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Abstract

Through this chapter, we introduce a new class of two-piece asymmetric normal distribution suitable for asymmetric and
plurimodal situations. We study some important aspects of this distribution by deriving explicit expressions for its
distribution function, characteristic function, reliability measures etc. A location-scale extension of this class of distribution
is considered and carried out the maximum likelihood estimation of its parameters. Further we have fitted the distribution to
areal life data set for illustrating the usefulness of the model.
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1. Introduction

The term skew normal distribution (SND) refers to a parametric class of probability distribution that extends the normal
distribution by an additional shape parameter which regulates skewness. The first systematic treatment of the SND in the
scalar case was done by Azzalini (1985). He defined the SND as follows:

A random variable X is said to have skew normal distribution with skewness parameter =(C , )

6 R —oo oo | denoted by

SND(6). if its probability density function (p.d.f.) g,(x; @) is of the following form. Forx € R ,

6 6
gi(x; )=2f(X)F( x) (1)

where f(.) and F(.) are respectively the p.d.f. and cumulative distribution function (c.d.f.) of a standard normal variate. The

SND has been further studied by Azzalini (1986), Henze (1986), Azzalini and Dalla-Valle (1996), Branco and Dey (2001).
Arnold et al. (1993) discussed an application of SND to psychometric data, Ball and Mankiw (1995) obtained the SND as a
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natural choice for the distribution of the relative price changes that influence the rate of inflation. A salient feature of the
SND is that it is suitable for unimodal distributions and do not include multimodal distributions. Buccianti (2005) remarked
that normal and skew normal models are not adequate to describe the situations of plurimodality. He investigated the shape
of the frequency distribution of the log ratio, In(cl-=Na+) whose components are related to water composition for 26 wells.
Some SND related models that accommodates significant departures from unimodality have been developed in the literature.
For example see Ma and Genton (2004) or Kumar and Anusree (2011a, 2013, 2014, 2015a, 2015b). Kumar and Anusree
(2011b) defined an asymmetric version of the normal distribution as follows:

A random variable Y is said to follow the asymmetric normal distribution if its p.d.f. takes the following form. Fory € R ,

g A.e) = fla+20-a)F ()] @)
in which A€ R and € [0,1]. A distribution with p.d.f. (2) we denoted as AND(A, @) .

For getting more flexible asymmetric normal models, some researchers recently studied two-piece versions of skew normal
distributions. For example see Kim (2005), Jamalizadeh et. al (2012), Kumar and Anusree (2013) and Salehi et. al (2013).

The main objective of the present article is to introduce a two-piece version of the AND(A, @) as an asymmetric class of

distribution suitable for tackling plurimodal situations. Throughout in this chapter we denote this class of distribution as
"generalized two-piece asymmetric normal distribution (GTAND)". The paper is organized as follows. In section 2 we
present the definition of GTAND and derive some of its important properties. In section 3, we discuss some concepts
regarding the mode of the distribution. In section 4, we obtain expression for certain reliability measures such as failure rate,
reliability function and mean residual life function of the GTAND. A location-scale extension of the GTAND is considered
in section 5 and obtained some of its important properties. Further, the parameters of the GTAND are estimated by method
of maximum likelihood in section 6 and a numerical illustration is given in section 7.

We need the following shorter notation in the sequel. For any reals a, b and k such that bx+k >0

x2+y2
cobx+k _T
e
S(ahb)=| | —_—_dydx. 3)
, ~£ l- 27

2. Definition and Properties
In this section, first we define a wide class of two-piece asymmetric normal distribution and discuss some of its important
properties.

Definition 1. A random variable Z is said to follow a two-piece asymmetric normal distribution with parameters

/1,,/12 € R=(—o0,0), e [0,1] ifits p.d.f h(z ﬂl,ﬂQ,OZ) is of the following form. Forz € R,
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f@Dla+6(4,4,,0)F(4,2)],2<0
h(Z;ﬂl’2’29a) = (4)
f@la+d4,4,,)F (4,2)],220
where 5(11 R /12, a)=2xn(l-a)[r - '[:iln_l (2'1) + tan_l (/12 )]_1 .
Note that (4) is a proper probability density in the light of the following lemma.
Lemma 1. If U is a standard normal variable, then for any real A and k.

