̃
λF∗(t) = ϕ(t, λ̃F∗(t)),

where

ϕ(t,y) =
y2 [ć(t)z(t)− c(t)ź(t)−1+ c(t)yw(t)]

ź(t)
,

and w(t) = µn(t). By using Theorem (2.1) and Lemma (2.2) of Gupta and Kirmani(2008), we have
λ̃F(t) = λ̃F∗(t), for all t. Since the reversed hazard rate function characterizes the distribution
function uniquely, we complete the proof.

4. Empirical cumulative measure of inaccuracy

In this section we study the problem of estimating the cumulative measure of inaccuracy by means
of the empirical cumulative inaccuracy in lower record values. Let X1,X2, ...,Xm be a random sample
of size m from an absolutely continuous cumulative distribution function F(x). Then according to
(2.3), the empirical cumulative measure of inaccuracy is defined as

Î(FLn ,F) =
n−1

∑
j=0

∫
∞

0

[
− log F̂m(x)

] j+1

j!
F̂m(x)dx =

n−1

∑
j=0

( j+1)C E j+1(F̂m), (4.1)

where

F̂m(x) =
1
m

m

∑
i=1

I(Xi≤x), x ∈ R.

is the empirical distribution of the sample and I is the indicator function. If we denote X(1) ≤ X(2) ≤
...≤ X(m) as the order statistics of the sample, then (4.1) can be written as

Î(FLn ,F) =
n−1

∑
j=0

m−1

∑
k=1

∫ X(k+1)

X(k)

[
− log F̂m(x)

] j+1

j!
F̂m(x)dx. (4.2)

Moreover,

F̂m(x) =


0, x < X(1),
k
m , X(k) ≤ x≤ X(k+1), k = 1,2, ..., j
1, x > X(k+1).

Hence, (4.2) can be written as

Î(FLn ,F) =
n−1

∑
j=0

m−1

∑
k=1

1
j!

Uk+1
k
m

(
− ln

k
m

) j+1

, (4.3)

where Uk+1 = X(k+1)−X(k),k = 1,2, ...,m−1 are the sample spacings.
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Example 4.1. Let X1,X2, ...,Xm be a random sample drawn from exponential distribution with mean
1
λ

. Then the sample spacings Uk+1 are independent and exponentially distributed with mean λ (m−
k) (for more details see Pyke (1965)). Now from (4.3) we obtain

E[Î(FLn ,F)] =
1
λ

n−1

∑
j=0

m−1

∑
k=1

1
j!(m− k)

(
k
m

)(
− ln

k
m

) j+1

, (4.4)

and

Var[Î(FLn ,F)] =
1

λ 2

n−1

∑
j=0

m−1

∑
k=1

1
( j!)2(m− k)2

(
k
m

)2(
− ln

k
m

)2( j+1)

. (4.5)

We have computed the values of E[Î(FLn ,F)] and Var[Î(FLn ,F)] for sample sizes m = 10,15,20,
λ = 0.5,1,2 and n = 2,3,4,5 in Table 1. We can easily see that E[Î(FLn ,F)] is increasing in m.
Also, we consider that Var[Î(FLn ,F)] is decreasing in m .

Example 4.2. Let X1,X2, ...,Xm be a random sample from a population uniformly distributed in
(0,1). Then the sample spacings Uk+1 are independent of beta distribution with parameters 1 and m
(for more details see Pyke (1965)). Now from (4.3) we obtain

E[Î(FLn ,F)] =
n−1

∑
j=0

m−1

∑
k=1

1
j!(m+1)

(
k
m

)(
− ln

k
m

) j+1

, (4.6)

and

Var[Î(FLn ,F)] =
n−1

∑
j=0

m−1

∑
k=1

1
( j!)2(m)(m+2)

(
k
m

)2(
− ln

k
m

)2( j+1)

. (4.7)

We have computed the values of E[Î(FLn ,F)] and Var[Î(FLn ,F)] for sample sizes m = 10,15,20 and
n = 2,3,4,5. We can easily see that E[Î(FLn ,F)] is increasing in m and n. Also, we consider that
limm→∞Var[Î(FLn ,F)] = 0 .

Table 1. Numerical values of E[Î(FLn ,F)] and Var[Î(FLn ,F)] for exponential distribution.

E[Î(FLn ,F)]
α 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
m n = 2 n = 3 n = 4 n = 5
10 1.96 0.980 0.490 2.395 1.197 0.598 2.614 1.307 0.653 2.711 1.355 0.677
15 2.011 1.005 0.502 2.471 1.235 0.617 2.716 1.358 0.679 2.834 1.417 0.708
20 2.035 1.017 0.508 2.506 1.253 0.626 2.765 1.382 0.691 2.896 1.448 0.724

Var[Î(FLn ,F)]
α 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
m n = 2 n = 3 n = 4 n = 5
10 0.252 0.063 0.015 0.291 0.072 0.018 0.306 0.076 0.0191 0.310 0.077 0.0194
15 0.173 0.043 0.010 0.201 0.050 0.012 0.214 0.053 0.013 0.219 0.054 0.013
20 0.131 0.032 0.008 0.153 0.038 0.009 0.164 0.041 0.010 0.168 0.042 0.0105
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Table 2. Numerical values of E[Î(FLn ,F)] and Var[Î(FLn ,F)] for uniform distribution.

E[Î(FLn ,F)] var[Î(FLn ,F)]

m n=2 n=3 n=4 n=5 n=2 n=3 n=4 n=5
10 0.437 0.581 0.660 0.697 0.014 0.019 0.021 0.022
15 0.459 0.619 0.713 0.760 0.010 0.014 0.016 0.017
20 0.470 0.637 0.739 0.794 0.007 0.011 0.013 0.014

Conclusions

In this paper, we discussed on concept of inaccuracy between FLn and F . We proposed a dynamic
version of cumulative inaccuracy and studied characterization results of it. It is also proved that
I(FLn ,F ; t) can uniquely determine the parent distribution F . Moreover, we studied some new basic
properties of I(FLn ,F) and I(FLn ,F ; t) such as the stochastic order properties. We also constructed
bounds for characterization results of I(FLn ,F). Finally, we estimated the cumulative measure of
inaccuracy by means of the empirical cumulative inaccuracy in lower record values. These concepts
can be applied in measuring the inaccuracy contained in the associated past lifetime.
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