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Abstract

In this paper we use discrete fractional calculus for showing the existence of
delta and nabla discrete distributions and then apply time scales for definition of
delta and nabla discrete gamma distributions. The main result of this paper is
unification of the continuous and discrete gamma distributions, which is at the
same time a distribution to so-called time scale. Also, starting from the Laplace
transform on time scales, we develop concept of moment generating function for
these distributions.
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1 Introduction

One of the active areas of research in statistics is to model discrete life time data by devel-
oping discretized version of suitable continuous lifetime distributions. The discretization
of a continuous distribution using different methods has attracted renewed attention of
researchers in last few years, for example, see [3, 8, 12, 13, 14, 15, 16, 17]. Recently,
these different methods are classified based on different criteria of discretization in detail
by Chakraborty [9].
In this article, we present a new method for discretization of most of continuous distri-
butions, where their probability density functions (pdfs) consist of the monomial Taylor
and exponential function, and as an example we do discretization for gamma distribu-
tion with this method. Our discretization method, in comparison with prior methods for
discretization of continuous distributions, has two main advantages. First, for a given
continuous distribution, it is possible to generate two types (delta and nabla types) of
corresponding discrete distributions. Second, the unification of the continuous distribu-
tion and corresponding discrete distributions, which is at the same time a distribution to
the case of a time scale. We use discrete fractional calculus for showing the existence of
delta and nabla discrete distributions and then apply time scales for definition of delta
and nabla discrete distributions and as an unification theory under which continuous
and discrete distributions are subsumed.
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The article is organized as follows: The second section contains summary of some
notations and definitions in delta and nabla calculus, also the definitions of delta and
nabla Riemann right fractional sums and differences. In the third section, we use discrete
fractional calculus for showing the existence of delta and nabla discrete distributions. In
the fourth and fifth sections, we define novel types of moments for delta and nabla dis-
crete distributions and provide a method for obtaining these moments using the Laplace
transform on the discrete time scale. The sixth section contains an unification of ordi-
nary moments and delta and nabla moments, also types of the mgfs. In section 7, delta
and nabla discrete gamma distributions is defined. While section 8 contains an unifica-
tion of discrete and continuous gamma distributions. In the final section an application
of the proposed distribution is presented.

2 Preliminaries

In this section, we provide a collection of definitions and related results which are essen-
tial and will be used in the next discussions. As mentioned in [5, 6], the definitions and
theorem are as following.
A time scale T is an arbitrary nonempty closed subset of the real numbers R. The most
well-known examples are T = R and T = Z. The forward (backward) jump operator is
defined by σ(t) := inf{s ∈ T : s > t} (ρ(t) := sup{s ∈ T : s < t}), where inf∅ := supT
and sup∅ := infT. A point t ∈ T is said to be right-dense if t < supT and σ(t) = t (left-
dense if t > infT and ρ(t) = t ), right-scattered if σ(t) > t (left-scattered if ρ(t) < t).
The forward (backward) graininess function µ : T → [0,∞) (ν : T → [0,∞)) is defined
by µ(t) := σ(t)− t (ν(t) := t− ρ(t)). More generally, we will denote all ρ(t), σ(t) and t
with η(t).

Definition 2.1. A function f : T → R is called regulated if its right-sided limits exist
at all right-dense points in T and its left-sided lim its exist at all left-dense points in T.

Definition 2.2. A function f : T → R is called rd-continuous (ld-continuous) if it is
continuous at right-dense (left-dense) points in T and its left-sided (right-sided) limits
exist at left-dense (right-dense) points in T.

The set Tk (T∗
k) is derived from the time scale T as follows: If T has a left-scattered

maximum (right-scattered minimum) m, then Tk := T− {m} (T∗
k := T− {m}). Other-

wise, Tk := T (T∗
k := T).

Definition 2.3. A function f : T → R is said to be delta (nabla) differentiable at a
point t ∈ Tk (t ∈ T∗

k) if there exists a number f∆(t) (f∇(t)) with the property that
given any ϵ > 0, there exists a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ϵ|σ(t)− s|
(|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ϵ|ρ(t)− s|)

for all s ∈ U.
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For a function f : T → R it is possible to introduce a derivative f∆(t) (f∇(t))

and an integral
∫ b

a
f(t)∆t (

∫ b

a
f(t)∇t) in such a manner that f∆(t) = f ′ (f∇(t) = f ′)

and
∫ b

a
f(t)∆t =

∫ b

a
f(t)dt (

∫ b

a
f(t)∇t =

∫ b

a
f(t)dt) in the case T = R and f∆(t) =

∆f (f∇(t) = ∇f) and
∫ b

a
f(t)∆t =

∑b−1
a f(t) (

∫ b

a
f(t)∇t =

∑b
a+1 f(t)) in the case

T = Z, where, the forward and backward difference operators are defined by ∆f =
f(t+1)− f(t) and = f(t)− f(t−1), respectively. Also, we define the iterated operators
∆n = ∆(∆n−1) and ∇n = ∇(∇n−1) for n ∈ N.