E[F(/1IUI+kO)]:F{ ko }+2§( ko ,/1],
\/1+/1 \/1+/1

where for any a€ R and b >0,

cobx _427
e
E(ayb) = dydx. (5)
! { 2

The distribution of a random variable Z with p.d.f. (4) we denoted as GTAND(A,, A,, &) . For some choices of A,, A,
and « the p.d.f. given in (4) of GTAND is plotted in Figures 1 and 2.

Clearly, the GTAND(A,, A,,&) contains the following special cases.

1. When ﬂl = ﬂ, ﬂz = p/7. and & = 0, the distribution with p.d.f.(4) reduces to the two-piece skew normal distribution of

Kumar and Anusree (2013)with parameters A and P,

2. when /?1 = /7,, /?.2 =A , the distribution with p.d.f.(4) reduces to the skew normal distribution of Kumar and Anusree
(2011b),

3. when , ﬂ1—>—0°,/?.2—><>° orﬂ1—>—w,/?7—)—w,a=10r/?.l—)w,ﬂz—)w,0!=10rﬂl=0,/?.2 =0 the

distribution with p.d.f.(4) reduces to the standard normal distribution,

4. when A, =—A, A, =4 and @ =0, the distribution with p.d.f.(4) reduces to is the skew normal distribution of Kim
(2005) and

5. when either 4, &> —c0, L, >—c0, @ =2 or 4, >0, A, 50, @ =0TPSND(A,,A,,), the distribution with
p.d.f.(4) reduces to the half normal distribution.
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Result 1. If Z follows GTAND(A,, A, ) with p.df h(z; A4, A,,@), then Y, = —Z follows GTAND(=A,,~A,, ).

Proof.For any y, € R, the p.d.f. i (y,; A, A,,&) of Y, is given by

dz

AV AVINAEY (G yl;ﬂpﬂz,a)ay_

fEyla+0(A A, )F(=4,y,)],—y, <0
f(_y1)[a+ 5(/11,/12,“)}7(_/12))1)],_)71 20

FfOPla+dA, A, )F(-14,y)].y, <0

FODla+ 64, A, )F(=A4,y)],y, >0

which shows that ¥, = —Z follows GTAND(-4,,—4,,@) .

1.2

Normal

08 -

GTAND

Figurel: Probability plots of Normal, SND and GTAND
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09

= = =h{z-0.65,065,0.1)
= = =h{z-0.650.650.58)
y ~hiz;-0.65,0.65,0.78)

h{z;-0.65,0.65,0.005)

Figure2: Probability plots of GTAND(—0.65,0.65,&x) for different choices of & =0.1,0.58,0.78,0.005.
Result 2. If Z follows GTAND(A,, A,, &) with p.d.f. h(z; A, A,, &), then Z* has p.d.f. (6).
Proof. The p.d.f. 1, (y,; A4, A,,&) of Y, is given by

dz
dy,|

hz(yz;ﬂl,ﬂz,a)=h(z;z1,zz,a)‘

S SN kel F Y S )

dz
dy,

2

_ SNt 8 b F (A [T [ ([ )a+ 8k 2, ) F (A, 3]
2% 2.
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_ ( g_g ][2a+ S A a)F(=4, NESEY OGN ) ©)

Remark 1. Note that when ﬂ,, =0 and ;i2 =0, (6) reduces to the p.df of a Chi-square variate with one degree of

freedom.

Result 3. [fZis a GTAND(A,, A,, @) variate, then for any reals d,, d, such that d, <d,,

o[ F(d,)—F(d)]+ Ok, 4, ) [G(d,,A)-Gd,,A)].d <d, <0

4,

P(d,<Z<d,)= 502
aAF(d,)-Fd)l+_ "
e

DG, 1) -Gd, A))0<d, <d,
@)

where G(.,A) is the distribution function of the SND(A) .

