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Abstract 

 

In the present paper an attempt has been made to study the inter–and intra-

block estimation of treatment effects contrasts with random block effects in 

the context of balanced ternary designs. The analysis is illustrated through 

examples. 
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1. Introduction 

 

Balanced n-ary designs were introduced by Tocher (1952). In such a design each entry in the 

incidence matrix can take any value of the „n‟ possible values, usually, 0,1,2,.., (n-1). If n=3, we 

get a ternary design. Billington(1984,1989), Meena and Mangla(2006), Sharma, Singh & 

Roshni(2013) give results on the construction of balanced ternary designs. 

 

In the present paper an attempt has been made to study the inter–and intra-block estimation of 

treatment effects contrasts with random block effects in the context of balanced ternary designs.  

The term recovery of inter-block information was first coined by Yates (1939). Generally, the 

experimental units are partitioned to eliminate the heterogeneity of the experimental units (eus) in 

such a way that the eus within blocks are as homogeneous as possible. Because of the variability 

of the block totals, the initial estimates of the treatment contrasts were based on contrasts within 

blocks neglecting the information contained in block totals. If, however, the block totals are not 

that heterogeneous, the loss of information on treatment contrasts can be recovered by treating 

block totals as observations. According to Rao(1947),  “If the ratio of the variances for inter-and 

intra-block comparisons is sufficiently greater than 1, these estimates from incomplete block 

designs will, of course, be considerably more accurate.” 

 

Bose(1975) worked on combined intra-and inter-block estimation of treatment effects in 

incomplete block designs.Searle(1986) dealt with the case of block effects being treated as 

random;estimators of treatment effects contrasts were derived, along with their variances, and the 

results were applied to balanced incomplete blocks to yield an expression for the inter-and intra-

block estimator of a treatment effects contrast. 

 

The organization of the paper is as follows: In Section 2, we introduce some useful definitions and 

preliminaries. Next in Section 3, we deal with two useful models viz., Fixed Effects Additive 

Model [FEAM] and Mixed Effects Additive Model [MEAM] in the context of Ternary Designs. 

The data analysis under these two models are carried out  separately in this section. In section 4, 

combined data analysis is presented.  

 

2. Definitions and Preliminaries 

A Balanced Ternary Design (BTD) with parameters [v,b,r, k,        ,   ,    ,     and    ] is an 

arrangement of „v‟ treatments in „b‟ blocks – each of size „k‟- whose incidence matrix is given by 

N=     , where     is the number of times the i-th treatment occurs in the j-th block and 

   =0,1,q(  ) and the elements of the matrix     =      satisfy the following conditions:  

(i)    =0, if the i-th treatment does not occur in the j-th block, 

          =1, if the i-th treatment occurs in the j-th block exactly once, 

          =q, if the i-th treatment occurs in the j-th block exactly q   ) times; 
     every treatment is replicated r times in the entire design; 

(iii) each block contains a set of „t‟ treatments exactly once each and another distinct set of „s‟ 

treatments exactly qtimes each so that k = t + qs, t + s   v; 

(iv)    is the number of blocks that any arbitrarily specified treatment occurs once in each such 

block; 
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             (v)   is the number of blocks that any arbitrarily specified treatment occurs q times in each such 

block; 

(vi)     is the number of blocks that any pair of arbitrarily specified treatments occur together 

once each exactly in each of these blocks; 

              (vii)    is the number of blocks that any arbitrarily specified treatment occurs once and any other 

arbitrarily specified treatment  occurs q(≥2) times in each of these blocks; 

              (viii)    is the number of blocks that any two arbitrarily specified treatments occur each q times 

in each of these blocks.  

Then it is seen that the design parameters [v, b, r, k,t, s,    ,  ,    ,    and     ]satisfy the 

following conditions:  

(ix) bk=vr,  (x) r =  +q  ,(xi) k = t + qs, (xii)   (k-1)=(v-1)(   +   ), 

(xiii)   (k-q)=(v-1)(   +    ),  q(≥2). 

Further, it follows that  

(xiv) λ=   +2    +      =∑   
           for     = 1, 2, …, v, 

(xv)  =  +    =∑    
  

    for each  =1, 2, …, v , 

 

 (xvi)     =[
   
   
   

]. 

 

 

 

3. The FEAM & MEAM Models and ANOVA Tables 

 

3.1. Mixed Effects Additive Model [MEAM] and Related ANOVA Table 

 

First we consider Linear MEAM. Let      be the observation corresponding to u-th experimental 

unit in the j-th block to which the i-th treatment is applied. We then stipulate the following model 

 

                                        =μ+  +  +    ; i=1,2,…,v; j=1,2,…,b; u=1,2,…,k                                (1) 

 

where  is the general mean effect,   is the fixed treatment effect,   is the random block effect 

with mean zero and variance   
 ,     ‟s are random errors assumed to be iid with mean zero and 

variance   
 . The random errors     ‟s and the random block effects   ‟s are supposed to be 

uncorrelated and normally distributed. 

