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In this article we introduce a new four - parameters model called the odd generalized exponential flexible
Weibull extension (OGE-FWE) distribution which exhibits bathtub-shaped hazard rate. Some of it’s statistical
properties are obtained including ordinary and incomplete moments, quantile and mode, the moment generating
functions, reliability and order statistics. The method of maximum likelihood is used for estimating the model
parameters and the observed Fisher’s information matrix is given. Moreover, we give the advantage of the
OGE-FWE distribution by an application using real data.
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1. Introduction

The Weibull distribution is a highly known distribution due to its utility in modelling lifetime data
where the hazard rate function is monotone, [27]. Recently new classes of distributions were pro-
posed based on modifications of the Weibull distribution to provide a good fit to data set with bathtub
hazard failure rate, see [25]. Among of these, Exponentiated Weibull family, [14], Modified Weibull
distribution, [11, 19], Beta-Weibull distribution, [8], A flexible Weibull extension, [4], Extended
flexible Weibull, [4], Generalized modified Weibull distribution, [5], Kumaraswamy Weibull distri-
bution, [6], Beta modified Weibull distribution, [16,22], Beta generalized Weibull distribution, [23],
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A new modified weibull distribution, [2] and Exponentiated modified Weibull extension distribu-
tion, [20], among others. A good review of these models is presented in [3, 15, 17].
The flexible Weibull extension (FWE) distribution, [4] has many applications in life testing exper-
iments, reliability analysis, applied statistics and clinical studies. For more details on this distribu-
tion, see [4].
A random variable X is said to have the Flexible Weibull Extension (FWE) distribution with param-
eters α,β > 0 if it’s probability density function (pdf) is given by

g(x) =
(

α +
β
x2

)
exp

{
αx− β

x
− eαx− β

x

}
, x > 0, (1.1)

while the cumulative distribution function (cdf) is given by

G(x) = 1− exp
{
−eαx− β

x

}
, x > 0. (1.2)

The survival function is given by the equation

S(x) = 1−G(x) = exp
{
−eαx− β

x

}
, x > 0, (1.3)

and the hazard rate function is

h(x) =
(

α +
β
x2

)
eαx− β

x . (1.4)

Gupta and Kundu [9] proposed a generalization of the exponential distribution named as General-
ized Exponential (GE) distribution. The GE distribution with parameters ϑ ,γ > 0, has the following
distribution function

F(x;ϑ ,γ) =
(

1− e−ϑx
)γ

, x > 0,ϑ > 0,γ > 0. (1.5)

Recently, a new class of univariate continuous distributions named as the odd generalized expo-
nential (OGE) class introduced in [7, 24]. This class is flexible because of the hazard rate shapes
could be increasing, decreasing, bathtub and upside down bathtub. The odd generalized exponential
(OGE) class is defined as follows.
If G(x), x > 0 is cumulative distribution function (cdf) of a random variable X , then the correspond-
ing survival function is G(x) = 1−G(x) and the probability density function is g(x), then we define
the cdf of the OGE class by replacing x in the distribution function of generalized exponential (GE)
distribution given in equation (1.5) by G(x)

G(x)
leading to

F(x;ϑ ,γ) =
[

1− exp
{
−ϑ

G(x)
G(x)

}]γ
, x > 0,ϑ > 0,γ > 0. (1.6)

The probability density function corresponding to (1.6) is given by

f (x;ϑ ,γ) =
ϑγg(x)
G(x)2

exp
{
−ϑ

G(x)
G(x)

}[
1− exp

{
−ϑ

G(x)
G(x)

}]γ−1

, (1.7)

where x> 0,ϑ > 0,γ > 0. In this article we present a new distribution depending on flexible Weibull
extension distribution referred to as the odd generalized exponential flexible Weibull extension
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(OGE-FWE) distribution by using the class of univariate distributions defined above.

This paper can be organized as follows, we define the cumulative, density and hazard functions
of the odd generalized exponential flexible Weibull extension (OGE-FWE) distribution in Section
2. In Sections 3, we present some statistical properties including, quantile function and median,
the mode, rth moment, skewness and kurtosis. In Sections 4, we introduce the moment generating
function. The distribution of the order statistics is expressed in Section 5. The maximum likelihood
estimation of the parameters is determined in Section 6. We use real data sets and analyzed it by an
application in Section 7 and the results are compared with existing distributions. Finally, we present
a conclusion in Section 8.