Proof. For any d, <d, <0, by definition,

P(d, < Z <dy) = [h(z; 4, 4y, @)dz

4

dy

= [taf )+

4

04,4, a)
_2_2f(z)F(/Lz)]dZ

- a[F(d»—F(dl)]+w[c(dz,ﬂq)—G(dm)]

®)

Now, for the case 0<d, <d,,

P(d, < Z <dy) = [h(z; 4, Ay, )z

1

= dj lof (z)+w2 F(D)F(A2)ldz
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I PR )
=alF(d,) F(d1)]+_2_[G(d2’2‘z) G(dl’lz)]

)]
Thus (8) and (9) implies (7).
Result 4. The distribution function H (z;A,,A,, &) of a random variable Z with p.d.f. (4) is the following.
oA, A,
ar )+ 22D [P () - 262} 2 <0
H(Z;Z«l’ﬂ«z’a) =
o4, A4, ) (A
oF (2)+ (4,4, ){F(Z)_tan (4) | tan” ( 2)_2§(Z,/12)}Z20
2 V1 V1
(10)

where &(a;b) is as defined in (5).

Proof. Let Z be a random variable with p.d.f. (4) and H (z; /11 5 ﬂz , &) be the cumulative distribution function. Then

H(z)= L.z<0 (11)
LZ,zZO’

where

L= jOg”(t)dt +W jf(t)F(llt)dt

- aF<z)+W{G<&@— [G(0.4)~G(z.A)T}

= a’F(Z)+ 5(21’2/'12’0’/) (14' tan_l(/%)j_i_ 5(11,2/’12,05) (F(Z) 1 tan_l(ﬂl)

2 T 2 T

and
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L= ai Foydr+ S ® jz FOF(Andt

= [af ()t + 8. 2.0) [ FOF (Adi+ [of 0)di+3(Ay. Ay @) [ £ () F (Aut)dt

_ aF(z)+%2’12’_“)G(0,m+ w[c(z,@—cm,@]

=aF(z)+5(&’;“2’a)(;—tan;(ﬂ‘q+ 5(/1";2’0[)(F(z)— 4 tan (/12) —26(z, /77)]

13)

Now on substituting (12) and (13) in (11) we get (10).
In order to obtain the characteristic function of GTAND(A,, A,, &), we need the following lemma from Ellison (1964),

Lemma 2. For any a,,a, € R and a standard normal variable Z with distribution function F

E{(F@Z+a)}=F|__“ |
[(1+a;)
Result 5. The characteristic function, @,(t) of a random variable Z following GTAND(A,, A,, &) with p.d.f (4) is the
following, forany t€ R and i = [—1.

2

0,(1)=¢ *la+ S Ao ) F (501~ (A e [E, (it )=, (it )] )

where, 51 = /1' .8 = it;ij , for j=1,2 and fk (a,b) is as defined in (3).

1+ 4

Proof: Let Z follows GTAND(A,, A,, &) with p.d.f. (4). By the definition of characteristic function, for any € R and

i=\/—_1,wehave
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0,(r)= Ele"”)

oo

j e“h(z; A, Ay, @)dz

—oo

je"“f(z)[a+ S(A, Ay, &) F (A 2)1dz— Iei’zf(z)[a+ O(A, Ay, ) F (A4 2)ldz

+ e f@la+ 8, Ay ) F (A,2)1dz
0

5 (z-in)? (z-in)?

—e T a+§(ﬂq,ﬂz,a)je F;%Z)dzdz—é'(ﬂ.l,ﬂz,a)je \/;&z)dz

(z-in)?

Te T F(ALzdz
+8(4 Ay ) £
NP 4

On substituting z —it = x, @, (t ) reduces to the following.

2

9,(t)=¢ 2[a+5(4, A, )

]" e TF(A, (x+it))dx]
: NEZg
-8 A [ © %F(j;;+it))dx+5(ﬂ1’ﬂz,a)j ¢ TF(ﬂjz(;it))dx

t

= e‘f{m 8(h, Ay, Q) F (i61) = (A, Ay, 1) Tf(x)F(ﬂl(th))dx

—it

+8(A 2. | f(x)F(ﬂg(th))dx}

—it
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in the light of Lemma 1. Thus we have

2

~ _1‘2 o ﬂlx+x1
0,(t)= e *[a+8(h, A, ) F(im)] -84, Ay, a)e 7jf(x){_;+ | f(u)du]dx+

—it

—it

2 ﬂzx-%—sz
5(%%ﬂ)eﬂf(x){%+ ! f(u)du}dx,

which implies (14).