Definition 2.4. A function p : T → R is called µ−regressive (ν−regressive) provided
1 + µ(t)p(t) ̸= o (1− ν(t)p(t) ̸= o) for all t ∈ Tk (t ∈ T∗

k).

The set Rµ (Rν) of all µ−regressive and rd-continuous (ν−regressive and ld-continuous)
functions forms an Abelian group under the circle plus addition

⊕
defined by (p

⊕
q)(t) :=

p(t)+ q(t)+µ(t)p(t)q(t) ((p
⊕

q)(t) := p(t)+ q(t)−ν(t)p(t)q(t)) for all t ∈ Tk (t ∈ T∗
k).

The additive inverse ⊖p of p ∈ Rµ (p ∈ Rν) is defined by

(⊖p)(t) := − p(t)

1 + µ(t)p(t)
((⊖p)(t) := − p(t)

1− ν(t)p(t)
)

for all t ∈ Tk (t ∈ T∗
k).

For real numbers a and b we denote Na = {a, a+ 1, ...} and bN = {b, b− 1, ...}.

Theorem 2.5. Let p ∈ Rµ (p ∈ Rν) and t0 ∈ T be a fixed point. Then the delta (nabla)
exponential function ep(., t0) (e∗p(., t0)) is the unique solution of the initial value problem

y∆ = p(t)y, y(t0) = 1 (y∇ = p(t)y, y(t0) = 1).

If T = Na, when p(t) ≡ p, where p ∈ Rµ (p ∈ Rν = C\{1}) and t0 = a, it is easy to see
that ep(t, a) = (1+p)t−a (e∗p(t, a) = (1−p)a−t) and if T = R, ep(t, a) = ep(t−a) (e∗p(t, a) =

ep(t−a)), where ”e” is ordinary exponential function. Moreover, in the special case,
e1(t, 0) = 2t (e∗1

2

(t, 0) = 2t). More generally, we will denote all ep(t, a), e∗p(t, a) and

ep(t−a) with êp(t, a).

Definition 2.6. The delta (nabla) Taylor monomials are the functions hn : T × T →
R, n ∈ N0, and are defined recursively as follows:

h0(t, s) =1, hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ ∀t, s ∈ T (2.1)

(h∗
0(t, s) =1, h∗

n+1(t, s) =

∫ t

s

h∗
n(τ, s)∇τ ∀t, s ∈ T). (2.2)

We consider three cases for the time scale T.
(a) If T = R, then σ(t) = ρ(t) = t and the Taylor monomials can be written explicitly
as

hn(t, s) = h∗
n(t, s) =

(t− s)n

n!
, t, s ∈ R, n ∈ N0. (2.3)

For each α ∈ R \ {−N} define the α−th Taylor monomial to be

hα(t, s) =
(t− s)α

Γ(α + 1)
, (2.4)
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and Γ denoted the special gamma function.
In this paper, we only consider the special case, hα(t) := hα(t, 0) = tα

Γ(α+1)
as Taylor

monomial (tm).
(b) If T = Z, then σ(t) = t+ 1 and the Taylor monomials can be written explicitly as

hn(t, s) =
(t− s)

n

n!
, t, s ∈ Z, n ∈ N0, (2.5)

where t
n

= Πn−1
j=0 (t − j) = Γ(t+1)

Γ(t+1−j)
and product is zero when t + 1 − j = 0 for some

j. More generally, for α arbitrary define t
α

= Γ(t+1)
Γ(t+1−α)

, where the convention of that

division at pole yields zero. This generalized falling function allows us to extend (2.5) to
define a general Taylor monomial that will serve us well in the probability distributions
setting.
For each α ∈ R \ {−N}, define the delta α−th Taylor monomial to be

hα(t, s) =
(t− s)

α

Γ(α + 1)
. (2.6)

In this paper, we only consider the special case hα (t) := hα(t, 0) =
t
α

Γ(α+1)
as delta Taylor

monomial (dtm).
(c) If T = Z, then ρ(t) = t− 1 and the Taylor monomials can be written explicitly as

hn(t, s) =
(t− s)n

n!
, t, s ∈ Z, n ∈ N0, (2.7)

where tn = Πn−1
j=0 (t+ j) = Γ(t+n)