2. The Odd Generalized Exponential Flexible Weibull Extension Distribution

In this section we studied the four parameters odd generalized exponential flexible Weibull exten-
sion OGE-FWE (ϑ ,γ,α,β ) distribution. Using G(x) from Eq. (1.2) and g(x) from Eq. (1.1) to
obtain the cdf and pdf of Eqs. (1.6) and (1.7), respectively. The cumulative distribution function cdf
of the odd generalized exponential flexible Weibull extension distribution (OGE-FWE) is given by

F(x;ϑ ,γ,α,β ) =
[

1− e
−ϑ

(
eeαx− β

x −1

)]γ
, x > 0,ϑ ,γ,α,β > 0, (2.1)

The pdf corresponding to Eq. (2.1) is given by

f (x;ϑ ,γ,α,β ) = ϑγ
(

α +
β
x2

)
eαx− β

x +eαx− β
x e−ϑ(eeαx− β

x −1)
[

1− e−ϑ(eeαx− β
x −1)

]γ−1

, (2.2)

where x > 0 and, α,β > 0 are two additional shape parameters.
The survival function S(x), hazard rate function h(x) and reversed hazard rate function r(x) of X ∼
OGE-FWE (ϑ ,γ,α,β ) are given by

S(x;ϑ ,γ,α,β ) = 1−
[

1− e−ϑ(eeαx− β
x −1)

]γ
, x > 0, (2.3)

h(x;ϑ ,γ,α,β ) =
ϑγ

(
α + β

x2

)
eαx− β

x +eαx− β
x e−ϑ(eeαx− β

x −1)
[

1− e−ϑ(eeαx− β
x −1)

]γ−1

1−
[

1− e−ϑ(eeαx− β
x −1)

]γ ,

(2.4)

r(x;ϑ ,γ,α,β ) =
ϑγ

(
α + β

x2

)
eαx− β

x +eαx− β
x e−ϑ(eeαx− β

x −1)

1− e−ϑ(eeαx− β
x −1)

, (2.5)

respectively, x > 0 and ϑ ,γ,α,β > 0.
Figures (1-3) display the cdf, pdf, survival, hazard rate and reversed hazard rate function of the
OGE-FWE (ϑ ,γ,α,β ) distribution for some parameter values.
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(a) cdf (b) pdf

Fig. 1. The cdf and pdf of the OGE-FWE for different values of parameters.

(a) S(x) (b) h(x)

Fig. 2. The survival and hazard rate functions of the OGE-FWE for different values of parameters.

Fig. 3. The reversed hazard rate function of the OGE-FWE for different values of parameters.

3. Statistical Properties

In this section, we will study some statistical properties for the OGE-FWE distribution, specially
quantile function and simulation median, the mode, moments, skewness and kurtosis.

3.1. Quantile and median

We determine the explicit formulas of the quantile and simulation median of the OGE-FWE distri-
bution. The quantile xq of the OGE-FWE(ϑ ,γ,α,β ) distribution is given by

F(xq) = P[xq ≤ q] = q, 0 < q < 1. (3.1)
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From Eq. (2.1), we have [
1− e−ϑ(ee

αxq−
β
xq −1)

]γ

= q, (3.2)

we obtain xq by solving the following equation.

αx2
q − k(q)xq −β = 0, (3.3)

where

k(q) = ln

{
ln

[
1− ln(1−q

1
γ )

ϑ

]}
.

So, the simulation of the OGE-FWE random variable is straightforward. If U is a uniform random
variable on unit interval (0,1). Then, by means of the inverse transformation method, we can obtain
the random variable X as follows

X =
k(u)±

√
k(u)2 +4αβ
2α

. (3.4)

Since the median of OGE-FWE distribution can be obtain by setting q = 0.5 in Eq. (3.3).