3. Mode

Result 6. The p.d.f. of GTAND(A,, A,, &) is bimodal , if
(1. 4, <0and 4, 20,
). 4,20 or A4, <0 provided and k;(z; 4,4, @) +k,(z:4,,4,,&) L0,

3). 4,20 or 4 >0 provided and kl(z;ﬂ.l,ﬂ,z,a)+k2(z;ﬂl,ﬂz,0{)20,

and

). A4, >0 and 4, <0 such that k,(z;4,, 4, ) +k,(z;4,,4,) =20 and

ki (z: 4,4, @) +k,(z; 4, 4,2) <0,

where
A f (A2)
k(z; 4.4, a) = , 15
A ) = e SR e F O] )
AS(A, Ay, 00) [P (Az2)
ky(z; A4, A,,00) = , 16
A ) = e S T ) PR (e
ky(z A, A4,,0) = A (&) a7

[a+ 0, 4, a)F (4]
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and

k(A A ay= 20 & f (D)

. (18)
[a+0(4, 4, @) F(4,2)]

Proof: In order to show that there exists unimodes in regions of Z € (—o0,0] and z € [0,00), it is enough to show that the

second derivative of h(Z; /7.1, /12’ Q) is negative for all & , /11 and /7.2 in the respective region.

For Z€ (—00,0), we have

g?{log[h(z;ﬂmﬂz,a)]ﬁ—1—/?15(/%,22’a)[kl(z;ﬂq’ﬂz,a)+k2(z;ﬂq,ﬂ2,a)] (19)

and for 7€ [0,%0), we have
dZ
o lloglhlz: 4 2o, @)l = —1- .82, Ao 0l (23, A, 00+ Ky (2320, o, @),
Z (20)
where kj(z;ﬂl,ﬂz,a) for j=1, 2, 3, and 4 are as given in (15) to (18). Note that f(A4,z) and F (A z) are positive for all

Z€ R and hence [+ (A, A,,a)F (A, Z)] is positive for all @ >0. For z<0: k,(z;4,,4,, Q) is negative always
and k,(z; A, A,,@) is positive or negative according as 4, >0(<0). For A, <0 (19) is negative and hence the density
is unimodal. For A, >0, (19) is negative if k,(z;4,,4,, @) +k,(z; A4, A,, @) < 0. Similarly for 720, k,(z; 4, ) is
always positive and k,(z; A, @) is positive or negative according as 4, > 0(<0). For 4, 20, (20) is negative and thus
the density is unimodal and for A, <0, (20) is negative if k,(z; 4, A,, &) +k,(z; 4, A,,) <0 . Thus the proof of the

result follows.

As a consequence of Result 6 we obtain the following result.

Result 7. The p.d.f. of GTAND(A,, A,, @) is plurimodal, if
(1) 4, £0 or A4, <0 provided and k,(z;4,, 4, @) +k,(z;4,,4,,) >0,

) A, 20 or A4, >0 provided and k,(z;4,,4,, @) +k,(z;4,,4,,) <0,

and
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3) ﬂl >0 and 4, <0 such that kl(z;&,ll,a)+k2(z;/11,lz,a) >0 and ky(z; 4, 4,,0) +k,(z;4,,4,,) <0

4. Reliability aspects
Here we derive some properties of the GTAND(A,, A,, &), which are useful in reliability studies.

Let Z follows GTAND(A,, A,,&) with p.d.f.(4). Now from the definition of reliability function R(f;A4,,4,,) and

failure rate 7(t; /L s ﬂz, &) of Z we obtain the following results.

Result 8. The reliability function R(t; A,, A,, &) of Z following the GTAND(A,, A,, &) is

1—aF (1) —M[F(r) —2&(t,A)}t <0
R(t; A, A, ) =
()~ S A @ {F(t)_ tan”(4) , tan” (4,) —2§(t,/12)}t S0
2 T

(21
where f(l‘,.) is as defined in (5) .