Γ(t)
. More generally, for any real number α rising function

is defined as tα = Γ(t+α)
Γ(t)

where t ∈ R \ {−N0} and 0α = 0. This function allows us to

extend (2.7) in order to define a general Taylor monomial that will serve us well in the
probability distributions setting.
For each α ∈ R \ {−N} define the nabla α−th Taylor monomial to be

h∗
α(t, s) =

(t− s)α

Γ(α + 1)
. (2.8)

In this paper, we only consider the special case h
α
(t) := h∗

α(t, 0) = tα

Γ(α+1)
as nabla

Taylor monomial (ntm).
More generally, we will denote all hα (t), h

α
(t) and hα(t) with ĥα(t).

Definition 2.7. The delta (nabla) Laplace transform of a regulated function f : Ta → R
is given by

La{f}(s) =
∫ ∞

a

e⊖s(σ(t), a)f(t)∆t (L∗
a{f}(s) =

∫ ∞

a

e∗⊖s(ρ(t), a)f(t)∇t),

for all s ∈ D{f}, where a ∈ R is fixed, Ta is an unbounded time scale with infimum a
and D{f} is the set of all regressive complex constants for which the integral converges.
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In the special case, when T = N, every function is regulated and its delta (nabla) discrete
Laplace transform can be written as

La{f}(s) =
∞∑
t=a

(
1

1 + s
)σ(t)f(t) (L∗

a{f}(s) =
∞∑
t=a

(1− s)ρ(t)f(t)). (2.9)

Let b be a real number and f : bN −→ R. The delta Riemann left fractional sum of
order α > 0 is defined by Abdeljawad [1] as

∆−αf(t) =
1

Γ(α)

b∑
s=t+α

(ρ(s)− t)
α−1

f(s), t ∈ b−αN. (2.10)

We define the nabla Riemann right fractional sum of order α > 0 as

∇−αf(t) =
1

Γ(α)

b−1∑
s=t

(σ(s)− t)
α−1

f(s), t ∈ b−1N. (2.11)

The delta Riemann right fractional difference of order α > 0 is defined by Abdeljawad
[1] as

∆αf(t) = (−1)n∇n∆−(n−α)f(t),

for t ∈ b−(n−α)N and n = [α] + 1 where [α] is the greatest integer less than α. Also, the
nabla Riemann right fractional difference of order α > 0 is defined by

∇αf(t) = (−1)n∆n∇−(n−α)f(t),

for t ∈ b−nN.
In [2], author obtained the following alternative definition for delta Riemann right

fractional difference

∆αf(t) =
1

Γ(−α)

b∑
s=t−α

(ρ(s)− t)
−α−1

f(s). (2.12)

Similarly, we can prove the following formula for nabla Riemann right fractional differ-
ence

∇αf(t) =
1

Γ(−α)

b−1∑
s=t

(σ(s)− t)
−α−1

f(s). (2.13)

For an introduction to discrete fractional calculus the reader is referred to [11].

3 Generating discrete distributions by discrete frac-

tional calculus

The following results show the relationship between continuous and discrete fractional
calculus and statistics and also allows us to define different types of discrete distributions.
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Suppose that X is a positive continuous random variable. The expectation of the tm
function, hα−1(X), coincides with Riemann-Liouville right fractional integral of the pdf
at the origin for α > 0 and Marchaud right fractional derivative of the pdf at the origin
for −1 < α < 0, that is, we have

E[hα−1(X)] =


(Iα−f)(0), α > 0

(Dα
−f)(0), −1 < α < 0

(3.1)

where

(Iα−f)(t) =
1

Γ(α)

∫ ∞

0

xα−1f(x+ t)dx

is the Riemann-Liouville right fractional integral, while

(Dα
−f)(t) =

1

Γ(−α)

∫ ∞

0

x−α−1{f(x+ t)− f(t)}dx

is the Marchaud left fractional derivative[10].
It can be seen that the limits of the above integrals equal to the support of random

variableX. Considering this point, we present the following theorems for discrete random
variable X.

Theorem 3.1. Suppose that X is a discrete random variable. The expectation of the
dtm function, hα−1 (X), coincides with delta Riemann right fractional sum of the pmf

at −1 for α > 0 and delta Riemann right fractional difference of the probability mass
function (pmf) at −1 for α < 0, α /∈ {−N}, i.e.