3.2. The mode

In this subsection, we can obtain the mode of the OGE-FWE distribution by differentiating its
probability density function pdf with respect to x and equaling it to zero. The mode is the solution
the following equation

f
′
(x) = 0. (3.5)

Since

f (x;ϑ ,γ,α,β )) = h(x;ϑ ,γ,α,β )S(x;ϑ ,γ,α,β ).

Then from Eq. (3.5), we have[
h
′
(x;ϑ ,γ,α,β )−h2(x;ϑ ,γ,α,β )

]
S(x;ϑ ,γ,α,β ) = 0, (3.6)

where h(x;ϑ ,γ,α,β ) is hazard rate function of OGE-FWE distribution Eq. (2.4), and
S(x;ϑ ,γ,α,β ) is survival function of OGE-FWE Eq. (2.3).
It is difficult to get an analytic solution in x to Eq. (3.6) in the general case. So, it has to be obtained
by numerically methods.

3.3. Skewness and Kurtosis

In this subsection, we obtain the skewness and kurtosis based on quantile measures. The Moors
Kurtosis is given by, [13]

Ku =
q(0.875)−q(0.625)−q(0.375)+q(0.125)

q(0.75)−q(0.25)
, (3.7)

and the Bowely’s skewness based on quartiles is given by, [10]
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Sk =
q(0.75)−2q(0.5)+q(0.25)

q(0.75)−q(0.25)
, (3.8)

where q(.) is quantile function.

3.4. The Moments

We derive the rth moment for the OGE-FWE distribution in Theorem (3.1)

Theorem 3.1. If X has OGE-FWE (ϑ ,γ,α,β ) distribution, then The rth moments of random vari-
able X, is given by

µ ′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ m

j!ℓ!m!(ℓ+1)r−2m−1αr−m−1 ×(
γ −1

i

)(
j
k

)[
Γ(r−m+1)

α(ℓ+1)2 +βΓ(r−m−1)
]
. (3.9)

Proof. We start with the well known distribution of the rth moment of the random variable X with
probability density function f (x) given by

µ ′
r =

∫ ∞

0
xr f (x;ϑ ,γ,α,β )dx. (3.10)

Substituting from Eq. (2.2) into Eq. (3.10) we get

µ ′
r =

∫ ∞

0
xrϑγ

(
α +

β
x2

)
eαx− β

x eeαx− β
x e−ϑ(eeαx− β

x −1)
[

1− e−ϑ(eeαx− β
x −1)

]γ−1

dx,

since 0<
[

1−e−ϑ(eeαx− β
x −1)

]
< 1 for x> 0, the binomial series expansion of

[
1−e−ϑ(eeαx− β

x −1)
]γ−1

yields [
1− e−ϑ(eeαx− β

x −1)
]γ−1

=
∞

∑
i=0

(−1)i
(

γ −1
i

)
e−ϑ i(eeαx− β

x −1),

then we get

µ ′
r =

∞

∑
i=0

(−1)i
(

γ −1
i

)
ϑγ

∫ ∞

0
xr
(

α +
β
x2

)
eαx− β

x eeαx− β
x e−ϑ(i+1)(eeαx− β

x −1)dx,

using series expansion

e−ϑ(i+1)(eeαx− β
x −1) =

∞

∑
j=0

(−1) jϑ j(i+1) j

j!

(
eeαx− β

x −1
) j

,

we obtain

µ ′
r =

∞

∑
i=0

∞

∑
j=0

(−1)i+ j
(

γ −1
i

)
γϑ j+1(i+1) j

j!

∫ ∞

0
xr
(

α +
β
x2

)
eαx− β

x eeαx− β
x

[
eeαx− β

x −1
] j

dx.
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Using series expansion (
eeαx− β

x −1
) j

=
∞

∑
k=0

(−1)k
(

j
k

)
e( j−k)eαx− β

x ,

hence

µ ′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(
γ −1

i

)(
j
k

)
(−1)i+ j+kγϑ j+1(i+1) j

j!

∫ ∞

0
xr
(

α +
β
x2

)
eαx− β

x e( j−k+1)eαx− β
x dx,

using series expansion

e( j−k+1)eαx− β
x =

∞

∑
ℓ=0

( j− k+1)ℓeℓ(αx− β
x )

ℓ!
,

we obtain

µ ′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

(
γ −1

i

)(
j
k

)
(−1)i+ j+kγϑ j+1(i+1) j( j− k+1)ℓ

j!ℓ!