Proof follows from the definition of reliability function R(t;4,,4,, @) =1—-H(t; A4, A,,&) where H(t; 4, A,,Q) is as

given in Result.4.

Result 9. The failure rate r(t; ﬂ1, /?2 , Q&) of Z following the GTAND(Z, Q) is

fOla+6(4, 4, ) F (A41)]

,1<0
1—aF(t)—W[F(t)—2f(t,ﬂl)]

Kt A, Ay, @) = FOla+ 50, Ay, )F (Aob)] =2

1—G’F(I)—W[F(f)—fl[tan_l(ﬂz)'i';tan_l(ﬂz)—zeg(l,ﬂ«z)}

,t20

ht; 4,4, a
Proof follows from the definition of failure rate, r(¢; A, &) = % where R(t; A, A,,@) is as defined in
t; 9 9a

Result 8. Further we derive the following result regarding the mean residual life function of GTAND(A,, 4,, ) .

Result 10. The mean residual life function(MRLF) L(t; /1,, ﬂz, Q) of GTAND(/L, ﬂz, Q) is
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2

_ _ 1 2o *
w2, 24, a) = rEA A | o +8(A, A A, ([F(AD+FAD]f @)

4 1-F\t 1+ X |- % 1-F\t 1+ —t (23)
by Nz

A
in which for j=1,2 8, = !
1+

J
Proof. By definition, the MRLF of Z following the TAND(A, &) is given by

ult, A, ,,a)=E(Z~t1Z>1)

=E(Z|Z>t)—t

where,

EZ|Z>1) = W%Q_a)jzf(z)F(ﬂqz)dz+W%Z_a)jzf(z)F(ﬂzz)dz+

8, 2,0 | Sha) 7

RE ) !zf (2)F (A 2)d * R ) j £(2)F(L2)dz

1 20{6{7

- R(t;/ll,ﬂz’a) \/ﬁ +5(ﬂq,ﬂ2,a)(]1+12) (24)

in which

I, ==[f(F (A2)dz

=[FANOFO1=A[f(A2) f(2)dz
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Fon fi- AT A
m\/n& @5)

and

A= F(t 1+ )] 6
i+ 2|

obtained in a similar way as in (25). Now on substituting (25) and (26) in (24), we get (23).

I = F(AL)f (1)

5. Location-scale extension

In practical situation, the location-scale extension of GTAND(;il,ﬂZ,OJ) is more relevant. So in this section, we discuss
the location-scale extension of the GTAND(A,, A,, @) and present some of its important properties similar to those we

obtained for GTAND(A,, A,, ) .

Definition 2. Let Z follows GTAND(ﬂl,ﬂZ,CZ), then X = U+ OZ is said to have an extended generalized two-piece
asymmetric normal distribution with location parameter [, scale parameter O and shape parameters /21 , ﬂz and &,

denoted as EGTAND(, 034, A,, @), if its p.d.f. is given by

lf(x‘”j a'+5(21,/12,a)F[/11 x‘”ﬂ,xw
hx 1,0, 4,4, ) == @7
lf(x—,uj a+5(ﬂq,/12,a)F(/12 x;_’uﬂ,x>,u

in which y,0 > 0,/11,2,2 € R and € [0,1].
Clearly, the EGTAND(u,0;A,, A,,&) contains the following special cases.

1. When ﬂq = /1, /?2 = ,0/1 and & =0, the distribution with p.d.f. (27) reduces to the location-scale extension of the two-

piece skew normal distribution of Kumar and Anusree (2013),

2. when ﬂq = /1, /?2 =A , the distribution with p.d.f. (27) reduces to the location-scale extension of the skew normal

distribution of Kumar and Anusree (2011b),
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3. when , /11—>—00,ll—>°° orﬂ1—)—00,12—>—00,a'=10rﬂ1%00,ﬂ2%00,a'=10r/11=0,/7.2 =0 the

distribution with p.d.f. (27) reduces to normal distribution with parameters 4 and O,

4. when /11 = —/1, /12 =A and @ = 0, the distribution with p-d.f. (27) reduces to location-scale extension of the skew
normal distribution of Kim (2005) and

5. when either ﬂ,l — —o0 | ﬂz ——oo, =2 or /11 —> 00, /12 — oo, =0 TPSND(/%,]Q,OK) , the distribution with
p.d.f. (27) reduces to the half normal distribution with parameters /4 and O .

