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1. Introduction

Suppose we have type-II right censored random samples from two exponential populations with a
common location parameter and possibly different scale parameters. More specifically, letX(1) ≤
X(2) ≤ ·· · ≤ X(r) (2 ≤ r ≤ m) andY(1) ≤Y(2) ≤ ·· · ≤ Y(s) (2≤ s≤ n) be the ordered observations
taken from random samples of sizesmandn which follows exponential distributions with a common
location parameterµ and possibly different scale parametersσ1 and σ2 respectively. We denote
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Ex(µ ,σi) the exponential population with probability density function

f (t,µ ,σi) =
1
σi

exp{−(t −µ)/σi}, t > µ ,σi > 0,−∞ < µ < ∞; i = 1,2. (1.1)

The problem is to estimate thepth quantileθ = µ +ησ1 of the first population, where 0< η =

− log(1− p); 0< p< 1. The loss function is taken as

L(d,α) =
(d−θ

σ1

)2
, (1.2)

whered is an estimate for estimating the quantileθ andα = (µ ,σ1,σ2). We evaluate the perfor-
manceof an estimator for quantile with the help of the risk functionR(d,α) = Eµ ,σ1,σ2(L(d,α)).

We note that, forη = 0, the problem reduces to the problem of estimating common location
parameter ‘µ ’ of two exponential populations using type-II censored samples and has been well
investigated by Chiou and Cohen [7] and Tripathy [21]. However, in this article we extend some of
their decision theoretic results to the case of estimating quantiles, that is, whenη 6= 0. It should be
noted that, exponential distributions have been widely used for analyzing failure time data which
arise naturally in various fields of study and we refer to Balakrisnan and Basu [2] and Ahsanulla
and Hamedani [1] for some applications of exponential distribution. Exponential quantiles are very
much useful in the study of reliability, life testing and survival analysis and some related areas. For
some practical application of exponential quantiles we refer to Epstein [10], Epstein and Sobel [11]
and Saleh [19].

The problem of estimating parameters of exponential distribution using various types of cen-
sored samples has received considerable attention in the recent past by several researchers. Needless
to say that the problem under consideration is quite popular as well as important for its real world
applications. The applications of this type of models are seen in industry, public health, business,
social sciences and related fields that arise naturally in the study of reliability, life testing and sur-
vival analysis. Suppose two brands of electrical products have been newly lunched in the market.
The life times of the products being random follow exponential distributions. It is also expected that
the minimum guarantee time (or equivalently the location parameterµ) of both the products are
same due to market competition whereas the residual life times (or equivalently the scale parame-
ters) are different. Supposem andn units respectively, from the two brands have been put for life
testing. The experimenter could able to observe onlyr(≤ m) ands(≤ n) failure times due to certain
constraints. On the basis of these sample values one needs to draw the inference on the mean life
times or in general the quantile. Most of the commonly used censoring schemes available in the
literature are type-I (when number of observations are random and time is fixed), type-II (when
number of observations are fixed and time is random), random censoring (both time and number
of observations are random) or a mixture of these. For a quick review on estimation of parameters
of exponential population using such types of conventional censoring schemes, we refer to Law-
less [16] and Johnson et al. [15].

It should be noted that, type-II censoring is a special case of progressive type-II censoring
scheme. A lot of attention has been paid in estimating the parameters of an exponential population
using progressive type-II censored samples by several authors in the recent past. For some classi-
cal as well as decision theoretic results in this direction, we refer to Balakrishnan and Sandhu [4],
Chandrasekar et al. [6], and Madi [17]. For some recent updates and detailed review on estimation
of parameters of an exponential population using progressive type-II censored samples, one may
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refer to Balakrishnan and Cramer [3]. Estimation of quantiles of an exponential population using
doubly censored (both left and right type-II) samples has been considered by Elfessi [8], from a
decision theoretic point of view. On the other hand, a little attention has been paid in estimating
the parameters, when two or more exponential populations are available. We refer to Chiou and
Cohen [7] and Tripathy [21] where the model (1.1) has been previously considered in the literature.
Elfessi and Pal [9] considered the estimation of common scale parameter when type-II censored
samples are available from several exponential populations.

It is worth mentioning that the model (1.1), we consider in this article reduces to the full sample
model whenr =mands= n, and that has been well investigated from a classical as well as decision
theoretic point of view by several researchers in the recent past. We refer to Ghosh and Razmpour
[12], Rukhin [18], Jin and Crouse [14], Sharma and Kumar [20] and Jin and Crouse [13] for some
excellent results and review on estimation of common location or/and quantiles of two or more
exponential populations when full sample is available.