 

Under MEAM, we want to explore the contribution of block average contrasts towards estimation 

of treatment effects contrasts. These are referred to as „inter-block‟ estimates of treatment 

contrasts. Therefore the source of information on treatment contrasts can be obtained from the (b-

1) block mean contrasts. Besides these, the within block observational contrasts are known to 

yield „intra-block‟ estimates of treatment effects contrasts. 
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Notations: 

 

Denote by  ̅ ,…, ̅  the block means for b blocks of the design. Next, we introduce elementary 

block mean contrasts below. Since the blocks are proper and binary, under a mixed effects model, 

the block mean contrasts will involve only the treatment effects contrasts in their model 

expectations. This will provide information [and related inference] on treatment effects in terms 

of their contrasts. This is referred to as Inter-Block Analysis. We start as follows: 

 

  = ̅   ̅ , ….,     = ̅   ̅ , where  =           
  which follows     (      ) with 

     =E(     )=E  ̅   ̅   ,  
 =2,3,…,b.  

 

Explicitly, 

E(  )=E  ̅   ̅ )=
 

 
[∑      

 
    ∑      

 
   ] 

=
 

 
[∑     

 
          ]  

and so on; 

E(    )=E  ̅   ̅ )=
 

 
[∑      

 
    ∑      

 
   ]=

 

 
[∑     

 
          ]. 

Since block sizes are same, it is clear from the above expression that E(  ) is a treatment contrast 

for each i.  

Var(  )=Var( ̅   ̅ )=Var( ̅ )+Var( ̅ ) [since all the blocks are independent] 

=
 

  
(    

     
 ) [since var(Bi)= 

   
     

 ] 

=2(  
    

   ). 

Hence Var(     )=2(  
    

   ) for   =2,3,…,b. 

Cov(     )=Cov( ̅   ̅   ̅   ̅ ) 

= Var( ̅ )-Cov( ̅   ̅ )- Cov( ̅   ̅ )+ Cov( ̅   ̅ ) 

=   
    

   -0-0+0 [since var(Bi)= 
   

     
 ] 

=   
    

     
Hence 

Disp( )=

[
 
 
     

    
        

  
  
 

 
 

   

   
  

  
 

 
      

    
    ]

 
 
 
 having order (b-1) (b-1). 

  =(  
  

  
 

 
) [   ]=    =∑   , say. 

Here    =(  
  

  
 

 
),   is the identity matrix of order (b-1) and   is the matrix of all elements 1‟s; 

 =[   ]. 
 

Now let us define    k , where  =              
  and k is the constant size of the blocks. 

Then    relates to the elementary contrasts among block totals. Our model based on block total 

contrasts is given by:  

                                                       (            )                                                                  (2)  

           

where A is the coefficient matrix of   of order (b-1)×(v-1) and  =               
  with 

      =  -    ,  
 =2,3,…,v; 
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E(  ) = 

[
 
 
 
∑            
 
   

∑            
 
   

 
∑            
 
   ]

 
 
 
=  , 

 

where 

  

               n22– n21      n32– n31…  nv2– nv1 

   A =       n23– n21   n33– n31…    nv3– nv1 

                       …………………………………………….. 

               n2b– n21    n3b– n31…     nvb– nv1  

 

                                 

 

                              Disp(  )=Disp(kD)=  ∑   =                                                                (3) 

 

The Normal Equations for the model (2) are given by 

 

                                                          =                                                                       (4) 

  

We may refer to Kshirsagar (1983) for the derivation of (4). 

Therefore, BLUE of   is 

 

                                   ̂=(      )
  
        where    =(  

 
 ⁄ )                                    (5)                                                                                                 

 

Further, E( ̂)=E(      )
  
          =  

and 

                             Disp( ̂)=D{(      )
  
       } =      (      )

  
                         (6) 

 

The following ANOVA Table is in order. 

 
Table 1: ANOVA table for Inter-block Analysis 

 
Source of variation   d.f.         Sums of squares 

   

Treatment contrasts   v-1   ̂           

Error   b-v    By subtraction 

  Total    b-1          
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Remark 1. It must be noted that in the above ANOVA Table, Mean Squares (due to) Error [MSE] 

provides unbiased estimation of      =  (  
  

  
 

 
) with respect to Model (2).  This is because 

the error variance based on block totals/means under MEAM is a linear combination of pure error 

variance [  
 ] and random block effects variance [  

 ].  