Result 11. The characteristic function @y (t) of a random variable X following EGTAND(i, 034, A,, &) is the

following, in which for each j =1,2 and Sj = Gitﬂj. Fori= /-1 andte R,

?o? 267

o (=" T la+ A, A, ) F(i8o)]-SA, A, e =
e, ciro.4) &, ito. 4]

Result 12. The distribution function H(t)= H(l‘;ﬂ, o, /1, 5 /7.2, &) of a random variable X following
EGTAND(u,0;4,, A,, @) is the following,

aF(t_ﬂj+ (. 2o @) F[f—ﬂj_zg(t‘—“,/llﬂ,t <u
o

c 2 9
H(t) = _
aF(t_’uj+5(ﬂﬂ”12’“) F(t_ﬂj‘tan_lu‘)+ta“_l(%)—zf(t_—ﬂ,zzﬂ’tz;z
o 2 L \ O 7 d g

l‘ —
where & (—'u, A) is as defined in (5).
(o}

Result 13. The reliability function R(t)= R(t; U, 0',/21,12,05) of a random variable X  following
EGTAND(u,0; 4, A,, @) is the following,
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l—aF(Z_'uj—é‘%’lz’a) F(t_’uj—zf(t_—ﬂ,/%lﬂ,t<ﬂ
| o

(o 2 (o
R(t) = ]
J— — _1 _1 —
1—0,’F[t ,uj_é‘(llalzaa) F[I ,Uj_tan (/11)+tan (lz)_zf[t lu’lzJ:|at2,u
(o 2 (o T /4 o2

l’ —_
where 5(—”, A) is as defined in (5).
()

Result 5.4 The failure rate r(t) = r(t; 4,0, A, A,,&) of a random variable X following EGTAND(u,0;4,,A,, Q)
is the following,

f(t;“j{m S Ay, a)F(ﬂq H‘ﬂ

o

R O Y

o o

1) = f(t;“j{aﬁ 8, 2o, @)F (ﬂz t_aﬂﬂ

1—aF(t‘ﬂJ_5(%,&,a){p(t—uj_tan‘l(/ll)Jrtan‘l(/lz)_zf[t_ﬂ %H’Qﬂ
2 s

o o T T

6. Estimation

Let X|,X,,...,X, be a random sample from EGTAND(i,0; /4, A, @) with p.d.f. (27). Let X, X 5),.... X, be
the ordered sample. Assume X o <M< X (r+1)» Tor a particular r=1,2,....n. Then log-likelihood function of the sample is

the following, in which X ;. » denote the summation over the set 1 j such that
j

I, = {i:X(i) <u, fori=1,2,...,r} and I, ={i:X(l.) > U, fori= r+1,..,n}.

logL=-nlnc+3 In f{%}{m 5(11,,12,0,)F(21(x,.6—ﬂ)ﬂ+

Iy
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o

(28)

On differentiating (28) with respect to the parameters  , O, 21 , /12 and ¢ and equating to zero, we obtain the following

likelihood equations:

AN )
S

=0 (29)

X =) _Ab(A A, @)
+§( O_ﬂj d 122:[0(4_5(21’12’0()}7(’5(&—#)}]

f (’?“ (x; —ﬂ)j

n (xi —,u)2 o oA, A, a)A
—_2_+z . —z (xi_ﬂ)+

o I, o I [a+5(21,22,a)FLﬁ(xi—,u)J] o

A (-
pybia) s f("(l ﬂ)j (5, -) 2 AR DE o )
T I [0!+5(/71,/72,0€)FL/;_2(3€5_#)J] °
f(ﬂl(xi_ﬂ)j(xi_ﬂ)
~8(4., 4, 2)). ° /Lla = 31)
z [a+6(ﬂq,ﬂz,a>FL6(xi —u)J]
ﬂz(xi_;u) (xi_;u)
f( o j o
Sy @)Y, 2