∫ ∞

0
xr
(

α +
β
x2

)
e(ℓ+1)(αx− β

x )dx.

Using series expansion

e−(ℓ+1) β
x =

∞

∑
m=0

(−β )m(ℓ+1)m

m!
x−m

gives

µ ′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ m(ℓ+1)m

j!ℓ!m!

(
γ −1

i

)(
j
k

)
×

∫ ∞

0
xr−m

(
α +

β
x2

)
e(ℓ+1)αxdx,

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ m(ℓ+1)m

j!ℓ!m!

(
γ −1

i

)(
j
k

)
×[∫ ∞

0
αxr−me(ℓ+1)αxdx+

∫ ∞

0
βxr−m−2e(ℓ+1)αxdx

]
,

by using the definition of gamma function in the form, [26],

Γ(z) = xz
∫ ∞

0
etxtz−1dt, z,x,> 0.

Finally, we obtain the rth moment of OGE-FWE distribution in the form

µ ′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ m(ℓ+1)m

j!ℓ!m!

(
γ −1

i

)(
j
k

)
×[

Γ(r−m+1)
αr−m(ℓ+1)r−m+1 +

βΓ(r−m−1)
αr−m−1(ℓ+1)r−m−1

]
.

This completes the proof.
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4. The Moment Generating Function

The moment generating function (mgf) of the OGE-FWE distribution is given by Theorem (4.1).

Theorem 4.1. The moment generating function (mgf) of OGE-FWE distribution is given by

MX(t) =
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ mtr

j!ℓ!m!r!αr−m−1(ℓ+1)r−2m−1

×
(

γ −1
i

)(
j
k

)[
Γ(r−m+1)

α(ℓ+1)2 +βΓ(r−m−1)
]
. (4.1)

Proof. The moment generating function MX(t) of the random variable X with probability density
function f (x) is given by

MX(t) =
∞∫

0

etx f (x;ϑ ,γ,α,β )dx, (4.2)

Using series expansion of etx, we obtain

MX(t) =
∞

∑
r=0

tr

r!

∫ ∞

0
xr f (x)dx =

∞

∑
r=0

tr

r!
µ

′
r (4.3)

Substituting from (3.9) into (4.3), we obtain

MX(t) =
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
ℓ=0

∞

∑
m=0

(−1)i+ j+k+mγϑ j+1(i+1) j( j− k+1)ℓβ mtr

j!ℓ!m!r!αr−m−1(ℓ+1)r−2m−1

×
(

γ −1
i

)(
j
k

)[
Γ(r−m+1)

α(ℓ+1)2 +βΓ(r−m−1)
]
. (4.4)

This completes the proof.

5. Order Statistics

In this section, we derive closed form expressions for the PDFs of the rth order statistic of the OGE-
FWE distribution. Let X1:n,X2:n, · · · ,Xn:n denote the order statistics obtained from a random sample
X1,X2, · · · ,Xn which taken from a continuous population with cumulative distribution function cdf
F(x;φ) and probability density function pdf f (x;φ), then the pdf of Xr:n is given as follows

fr:n(x;φ) =
1

B(r,n− r+1)
[F(x;φ)]r−1[1−F(x;φ)]n−r f (x;φ), (5.1)

where f (x;φ) and F(x;φ) are the pdf and cdf of OGE-FWE(φ) distribution given by Eq. (2.2) and
Eq. (1.7) respectively, φ = (ϑ ,γ,α,β ) and B(., .) is the Beta function, also we define first order
statistics X1:n = min(X1,X2, · · · ,Xn) and the last order statistics as Xn:n = max(X1,X2, · · · ,Xn). Since
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0 < F(x;φ)< 1 for x > 0, we can use the binomial expansion of [1−F(x;φ)]n−r as follows

[1−F(x;φ)]n−r =
n−r

∑
i=0

(
n− r

i

)
(−1)i[F(x;φ)]i. (5.2)

Substituting from Eq. (5.2) into Eq. (5.1), we obtain

fr:n(x;ϑ ,γ,α,β ) =
n−r

∑
i=0

(−1)in!
i!(r−1)!(n− r− i)!

f (x;φ)[F(x;φ)]i+r−1. (5.3)

Substituting from Eq. (2.1) and Eq. (2.2) into Eq. (5.3), we obtain the probability density function
for rth order statistics.
Relation (5.3) show that fr:n(x;φ) is the weighted average of the OGE-FWE distribution with dif-
ferent shape parameters.