In this paper our main objective is to estimate the quantilesθ = µ +ησ1 of the first popula-
tion for the model (1.1), using type-II right censored samples. In fact, the results of Sharma and
Kumar [20] can be derived as a particular case of our results by choosingm= r, n= s andm= n.
Basically they have obtained some inadmissibility results for estimating quantilesθ assuming the
sample sizes are equal. They also obtained estimators which dominate the UMVUE in terms of risk
values. However, in practice one would be interested to know the percentage of risk improvements
approximately. Taking advantages of computational facilities we compare all the proposed estima-
tors numerically. Hence it fills the gap in the literature which is not available. We organize our
findings as follows. In Section 2 we discuss the model and present some basic results. In Section 3,
we propose a class of estimators which contain the UMVUE of quantilesθ and obtain estimators
dominating the UMVUE. In Section 4, we derive sufficient conditions for improving equivariant
estimators and as a consequence some complete class results have been obtained. Most importantly,
in Section 5, we carry out a simulation study to numerically compare the risk values as well as the
percentage of relative risk improvements of all the proposed estimators which may be useful for
practical purposes. Finally we conclude our remarks in Section 6.

2. Construction of Some Basic Estimators for Quantiles

In this section, we discuss the model and derive some baseline estimators for the quantileθ =

µ +ησ1. Specifically we obtain the MLE, a modification to the MLE and the UMVUE forθ .
Let X(1) ≤ X(2) ≤ ·· · ≤ X(r), (2 ≤ r ≤ m) be the r smallest ordered observations taken from a

random sample of sizemhaving probability density functionEx(µ ,σ1) as given in (1.1). Similarly,
let Y(1) ≤Y(2) ≤ ·· · ≤Y(s), (2≤ s≤ n) be the s smallest ordered observations taken from a random
sample of sizen having probability density functionEx(µ ,σ2) as given in (1.1). The samples drawn
from two populations are assumed to be statistically independent.

For this particular model a sufficient statistic is(U1,U2,Z), whereZ = min(X(1),Y(1)), U1 =
1
m[∑

r
i=1 X(i)+(m− r)X(r)], andU2 =

1
n[∑

s
j=1Y( j)+(n−s)Y(s)]. Thejoint probability density function

of U = (U1,U2,Z) is given by,

fU(u) = K(u1−z)r−1(u2−z)s−1
( r −1

u1−z
+

s−1
u2−z

)

exp

{

− m(u1−µ)
σ1

− n(u2−µ)
σ2

}

, (2.1)

u1 > x(1),u2 > y(1),z> µ
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whereK = mr ns

ΓsΓrσ r
1σs

2
, (see Chiou and Cohen [7] and Tripathy [21]). We also note that the random

variable Z follows an exponential distribution with location parameterµ and scale parameter 1/p,
wherep= m/σ1+n/σ2. The MLEs ofµ , σ1 andσ2 are obtained by Tripathy [21] and are given
by Z, m(U1−Z)/r (sayσ̂1ML), andn(U2−Z)/s (sayσ̂2ML) respectively. Using the MLEs ofµ and
σ1, we obtain the MLE of the quantileθ = µ +ησ1 as

dML = Z+ησ̂1ML. (2.2)

Further using the modified MLE of the common location parameterµ (motivated by Ghosh and
Razmpour [12]), we propose a modification to the MLE of the quantileθ as

dMM = Z− 1
p̂
+ησ̂1ML, (2.3)

where p̂= m/σ̂1ML + n/σ̂2ML. It is also noted that the sufficient statistics(U1−Z,U2−Z) andZ
are independent and also complete (see Chiou and Cohen [7]). Using the complete and sufficient
statistics(U1−Z,U2−Z,Z), one can easily obtain the UMVUE of the common location parameter
µ as given in Tripathy [21] and derived by Chiou and Cohen [7]. Let us denoteV1 = U1 − Z,
V2 = U2 −Z. We note thatE(V1) =

r
mσ1 − p−1 andE[( V2

s−1)
−1 +( V1

r−1)
−1]−1 = p−1. Using these

results one can easily derive the UMVUE of the quantileθ as,

dMV = Z+
V1V2(k−1)

(r −1)V2+(s−1)V1
+kV1, wherek= ηm/r. (2.4)

3. Improving Upon the UMVUE

In this section we consider a class of estimators which contain the UMVUE forθ = µ +ησ1. Using
a technique of Brewster and Zidek [5], we obtain an estimator which dominates the UMVUE with
respect to the loss function (1.2). Let us consider the class of estimators for estimating the quantile
θ = µ +ησ1 asD = {dc : c∈ R} where

dc = Z+
V1V2(k−1)

(r −1)V2+(s−1)V1
+kcV1. (3.1)

It should be noted that this class contains the UMVUEdMV for c= 1.
Let us denotec1 = r

r+1, c2 = ηm(r−2)+1
ηm(r−1) , c12 = max{c1,c2}, c3 = ĉ(β−), whereβ− = r+1

2m −√
(r+1)2−4ηm

2m . Further define the constants

c∗ =







c1, if c> c1

c2, if c< c2

c, otherwise
(3.2)

c∗ =







c12, if c> c12

c3, if c< c3

c, otherwise
(3.3)

Theorem 3.1. The class of estimators dc is inadmissible and is improved by dc∗ if c∗ 6= c when
η > r/m and by dc∗ if c∗ 6= c when0< η < r/m.