E[hα−1 (X)] =


(∆−αf)(−1), α > 0

(∆αf)(−1), α < 0, α /∈ {...,−2,−1}
(3.2)

where

(∆−αf)(t) =
b−1−t∑
x=α−1

xα−1

Γ(α)
f(x+ t+ 1)

is the delta Riemann right fractional sum, while

(∆αf)(t) =
b−t−1∑

x=−α−1

x−α−1

Γ(−α)
f(x+ t+ 1)

is the delta Riemann right fractional difference.

Proof. For α > 0, substitute x = ρ(s) − t in the expression (2.10) and also for α < 0
and α /∈ {−1,−2, ...}, in the expression (2.12).

Here, considering the limits of summation we can define the discrete distributions
with the support Nα−1 or a finite subset of it. In this case, we will call X, delta discrete
random variable. As an example, we will define the delta discrete gamma distribution.
Another example is the delta discrete uniform distribution, DU{α − 1, α, ..., α + β},
where α ∈ R and β ∈ N−1.
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Theorem 3.2. We suppose that X is a discrete random variable. The expectation of
the ntm function, h

α−1
(X), coincides with nabla Riemann right fractional sum of the

pmf at 1 for α > 0 and nabla Riemann right fractional difference of the pmf at 1 for
α < 0, α /∈ {−N}, i.e.

E[h
α−1

(X)] =


(∇−αf)(1), α > 0

(∇αf)(1), α < 0, α /∈ {...,−2,−1}
(3.3)

where

(∇−αf)(t) =
b+1−t∑
x=1

xα−1

Γ(α)
f(x+ t− 1)

is the nabla Riemann right fractional sum, while

(∇αf)(t) =
b+1−t∑
x=1

x−α−1

Γ(−α)
f(x+ t− 1)

is the nabla Riemann right fractional difference.

Proof. For α > 0, substitute x = σ(s) − t in the expression (2.11) and also for α < 0
and α /∈ {−1,−2, ...}, in the expression (2.13).

Therefore, considering the limits of summation in recent theorem, we can define
the discrete distributions with support N1 or a finite subset of it. In this case, we
will call X, nabla discrete random variable. In this work, we will define the nabla dis-
crete gamma distribution. Another example is the nabla discrete uniform distribution,
DU{1, 2, ..., α− β + 1}, where α ∈ R and β ∈ αN.

4 Nabla moments and nabla moment generating

function

In this section, we define novel types of moments for delta and nabla discrete distribu-
tions and provide a method for obtaining these moments using the Laplace transform
on the discrete time scale.
It is well known that the Laplace transform of pdf is the moment generating function
(mgf), which is defined as MX(−t) = E[e−tX ] =

∫∞
0

e−txf(x)dx, and X is a non- neg-
ative real-valued random variable and t is a complex variable with non-negative real
part. On the other hand, it can be easily seen that MX(−t) =

∑∞
k=0E[(−X)k] t

k

k!
. This

function generates the moments of integer order of random variable X as µk = E[Xk] =

(−1)k dkMX(−t)
dtk

|t=0 .
Now, suppose that X is a delta discrete random variable with values x = Nα−1, α > 0.
The delta discrete Laplace transform of pmf of X is defined as

∞∑
x=α−1

(
1

1 + t
)σ(x)f(x) = E[(1 + t)−σ(x)] = E[e⊖t(σ(X), 0)] = Mσ(X)(−t),
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and t is the set of all regressive complex constants for which the series converges. By
using the series expansion for (1 + t)−x it can be easily proved that Mσ(X)(−t) =∑∞

k=0E[(−1)k(σ(X)) k ] t
k

k!
. This function generates the nabla moments of integer order

of X as E[(σ(X))K ] = (−1)k
dkMσ(X)(−t)

dtk
|t=0 .

Definition 4.1. Let X be a delta discrete random variable with pmf f.
(a) Its k−th nabla moment, is denoted by µ∇

k and is defined by µ∇
k :=

∑
x(σ(X)) k f(x).

(b) The nabla mgf of X is given by Mσ(X)(t) = E[e∗t (σ(X), 0)].

Theorem 4.2. Let X be a delta discrete random variable with nabla moments µ∇
k . we

have

Mσ(X)(t) =
∞∑
k=0

E[(σ(X))K ]
tk

k!
. (4.1)

In particular,

E[(σ(X))K ] =
dkMσ(X)(t)

dtk
|t=0 . (4.2)

Proof. For the proof of (4.1), we use the series expansion for function (1− t)−x, that is∑∞
k=0 x

k tk

k!
. we have

Mσ(X)(t) =
∑
x

∞∑
k=0

(σ(X)) k t
k

k!
f(x) =

∞∑
k=0

(
∑
x

(σ(X)) k f(x))
tk

k!
.