L [a+ 5(/11,/?7,05)FL/12 U;”)J]
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1—2F(Mj 1—2F(Mj
> o LY c -0

{ {m&%ﬂz,aw(ﬂz“‘)” " {aw(&,/lz,a)F(WjJ @3
Let
. f[ll (x;;ﬂ)j
o {[awmq,/lz,a)F[ﬂl (x";”)ﬂ’
and
N G
| {[a+5(21,/12,a)F(/12W;/‘)J] J
. F[ﬂq (x,;,u)j ﬂ
| {[a+5(ﬂ1,/12,a)F(ﬂ1 ()“G‘/‘)J]J
and
sz F[ﬂq (xi;ﬂ)j i

{[aw(&,ﬂz,aw(ﬂz (’“";”’J]J
Then the equations from (29) to (33) becomes

) (34)

LR MRIF IR0 SERIE Y
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2 2
(xi_:u) +1z(xi_;u)
o 77,2 o

n _12
260 24T o —ot

O O AT ) 2 Tl s ) -
54, Ay, ) wlx, )(g) =0, (36)

5(21,12,05)129(xi)(xf;”j=0.

(37)

and

Y W) +2DAlx)=> ¢ ! .
I I I {0‘+§(/11’/12’05)FL11 io_ﬂJJ

1
+’Zzl{a+5(ﬂwﬂz’a)F(22 x;#JJ N

On solving the non-linear system of equations (34) to (38) by simultaneous solution method using some mathematical
softwares such as MATHCAD, MATLAB, MATHEMATICA etc. one can obtain the maximum likelihood estimates (MLE)

of the parameters of EGTAND(,0;4,,4,, ).

7. Numerical computation

For a numerical illustration,we consider the following real life data set on the heights (in centimeters) of 100 Australian
athletes, given in Cook and Weisberg (1994).The data recorded is as given below.

148.9 149 156 156.9 157.9 158.9 162 162 162.5 163 163.9 165 166.1 166.7 167.3 167.9 168 168.6 169.1 169.8 169.9 170
170 170.3170.8 171.1 171.4 171.4 171.6 171.7 172 172.2 172.3 172.5 172.6 172.7 173 173.3 173.3 173.5 173.6 173.7 173.8
174 174 174 174.1 174.1 174.4 175 175 175 175.3 175.6 176 176 176 176 176.8 177 177.3 1773 177.5 177.5 177.8 177.9
178 178.2 178.7 178.9 179.3 179.5 179.6 179.6 179.7 179.7 179.8 179.9 180.2 180.2 180.5 180.5 180.9 181 181.3 182.1
182.7 183 183.3 183.3 184.6 184.7 185 185.2 186.2 186.3 188.7 189.7 193.4 195.9.
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This data has been recently used by Salehi et. al (2013) for establishing that "generalized skew two-piece skew normal

distribution] GSTPSt(A,, A,, p)1"fits the data better than certain existing models. We obtained the MLE of the parameters
of of N(i,0) , the location-scale extension of SND(A) [ ESND((i,0;A) 1, the location-scale extension of
TPSND(A, p) | ETPSND(i,0;A,p) 1 of Kumar and Anusree (2013a), the location-scale extension of
GSTPSt(A,,A,, p) of Salehi et. al (2013) [ EGSTPSt(u,034,,4,,p)1 and EGTAND(u,0;4,,A,,&) with the
help of equations (6.7) to (6.11) and MATHCAD software. The values of loglikelihood(/), the Akaike s Information

Criterion (AIC), the Bayesian Information Criterion (BIC) and the corrected Akaike s Information Criterion (AICc) are also
computed and presented in Table 1.

Table 1. Estimated values of the parameters and the corresponding /, AIC, BIC and AICc values for the fitted models-the
N(u,0) , the ESND((u,0;4) , the ETPSND(u,0;A,p) , the EGSTPSH(u,0;A,A,,p) and  the
EGTAND(1, 054, A,,0).