 

Remark 2.When in the model (1) the block effects are treated as fixed effects, the model will 

change to one involving the fixed block effects and hence no “extra” information will be 

available for estimation of treatment effects contrasts from the block totals or block total 

contrasts. This is discussed in the next subsection in the framework of (Fixed effects additive 

model (FEAM). 

 

3.2 Fixed Effects Additive Model [FEAM]& related ANOVA Table 

 

We now turn back to the same model as in (1) taking   as the fixed block effect [for each block] 

so that we are in the framework of FEAM. We first develop a general theory for estimation of 

treatment effects contrasts based on „within block contrasts‟. For this, we closely follow the use 

ofC-matrix in the set-up of block designs. We refer to any standard book on ANOVA-based 

analysis of block designs.  

 

Recall that in its most general set-up of a Balanced Ternary Design, block size „k‟ has the 

representation: k = t + qs so that in effect, there are t distinct treatments each with a single 

appearance and s distinct treatments each with replication number q in each block of the design. 

Since q 2, there are (q-1) „pure‟ errors arising out of these replications for each of the s 

treatments and hence there are s(q-1) degrees of freedom attributed towards estimation of error 

variance   
   The computation of corresponding sums squaresis pretty straightforward. Besides, 

we also have (t + s – 1) treatment contrasts from within each block. Together, they contribute 

towards a collection of b(t+s-1) treatment contrasts and only (v-1) treatment contrasts are linearly 

independent. We are thus led to the identity  

n-1 = b(t+sq) – 1=bsq + bt – 1 = b(t+s-1) + bs(q-1) + (b-1) where 

(i)  b(t+s-1) = number of within block observational contrasts leading to treatment contrasts and 

sources of error [for estimation of error variance   
  ]; 

(ii)  bs(q-1) = number of within block observational contrasts leading to pure errors [again for 

estimation of error variance   
 ]; 

(iii)  (b-1) = number of block total [or block mean] contrasts leading to estimation of treatment 

effects contrasts [under MEAM] and sources of random block effects error variance together with 

[observational] error variance [in other words, estimation of (  
  

  
 

 
)]. 

 

We will now work with the set in (i) to provide intra-block estimates of treatment effects 

contrasts under FEAM which suggests that only such observational contrasts are relevant. We 

will end up with ANOVA Table based on Intra-block Analysis. 

 

In standard notations, we refer to the „Reduced Normal Equations‟, Cτ=Q where 

C = r I –    / k and    is as shown in (xvi) above. Further, Q=T – NB/k, T being the vector of 

treatment totals and B being the vector of block totals. The ternary design is balanced and 

therefore, the C-matrix is completely symmetric [having all diagonal elements equal and also all 

off-diagonal elements equal]. We have 
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C = [r – (Δ-λ)/k]I – λJ/k where r = constant treatment replication number; λ = 

   +2    +     and  =  +    . Note that    1 has two representations:   1=k[      ]1 

= rk1=[Δ + (v-1) λ]1 and, hence kC1=[rk - Δ -λ(v-1)]1=0.  Further,   1 = 0. 

 

Therefore, rank (C) = v-1, as expected and the Moore-Penrose g-inverse of C is easy to work out.  

Clearly, SS due to Treatment Contrasts =      and SS due to pure error [  
  ] derives a 

contribution from  SS within blocks [with b(k-1) df ] minus SS due to Treatment Contrasts [with 

v-1 df]. This SS has 2 components: SS due to pure error derived from within treatment q 

replications for s treatments in each block [with bs(q-1) df] and SS due to excess of total Within 

Block SS over SS due to Treatment Contrasts.  

 
Table 2:  ANOVA table for Intra-Block Analysis 

 
Source of Variation                 d.f.                  SS 

  

Pure Errors bs(q-1) ∑∑∑       ̅   
 

   

 

Treatment Contrasts        v-1       

Errors from within blocks b(k-1) –bs(q-1)  

– (v-1) 

by subtraction 

Total Within Blocks         b(k-1) ∑∑∑       ̅    
 

   

 

 

 

It must be noted that with respect to ANOVA Table 1 for Inter-block Analysis, Total Sum of 

Squares, shown as         , simplifies to ∑         ̅   
  which carries (b-1) df. Thus the 

splitting of Total SS as also of the total degrees of freedom (bk-1) is well understood.  

At the last leg, we can work out combined inter- and intra-block estimates of the treatment 

contrasts. This we do with respect to an illustrative example involving growth of paddy in an 

agricultural experiment involving 3 treatments.  