For the proof (4.2), differentiate Mσ(X)(t) a total of k times. Since the only t− depen-
dence in the summation is the (1− t)−σ(x) factor, we have

dk

dtk
Mσ(X)(t) =

∑
x

[
dk

dtk
(1− t)−σ(x)]f(x) =

∑
x

(σ(X)) k (1− t)−(σ(x)+k)f(x),

the claim now follows from taking t = 0 and recalling the definition of the nabla moments.

5 Delta moments and delta moment generating func-

tion

Suppose that X is a nabla discrete random variable with values x = N1. The nabla
discrete Laplace transform of pmf of X is defined as

∞∑
x=1

(1− t)ρ(x)f(x) = E[(1− t)ρ(x)] = E[e∗⊖t(ρ(X), 0)] = Mρ(X)(−t)

and t is the set of all regressive complex constants for which the series converges.
By using the series expansion for (1 − t)x, it can be easily proved that Mρ(X)(−t) =∑∞

k=0E[(−1)k(ρ(X))
k

] t
k

k!
. This function generates the delta moments of integer order of

X as E[(ρ(X))
K

] = (−1)k
dkMρ(X)(−t)

dtk
|t=0 .
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Definition 5.1. Let X be a nabla discrete random variable with pmf f.

(a) Its k−th delta moment, denoted by µ∆
k and is defined by µ∆

k :=
∑

x(ρ(X))
k

f(x).
(b) The delta mgf of X is given by Mρ(X)(t) = E[et(ρ(X), 0)].

Theorem 5.2. Let X be a nabla discrete random variable with delta moments µ∆
k . we

have

Mρ(X)(t) =
∞∑
k=0

E[(ρ(X))
K

]
tk

k!
. (5.1)

In particular,

E[(ρ(X))
K

] =
dkMρ(X)(t)

dtk
|t=0 . (5.2)

Proof. The proof is similar to the proof of theorem 4.2. We only outline this point that
(1 + t)x =

∑∞
k=0 x

k tk

k!
.

More generally, we denote all the µ∆
k , µ∇

k and µk with µ̂k and also all theMσ(X)(t), Mρ(X)(t)
and MX(t) with Mη(X)(t), which are useful notations in statistics.

6 Unification of the mgf and moments

For a given time scale T, we present the construction of moments and the mgfs on time
scales as

µ̂k = E[Γ(k + 1)ĥk(η(X))] and Mη(X)(−t) = E[ê⊖t(η(X), 0)], x ∈ T (6.1)

,respectively. In order that, the reader sees how ordinary moments and delta and nabla
moments, also types of the mgfs follow from (6.1), it is only at this point necessary to
know that

ĥk(x) = hk(x) =
xk

Γ(k + 1)
, η(x) = σ(x) = ρ(x) = x and ê⊖t(η(X), 0) = e−tx,

if T = R+,

ĥk(x) = h k (x) =
x

k

Γ(k + 1)
, η(x) = σ(x) and ê⊖t(η(X), 0) = (1 + t)−σ(x),

if T = Nα−1, α > 0 and

ĥk(x) = h
k
(x) =

x k

Γ(k + 1)
, η(x) = ρ(x) and ê⊖t(η(X), 0) = (1− t)ρ(x),

if T = N1.
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7 The delta and nabla discrete gamma distributions

In this section, we will introduce delta and nabla discrete gamma distributions, by substi-
tuting continuous Taylor monomials and exponential functions with their corresponding
discrete types (on the discrete time scale) in continuous gamma distribution.

7.1 The delta discrete gamma distribution

Definition 7.1. It is said that the random variable X has a delta discrete gamma
distribution with (α, β) parameters if its pmf is given by

Pr[X = x] =
hα−1 (x)βα

eβ(σ(x), 0)
=

x
α−1

βα

Γ(α)(1 + β)σ(x)
, x = Nα−1, (7.1)

where α > 0, β > 0 and it denotes as Γ∆(α, β).