6. Parameters Estimation

In this section, point and interval estimation of the unknown parameters of the OGE-FWE distribu-
tion are derived by using the maximum likelihood method based on a complete sample.

6.1. Maximum Likelihood Estimation:

Let x1,x2, · · · ,xn denote a random sample of complete data from the OGE-FWE distribution. The
Likelihood function is given as

L =
n

∏
i=1

f (xi;ϑ ,γ,α,β ), (6.1)

substituting from (2.2) into (6.1), we have

L =
n

∏
i=1

ϑγ
(

α +
β
x2

i

)
eαxi− β

xi ee
αxi−

β
xi e−ϑ [ee

αxi−
β
xi −1]

[
1− e−ϑ [ee

αxi−
β
xi −1]

]γ−1

.

The log-likelihood function is

L = n ln(ϑγ)+
n

∑
i=1

ln
(

α +
β
x2

i

)
+

n

∑
i=1

(
αxi −

β
xi

)
+

n

∑
i=1

eαxi− β
xi −ϑ

n

∑
i=1

(
ee

αxi−
β
xi −1

)

+(γ −1)
n

∑
i=1

ln
[

1− e−ϑ(ee
αxi−

β
xi −1)

]
. (6.2)

The maximum likelihood estimation of the parameters (ϑ ,γ,α,β ) are obtained by differentiated
the log-likelihood function L with respect to the parameters ϑ ,γ,α and β and setting the result to
zero, we have the following normal equations.
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∂L

∂ϑ
=

n
ϑ
−

n

∑
i=1

(
ee

αxi−
β
xi −1

)
+(γ −1)

n

∑
i=1

ee
αxi−

β
xi −1

eϑ(ee
αxi−

β
xi −1)−1

= 0 (6.3)

∂L

∂γ
=

n
γ
+

n

∑
i=1

ln
(

1− e−ϑ(ee
αxi−

β
xi −1)

)
= 0 (6.4)

∂L

∂α
=

n

∑
i=1

x2
i

β +αx2
i
+

n

∑
i=1

xi +
n

∑
i=1

xie
αxi− β

xi −ϑ
n

∑
i=1

xiDi +ϑ(γ −1)
n

∑
i=1

xiDi

eϑ(ee
αxi−

β
xi −1)−1

= 0 (6.5)

∂L

∂β
=

n

∑
i=1

1
β +αx2

i
−

n

∑
i=1

1
xi
−

n

∑
i=1

1
xi

eαxi− β
xi +ϑ

n

∑
i=1

Di

xi
−ϑ(γ −1)

n

∑
i=1

Di

xi

[
eϑ(ee

αxi−
β
xi −1)−1

] = 0,

(6.6)

where Di = exp
{

αxi − β
xi
+ eαxi− β

xi

}
. The MLEs can be obtained by solving the equations, (6.3) –

(6.6), numerically for ϑ ,γ,α and β .

6.2. Asymptotic confidence bounds

In this section, we derive the asymptotic confidence intervals of these parameters when ϑ ,γ,α > 0
and β > 0 as the MLEs of the unknown parameters ϑ ,γ,α > 0 and β > 0 can not be obtained
in closed forms, by using variance covariance matrix I−1 see [12], where I−1 is the inverse of the
observed information matrix which defined as follows