 

4. Combined Intra- and Inter-block estimates 

Here we consider the BTD with parameters: v = k = 3, b = r = 6,             
  =2,    ,      ,       and      . The design has the following block compositions:  

             B1=(1,2,2), B2=(1,3,3), B3=(2,1,1), B4=(2,3,3),B5=(3,1,1), B6=(3,2,2). 

We assume the following figures for the yield of paddy [in suitable unit].  

Block I:   = 9.7,     = 8.3,    = 9.1;            Block II:    = 9.3,     = 8.4,     = 9.0 

Block III:    = 9.3,     = 9.4,     = 10.2;      Block IV:   =9.6,     =8.5,     =9.1, 

Block V:   = 9.3,     = 9.4,     = 10.6;        Block VI:    = 8.2,    = 8.4,     = 9.6 

 

Under the MEAM, we want to explore the contribution of block average contrasts towards 

treatment effect contrasts. Here we see that there are 5 linearly independent block average 

contrasts viz.,    = ̅  - ̅  ; j=2,…, 6 and there are only 2 treatment contrasts viz.,   =       
  

with   =  -    ,      =  1-  . Further,   = 3 . 
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Here A=

(

 
 

       
        
        
        
         )

 
 

 and W = I + J of order 5. It turns out that  

 ̂    = [   
 –   

 +   
  – 2  

  + 2  
 ] / 6 = -0.55; 

 ̂      [  
   – 2  

 + 2  
  –   

 +   
 ] / 6 = 0.4166. 

Disp( ̂) = 
 

 
(
  
  

)    where    =  
  

  
 

 
   

ANOVA Table is displayed below. We find that estimated    is given by ERROR MSE/9 = 

6.8234/27= 0.2527.  

Hence, estimated Var ( ̂      3 times estimated                      Var ( ̂   . 
 

Table 3: ANOVA Table for Inter-block Analysis 

 

Source of variation d.f. Sums of squares 

   

Treatment contrasts v-1=2  ̂          =1.8099 

Error b-v=3 6.8234 [By subtraction] 

Total b-1=5             =8.6333 

 

Turning back to the Intra-block analysis based on FEAM, we have obtained:  

  = 1.87,  = 0.07,    = -1.94; C = (1/3) [12 I – 4 J];  

C+ = (1/12)[3I – J]; 

 ̂= (0.4675, 0.0175, -0.4850)‟;  

(a) Tr. SS =  ̂  =1.8163 with 2 df. 

(b) Error SS from within blocks [by subtraction] = 2.8772 with 4df. 

(c) Further to this, Pure Error SS = 0.32 + 0.18 + 0.32 + 0.18 + 0.72 + 0.72 = 2.34 with 6 df 

It follows that (a) – (c) add up to:  

(d) Total Within Blocks SS = ∑ [∑ ∑     
 

     ̅   
 ]  =4.6935 with 12 df. 

Below is the full ANOVA Table.  

 
Table 4: ANOVA Table for Intra-Block Analysis 

 

Source of Variation Df SS 

Treatment Contrasts 2 1.8163 

Pure Errors 6 2.34 

Errors from Within blocks 4 2.8772 

Total Within blocks 12 4.6935 
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From Intra-block Analysis : 

  
  estimated = Error SS from the above 2 sources / (6+4)= [2.8772 +2.34]/ 10=0.5217.Finally, 

based on Intra-Block Analysis,  ̂ =  ̂  –  ̂ = 0.4500;  ̂ =  ̂ –  ̂  = 0.9525 with respective 

estimated variances computed as  
 

 
         

  estimated = 0.2608. Again, from Inter-block 

Analysis,       (  
  

  
 

 
)  is estimated by the Error MS = 6.8234/3 = 2.2745.Therefore, 

  
 estimated = [2.2745 – 3 x 0.5217]/9= 0.0788. 

 

Combined Intra- and Inter-block Estimates of Treatment Contrasts  

Since the observational contrasts and the block average contrasts are independent, the combined 

intra-and Inter-block estimation of treatment effects is given by 

 

  ̂    = (

 
  ̂      

  
⁄

)

 
 
 

(

 
  ̂      

  
⁄

)

 
 

(   ⁄ )      ⁄  
. 

 

Hence,      ̂      = [(-0.55 / 0.7582) + (0.4500/0.2608)]/[(1/0.7582) + (1/0.2608)]= 0.1940;  ̂      = 

[(0.4166 / 0.7582) + (0.9525/0.2608)]/[(1/0.7582) + (1/0.2608)]= 0.8153. Further, estimated 

variance is the same for both and it is given by 0.1940. 

 

Remark 3: As a final point, it may be noted that it is a trivial exercise to display Combined 

ANOVA Table for Splitting of Total SS with (bk-1) = 17 df. This follows from Tables 3 and 4.  
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