■ Particular cases:

(a) For α = 1, Γ∆(α, β) in (7.1) reduces to a one parameter delta discrete gamma
or delta exponential distribution, Γ∆(1, β) ≡ E∆(β) with pmf

Pr[X = x] = β(1 + β)−σ(x) = (
β

1 + β
)(

1

1 + β
)x, x = 0, 1, ... . (7.2)

Obviously, this is the pmf of geometric distribution (the number of failures for first
success).
(b) For α = n, n ∈ N, Γ∆(α, β) in (7.1) is a delta discrete Erlang distribution Γ∆(n, β)
with pmf

Pr[X = x] =

(
x− n+ 1

x

)
βn(1 + β)−σ(x), x = Nn−1. (7.3)

If we substitute σ(x) = x, (7.2) and (7.3) are given by

Pr[X = x] = (
β

1 + β
)(

1

1 + β
)x−1, x = 1, 2, ... , (7.4)

and

Pr[X = x] =

(
x− n

x− 1

)
(

β

1 + β
)n(

1

1 + β
)x−n, x = n, n+ 1, ... , (7.5)

respectively. It can be seen that (7.5) is the same negative binomial distribution (the
number of independent trials required for n successes) and (7.4) is the same geometric
distribution (the number of independent trials required for first success). Therefore, we
call (7.3) the delta negative binomial distribution and its special case (7.2) is the delta
geometric distribution. Then, the delta discrete exponential distribution is the same
delta geometric distribution.
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(c) For α = n
2
, n ∈ N, and β = 1

2
, Γ∆(α, β) in (7.1) is delta discrete Chi-square distri-

bution, χ2∆ with pmf

Pr[X = x] =
x

n
2 −1

Γ(n
2
)2

n
2

(
2

3
)σ(x), x =

n

2
− 1,

n

2
, ... . (7.6)

In the special case n = 2, we obtain delta discrete exponential distribution, i.e.

Pr[X = x] = (
1

2
)(
3

2
)−σ(x), x = 0, 1, ... . (7.7)

■ Statistical properties:

Theorem 7.2. If X ∼ Γ∆(α, β), then the expectation, variance and delta moment gen-
erating function of the random variable X are given by

E[X] = α(1 + β)β−1 − 1, (7.8)

V ar(X) = α(1 + β)β−2, (7.9)

Mσ(X)(t) = (
1

1− t(1 + β)β−1
)α. (7.10)

Proof. We have

E[X] =
∞∑

x=α−1

xx
α−1

βα

Γ(α)(1 + β)σ(x)
,

by use of the relation (x− α + 1)x
α−1

= x
α

, we have

E[X] =
βα

Γ(α)

∞∑
x=α−1

x
α

(1 + β)σ(x)
+ (α− 1).

On the other hand, we have

∞∑
x=α−1

x
α

(1 + β)σ(x)
=

∞∑
x=α

(
1

1 + β
)σ(x)

Γ(x+ 1)

Γ(x+ 1− α)

=(
1

1 + β
)1+α

∞∑
x=0

(
1

1 + β
)x
Γ(x+ α + 1)

Γ(x+ 1)
,

Now, we apply theorem 2.2.1 from [4] to the right-hand side and introduce the hyper-
geometric function 2F1 in the following way

∞∑
x=α−1

x
α

(1 + β)σ(x)
= (

1

1 + β
)1+αΓ(1 + α)2F1(1, 1 + α; 1;

1

1 + β
),
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by using exercise 4.2.10 from [7] to the right-hand side, we have

∞∑
x=α−1

x
α

(1 + β)σ(x)
= (

1

1 + β
)1+α 1

Γ(−α)

∫ 1

0

xα(1− x)−α−1(1− x

1 + β
)−1dx

= (
1

1 + β
)α

1

Γ(−α)

∫ 1

0

(1− x)αx−α−1

x+ β
dx

= (
1

1 + β
)α

1

Γ(−α)
B(1 + α,−α)(1 + β)αβ−(α+1)

=
Γ(α + 1)

βα+1
,

where B(., .) is the ordinary beta function. Then we have

∞∑
x=α−1

x
α

(1 + β)σ(x)
=

Γ(α + 1)

βα+1
, (7.11)

and which complete the proof of (7.8). For the proof of (7.9) we have

E[X2] =
∞∑

x=α−1

x2x
α−1

βα

Γ(α)(1 + β)σ(x)

=
βα

Γ(α)

∞∑
x=α−1

(
1

1 + β
)σ(x)x(x

α

+ (α− 1)x
α−1

)

=
βα

Γ(α)

∞∑
x=α−1

(
1

1 + β
)σ(x)xx

α

+ (α− 1)(α(1 + β−1)− 1),

since (1 + x)x
α

= (1 + x)
α+1

, which implies that

∞∑
x=α−1

xx
α

(1 + β)σ(x)
=

∞∑
x=α−1

(1 + x)
1+α

(1 + β)σ(x)
−

∞∑
x=α−1

x
α

(1 + β)σ(x)
,

and by considering (7.11), we get

∞∑
x=α−1

(1 + x)
1+α

(1 + β)σ(x)
=

(1 + β)Γ(α + 2)

βα+2
,

and from which, we have

E[X2] = 2α(α− 1)β−1 + α(α + 1)β−2 + (α− 1)2.
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Also, with

Mσ(X)(t) =
∞∑

x=α−1

(
1

1− t
)σ(x)

x
α−1

βα

Γ(α)(1 + β)σ(x)

=
∞∑

x=α−1

x
α−1

βα

Γ(α)((1− t)(1 + β))σ(x)

=
∞∑

x=α−1

x
α−1

βα

Γ(α)((1 + (β − t(1 + β)))σ(x)

= (
1

1− t(1 + β−1)
)α,

the proof is complete.