I−1 =


− ∂ 2L

∂ϑ 2 − ∂ 2L
∂ϑ∂γ − ∂ 2L

∂a∂α − ∂ 2L
∂ϑ∂β

− ∂ 2L
∂γ∂ϑ − ∂ 2L

∂γ2 − ∂ 2L
∂γ∂α − ∂ 2L

∂γ∂β

− ∂ 2L
∂α∂ϑ − ∂ 2L

∂α∂γ − ∂ 2L
∂α2 − ∂ 2L

∂α∂β
− ∂ 2L

∂β∂ϑ − ∂ 2L
∂β∂γ − ∂ 2L

∂β∂α − ∂ 2L
∂β 2


−1

=


var(ϑ̂) cov(ϑ̂ , γ̂) cov(ϑ̂ , α̂) cov(ϑ̂ , β̂ )

cov(γ̂, ϑ̂) var(γ̂) cov(γ̂, α̂) cov(γ̂, β̂ )
cov(α̂, ϑ̂) cov(α̂, γ̂) var(α̂) cov(α̂, β̂ )
cov(β̂ , ϑ̂) cov(β̂ , γ̂) cov(β̂ , α̂) var(β̂ )

 ,

(6.7)

where

∂ 2L

∂ϑ 2 = − n
ϑ 2 − (γ −1)

n

∑
i=1

eϑ(ee
αxi−

β
xi −1)A 2

i ,
∂ 2L

∂ϑ∂γ
=

n

∑
i=1

Ai (6.8)

∂ 2L

∂ϑ∂α
= −

n

∑
i=1

xiDi +(γ −1)
n

∑
i=1

xiBi,
∂ 2L

∂ϑ∂β
=

n

∑
i=1

Di

xi
− (γ −1)

n

∑
i=1

Bi

xi
(6.9)

∂ 2L

∂γ2 = − n
γ2 ,

∂ 2L

∂γ∂α
= ϑ

n

∑
i=1

xiDi

eϑ(ee
αxi−

β
xi −1)−1

(6.10)
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∂ 2L

∂γ∂β
= −ϑ

n

∑
i=1

Di

xi

[
eϑ(ee

αxi−
β
xi −1)−1

] (6.11)

∂ 2L

∂α2 = −
n

∑
i=1

x4
i

(β +αx2
i )

2 +
n

∑
i=1

x2
i eαxi− β

xi −ϑ
n

∑
i=1

x2
i Di[e

αxi− β
xi +1]+ϑ(γ −1)

n

∑
i=1

x2
i Ki(6.12)

∂ 2L

∂α∂β
= −

n

∑
i=1

x2
i

(β +αx2
i )

2 −
n

∑
i=1

eαxi− β
xi +ϑ

n

∑
i=1

Di[e
αxi− β

xi +1]−ϑ(γ −1)
n

∑
i=1

Ki (6.13)

∂ 2L

∂β 2 = −
n

∑
i=1

1
(β +αx2

i )
2 +

n

∑
i=1

eαxi− β
xi

x2
i

−ϑ
n

∑
i=1

Di[e
αxi− β

xi +1]
x2

i
+ϑ(γ −1)

n

∑
i=1

Ki

x2
i

(6.14)

where

Ai =

[
ee

αxi−
β
xi −1

][
eϑ(ee

αxi−
β
xi −1)−1

]−1

,

Bi = Di

[
eϑ(ee

αxi−
β
xi −1)

(
1−ϑ(ee

αxi−
β
xi −1)

)
−1

][
eϑ [ee

αxi−
β
xi −1]−1

]−2

,

Ki = Di

[
(eϑ(ee

αxi−
β
xi −1)−1)(eαxi− β

xi +1)−ϑDieϑ(ee
αxi−

β
xi −1)

][
eϑ(ee

αxi−
β
xi −1)−1

]−2

.

We can obtain the (1 − δ )100% confidence intervals of the parameters ϑ ,γ,α and β by using
variance matrix as in the following forms

ϑ̂ ±Z δ
2

√
var(ϑ̂), γ̂ ±Z δ

2

√
var(γ̂), α̂ ±Z δ

2

√
var(α̂), β̂ ±Z δ

2

√
var(β̂ ),

where Z δ
2

is the upper ( δ
2 )-th percentile of the standard normal distribution.