Distribution: Normal ESND ETPSND EGSTPSt EGTAND
(u,0) (u,0,4) Wos4.p) | (U034, 4.p) | (104, 4,)

i, 174.594 174.58 173.657 167.056 173.01

o 8.24 8.20 8.21 7.73 8.48

i - 0.0016 -0.18 0.219,0.244 -2.92,0.765

a - - - - 2.28

P - - 0.974 -0.991 -

l -352.318 -352.318 -349 -348 -347.64
AIC 708.64 710.64 706 706 703
BIC 713.85 718.45 716 705 704
AlICc 708.76 710.89 706.49 706.68 704

From Table 1 we can see that EGTAND(u,0; A, A,,&) gives a better fit to the data given

N(u,0). ESND((1t,034), ETPSND(1t, 03 A, p) and EGSTPSH(,054,, 4, p).

120

to the existing models-




PRESS Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 101-121

‘ATLANTIS

References

—

Nk w

o

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

B. C. Arnold, R. J. Beaver, R. A. Groeneveld and W. Q. Meeker, The non truncated marginal of a truncated
bivariate normal distribution, Psychometrika, 58(3) (1993), 471-488.

A . Azzalini, A class of distributions which includes the normal ones, Scand. Jour. Stat., 12(1985), 171-178.

A . Azzalini, Further results on a class of distributions which includes the normal, Statistica, 46(1986), 199-208.

A. Azzalini and A. Dalla Valle, The multivariate skew-normal distribution. Biometrika, 83(4) (1996), 715-726.

L. Ball and Mankiw, N. G, Relative price changes as aggregate supply shocks, Quart. J. Econ, 110(1995), 161—
193.

M. D. Branco and D. K. Dey, A general class of multivariate skew-elliptical distributions, Jour. Mult. Anal., 79(1)
(2001), 99-113.

A. Buccianti, Meaning of the A parameter of skew normal and log skew normal distributions in fluid geo
chemistry, CODAWORK’05, October 19-21(2005), 1-15.

R.D. Cook and S. Weisberg, An Introduction to Regression Analysis, (1994), Wiley, New York.

B. Ellison, Two theorems for inference about the normal distribution with applications in acceptance sampling,
Jour. Amer. Stat. Assoc., 59(1964), 89-95.

N. Henze, A probabilistic representation of the skew-normal distribution, Scand. Jour. Stat., 13(1986), 271-275.

A. Jamalizadeh, A. R. Arabpour and N. Balakrishnan, A generalized skew two-piece skew-normal distribution,
Stat. Papers, 52(2) (2011), 431-446.

H. J. Kim, On a class of two-piece skew-normal distributions, Statistics, 39(6)(2005), 537-553.

C. S. Kumar and M. R. Anusree, On a generalized mixture of standard normal and skew normal distributions, Stat.
Prob. Lett., 81(2011a), 1813-1821.

C. S. Kumar and M. R. Anusree, On some properties of an asymmetric normal distribution. Research Journal of
Fatima Mata National College, Science Edition, 3(2) (2011b), 35-43.

C. S. Kumar and M. R. Anusree , A generalized two-piece skew normal distribution and some of its properties,
Statistics, 47(6) (2013), 1370-1380 .

C. S. Kumar and M. R. Anusree (2014), On a modified class of generalized skew normal distribution , South
African Statistical Journal, 48(1)(2014), 111-124.

C. S. Kumar and M. R. Anusree, On an extended version of skew generalized normal distribution and some of its
properties, Communications in Statistics-Theory and Methods, 44(3)(2015a), 573-586.

C. S. Kumar and M. R. Anusree, On modified generalized skew normal distribution and some of its properties,
Journal of Statistical Theory and Practice, 9(3)(2015b), 489-505.

Y. Ma and M. G. Genton, A flexible class of skew-symmetric distributions, Scand. Jour. Stat., 31(2004), 459-468.

M.Salehi, A. Jamalizadeh and M. Doostparast, A generalized skew two piece skew elliptical distribution,
Statistical Papers(2013) (Available online).

121