Also, it is easily seen from (7.11) that

∞∑
x=α−1

x
α−1

βα

Γ(α)(1 + β)σ(x)
= 1, α > 0, β > 0. (7.12)

■ Maximum Likelihood Estimation (MLE):
Let x1, x2, ..., xn be a random sample.If this sample are assumed to be independently
and identically distributed (iid) random variables following Γ∆(α, β) distribution, then
the likelihood function of the sample will be

L =
βnα

∏
x

α−1

i

Γn(α)(1 + β)n+Σxi
I{α−1,α,...}(xi).

7.2 The nabla discrete gamma distribution

Definition 7.3. It is said that the random variable X has a nabla discrete gamma
distribution with (α, β) parameters if its pmf is given by

Pr[X = x] =
h

α−1
(x)βα

e∗β(ρ(x), 0)
=

xα−1βα(1− β)ρ(x)

Γ(α)
, x = N1, (7.13)

where α > 0, 0 < β < 1 and it denotes as Γ∇(α, β).

■ Particular cases:

(a) For α = 1, Γ∇(α, β) in (7.13) reduces to a one parameter nabla discrete gamma
or nabla exponential distribution, Γ∇(1, β) ≡ E∇(β) with pmf

Pr[X = x] = β(1− β)ρ(x), x = 1, 2, ... . (7.14)

Obviously, this is the pmf of geometric distribution (the number of independent trials
required for first success).
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(b) For α = n, n ∈ N, Γ∇(α, β) in (7.13) is an nabla discrete Erlang distribution
Γ∇(n, β) with pmf

Pr[X = x] =

(
x+ n− 2

x− 1

)
βn(1− β)ρ(x), x = N1. (7.15)

If we substitute ρ(x) = x, (7.14) and (7.15) are given by

Pr[X = x] = β(1− β)x, x = 0, 1, ... , . (7.16)

and

Pr[X = x] =

(
x+ n− 1

x

)
βn(1− β)x, x = 0, 1, ... , (7.17)

respectively. It can be seen that (7.17) is the same negative binomial distribution (the
number of failures for n successes) and (7.16) is the same geometric distribution (the
number of failures for first success). Then, we call (7.15) the nabla negative binomial
distribution and its special case (7.14) is the nabla geometric distribution. Therefore
the nabla discrete exponential distribution is the same nabla geometric distribution.
(c) For α = n

2
, n ∈ N and β = 1

2
, Γ∇(α, β) in (7.13) is nabla discrete Chi-square

distribution, χ2∇ with pmf

Pr[X = x] =
x

n
2 −1

Γ(n
2
)2

n
2
+ρ(x)

, x = 1, 2, ... . (7.18)

In the special case n = 2, we obtain nabla discrete exponential distribution, i.e.

Pr[X = x] = (
1

2
)x, x = 1, 2, ... . (7.19)

■ Statistical properties:

Theorem 7.4. If X ∼ Γ∇(α, β), then the expectation, variance and nabla moment
generating function of the random variable of X are given by

E[X] = α(1− β)β−1 + 1, (7.20)

V ar(X) = α(1− β)β−2, (7.21)

Mρ(X)(t) = (
1

1− t(1− β)β−1
)α. (7.22)

Proof. We have

E[X] =
∞∑
x=1

xxα−1βα(1− β)ρ(x)

Γ(α)
,
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since (x+ α− 1)xα−1 = xα , it results

E[X] =
βα

Γ(α)

∞∑
x=1

xα (1− β)ρ(x) + (1− α).

On the other hand, with similar method for the proof of theorem 7.2, we have

∞∑
x=1

xα (1− β)ρ(x) =
∞∑
x=0

(1− β)x
Γ(x+ α + 1)

Γ(x+ 1)

= Γ(α + 1)2F1(1, 1 + α; 1; 1− β)

=
1

Γ(−α)

∫ 1

0

x−α−1(1− x)α

x+ β(1− x)
dx

=
Γ(1 + α)

βα+1
.

Here, we applied the following identity from [4],∫ 1

0

xα−1(1− x)β−1

(ax+ b(1− x))α+β
dx =

Γ(α)Γ(β)

aαbβΓ(α + β)
.