7. Application

In this section, we will analysis of a real data set using the OGE-FWE (ϑ ,γ,α,β ) model and com-
pare it with the other fitted models like a flexible Weibull extension distributions using Kolmogorov
Smirnov (K-S) statistic, as well as Akaike information criterion(AIC), [?], Akaike Information Cite-
rion with correction (AICC), Bayesian information criterion (BIC), Hannan-Quinn information cri-
terion (HQIC) and Schwarz information criterion (SIC) values, [21]. The data have been obtained
from [18], it is for the time between failures (thousands of hours) of secondary reactor pumps, Table
1.

Table 1. Time between failures of secondary reactor pumps.

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347
0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921
4.082 0.199 0.605 0.273 0.070 0.062 5.320
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Table 2. MLEs and K–S of parameters for secondary reactor pumps.

Model α̂ β̂ λ̂ ϑ̂ γ̂ K-S
OGE-FWE 0.2380 2.0700 – 0.069 0.113 0.0760
Flexible Weibull 0.0207 2.5875 – – – 0.1342
Weibull 0.8077 13.9148 – – – 0.1173
Modified Weibull 0.1213 0.7924 0.0009 – – 0.1188
Reduced Additive Weibull 0.0070 1.7292 0.0452 – – 0.1619
Extended Weibull 0.4189 1.0212 10.2778 – – 0.1057

Table 3. Log-likelihood, AIC, AICC, BIC, HQIC and SIC values of models fitted.

Model L AIC AICC BIC HQIC SIC
OGE-FEW -29.2980 66.5960 68.8182 71.1380 10.5590 71.1380
Flexible Weibull -83.3424 170.6848 171.2848 172.9558 12.5416 172.9558
Weibull -85.4734 174.9468 175.5468 177.2178 12.5915 177.2178
Modified Weibull -85.4677 176.9354 178.1986 180.3419 12.6029 180.3419
Reduced additive Weibull -86.0728 178.1456 179.4088 181.5521 12.6168 181.5521
Extended Weibull -86.6343 179.2686 180.5318 182.6751 12.6296 182.6751

Table 2 gives MLEs of parameters of the OGE-FWE and K-S Statistics. The values of the log-
likelihood functions, AIC, AICC, BIC, HQIC, and SIC are in Table 3.
Substituting the MLEs of the unknown parameters ϑ ,γ,α,β into (6.7), we obtain estimation of the
variance covariance matrix as the following

I−1
0 =


6.773×10−3 4.189×10−4 −3.945×10−3 −1.65×10−3

4.189×10−4 4.308×10−4 −4.871×10−4 −0.013
−3.945×10−3 −4.871×10−4 3.343×10−3 0.017
−1.65×10−3 −0.013 0.017 0.806

 .

The approximate 95% two sided confidence intervals of the unknown parameters ϑ ,γ,α and β are
[0,0.230] , [0.072,0.154] , [0.125,0.351] and [0.31,3.83], respectively.

The nonparametric estimate of the survival function S(x) using the Kaplan-Meier method and its
fitted parametric estimations when the distribution is assumed to be OGE-FWE, FW, W, MW, RAW
and EW are computed and plotted in Figure 4.

Fig. 4. The Kaplan-Meier estimate of the survival function for the data.
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Figure 5 gives the form of the hazard rate h(x) and cumulative density function cdf for the OGE-
FWE, FW, W, MW, RAW and EW which are used to fit the data after the unknown parameters
included in each distribution are replaced by their MLEs.

(a) h(t) (b) cdf

Fig. 5. The Fitted hazard rate and cumulative distribution function for the data.

We find that the OGE-FWE distribution with the four - parameters provides a better fit than the
previous new modified a flexible Weibull extension distribution(FWE) which was the best in [4]. It
has the largest likelihood, and the smallest AIC, AICC, BIC, HQIC and SIC values among those
considered in this paper.

8. Conclusions

We proposed a new distribution, based on odd generalized exponential family distributions, this
distribution is named the odd generalized exponential flexible Weibull extension OGE-FWE dis-
tribution. Some its statistical properties are studied. The maximum likelihood method is used for
estimating the parameters model. Finally, we introduce an application using real data. We show that
the OGE-FWE distribution fits certain well known data sets better than existing modifications of
the Weibull and flexible Weibull extension distributions.
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