Then we obtain

∞∑
x=1

xα (1− β)ρ(x) =
Γ(α + 1)

βα+1
(7.23)

and this complete the proof of (7.20). For the proof of (7.21), we have

E[X2] =
∞∑
x=1

x2xα−1 (1− β)ρ(x)βα

Γ(α)

=
βα

Γ(α)

∞∑
x=1

(1− β)ρ(x)x(xα + (1− α)xα−1 )

=
βα

Γ(α)

∞∑
x=1

(1− β)ρ(x)xxα + (1− α)(α(1− β)β−1 + 1),

since xα+1 = (x+ α)xα , we have

∞∑
x=1

xxα (1− β)ρ(x) =
∞∑
x=1

xα+1 (1− β)ρ(x) − α
∞∑
x=1

xα (1− β)ρ(x),

now by considering (7.23),

E[X2] = α(1 + α)β−2 − α2β−1 + (1− α)(α(1− β)β−1 + 1).
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Also, with

Mρ(X)(t) =
∞∑
x=1

(1 + t)ρ(x)
xα−1βα(1− β)ρ(x)

Γ(α)

=
∞∑
x=1

xα−1βα((1 + t)(1− β))ρ(x)

Γ(α)

=
∞∑
x=1

xα−1βα((1− (β − t(1− β)))ρ(x)

Γ(α)

= (
1

1− t(β−1 − 1)
)α,

the proof is complete.

Also, it is easily seen from (7.23) that
∞∑
x=1

xα−1βα(1− β)ρ(x)

Γ(α)
= 1, α > 0, 0 < β < 1. (7.24)

■ Maximum Likelihood Estimation (MLE):
Let x1, x2, ..., xn be a random sample.If this sample are assumed to be independently
and identically distributed (iid) random variables following Γ∇(α, β) distribution, then
the log likelihood function of the sample will be

logL = nα logβ + (
∑

xi − n) log(1− β)− n logΓ(α) +
∑

log xα−1

i .

8 Unification of the continuous and discrete gamma

distributions

For a given time scale T, we present the construction of pdf of gamma distribution, such
that, the density function on time scales is

fX(x) =
ĥα−1(x)β

α

êβ(η(x), 0)
, x ∈ T. (8.1)

In order that, the reader sees how the pdf of continuous gamma distribution and delta
and nabla discrete gamma distributions follow from (8.1), it is only at this point necessary
to know that

ĥα−1(x) = hα−1(x) =
xα−1

Γ(α)
, η(x) = x and êβ(η(X), 0) = eβx if T = R+,

ĥα−1(x) = hα−1 (x) =
x

α−1

Γ(α)
, η(x) = σ(x) and êβ(η(X), 0) = (1 + β)σ(x)

if T = Nα−1, α > 0. If T = N1 then we have

ĥα−1(x) = h
α−1

(x) =
xα−1

Γ(α)
, η(x) = ρ(x) and êβ(η(X), 0) = (1− β)−ρ(x).
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9 Application

Here, the data give the time to the death (in week) of AG positive leukemia patients (
see [18] and [19] ).

{65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65}

Table 1: Results
Model MLE(s) ˆLog L AIC BIC

Γ∆(α, β) α̂ = 2, β̂ = 0.0330739 −93.8669 191.734 193.4

Zipf(θ, n = 500) θ̂ = 0.1484037 −101.148 206.296 207.962
Zeta(γ) γ̂ = 1.439751 −100.276 202.552 203.385

The pmfs of Zeta and Zipf considered here for fitting are, respectively, given by

P (X = x) =
1

xγ
∑∞

i=1(
1
i
)γ
, x = 1, 2, ...

and

P (X = x) =
1

xθ
∑n

i=1(
1
i
)θ
, x = 1, 2, ..., n.

Let x1, x2, ..., xm be a random sample.If this sample are assumed to be independently
and identically distributed (iid) random variables following Zeta or Zipf distributions,
then the log likelihood function of the sample will be

LogL = −γ
m∑
i=1

log xi −mlog
∞∑
i=1

(
1

i
)γ

or Log L=-θ
∑m

i=1 log xi −mlog
∑n

i=1(
1
i
)θ, respectively.
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Figure 1: Probability mass functions (Γ∆) for various values of α and β = 0.5
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Figure 2: Probability mass functions (Γ∆) for various values of β and α = 0.5
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Figure 3: Probability mass functions (Γ∆) for various values of β and α = 2
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Figure 4: Probability mass functions (Γ∆) for various values of α and β = 2
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