139

 
___________________________________________________________________________________________________________
 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 136–145



Proof. The lines of the proof are very much similar to the arguments used in the proof of Theorem
3.1of [20], however one needs to use the joint distribution function of(V1,V2) (as given in Tripathy
[21]).

Next we obtain improved estimators for the UMVUE of the quantileθ by an application of the
Theorem 3.1.

Theorem 3.2. Let the loss function be quadratic loss as given in (1.2). The uniformly minimum
variance unbiased estimator(UMVUE) dMV = d1 for the quantileθ = µ +ησ1 is inadmissible and
is improved by dc1 whenη > (r +1)/2m. For 1/m< η < (r +1)/2m the UMVUE is improved by
dc2. For 0< η < 1/m the estimator dMV is admissible and can not be improved.

Remark 3.1. The class of estimators{dc : c2 ≤ c≤ c1} form an essentially complete class when
η > r/m. The class of estimators{dc : c3 ≤ c≤ c1} form an essentially complete class when(r +
1)/2m< η < r/m. The class{dc : c3 ≤ c ≤ c2} form an essentially complete class when 1/m<

η < (r +1)/2m. Finally the class{dc : c3 < c< c2} is the essentially complete class in the classD
when 0< η < 1/m, and can not be improved on by anydc.

Remark 3.2. Using the above results it is easy to write the improved estimator which improves
upon the UMVUE of the quantileθ . Let η > r/m then the estimator which improves upon the
UMVUE is obtained asdMV I = Z+ V1V2(k−1)

(r−1)V2+(s−1)V1
+( ηm

r+1)V1. It is easy to write the improved esti-
mator for the case 1/m< η < (r + 1)/2m. The estimatord1 = dMV can not be improved by any
dc when 0< η < 1/m. In Section 5, we numerically evaluate the risk functions of these improved
estimators and show the percentage of improvement over the UMVUEdMV .

4. An Inadmissibility Result for Affine Equivariant Estimators

In this section, we introduce the concept of invariance to our problem and obtain a broad class of
estimators for quantilesθ = µ +ησ1, which are invariant under an affine group of transformations.
Further sufficient conditions for improving these estimators are obtained.

Let GA = {ga,b : ga,b(x) = ax+b,a∈ R
+,b∈ R} be anaffine group of transformations. Under

this transformation the problem remain invariant and the form of an affine equivariant estimator for
estimating the quantileθ , based on the sufficient statistics(V1,V2,Z) is obtained as

d(Z,V1,V2) = Z+V1φ(V) = dφ , (say), (4.1)

whereφ : R+ → R andV = V2/V1. To proceed further, let us define the functionsφ1 and φ2 as
follows.

φ1(v) =







m
r+s

(

η − 1
m

)

, if 0 < v≤ 1
1−ηm

m+nτ+v
r+s

(

η − 1
m+nτ+

)

, if v> 1
1−ηm

φ2(v) =
m

r +s

(

η − 1
m

)

,
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whereτ+ = −m
n + 1

n

√

m(v−1)
ηv . For the affine equivariant estimatordφ , we define the functionsφ∗

1

andφ∗
2 as below.

φ∗
1 (v) =

{

φ1, if φ < φ1

φ , otherwise
(4.2)

φ∗
2 (v) =

{

φ2, if φ < φ2

φ , otherwise
(4.3)

Now it is immediate to propose the main result of this section which will help in deriving improved
estimators for the quantilesθ with respect to the quadratic loss function (1.2).

Theorem 4.1. For the affine equivariant estimator dφ (as given in (4.1)), define the functionsφ∗
1

andφ∗
2 as given in (4.2) and (4.3) respectively. Let the loss function be the affine invariant loss (1.2).

• The estimator dφ is inadmissible and is improved by dφ∗
1
, if there exist some values of the

parametersα = (µ ,σ1,σ2) such that, P(dφ 6= dφ∗
1
)> 0 whenη < 1/m.

• The estimator dφ is inadmissible and is improved by dφ∗
2
, if there exist some values of the

parametersα = (µ ,σ1,σ2) such that, P(dφ 6= dφ∗
2
)> 0 whenη > 1/m.

Proof. The proof follows by an application of the Brewster and Zidek (Brewster and Zidek [5])
technique for improving equivariant estimators. The details of the proof has been omitted for brevity.

Remark 4.1. The above theorem basically gives a complete class result. It simply tells that any
affine equivariant estimatordφ of the form (4.1) can be improved ifP(φ < φ1)> 0 (whenη < 1/m)
or P(φ < φ2)> 0 (whenη > 1/m).

Remark 4.2. The class of estimators{dφ : φ ≥ φ1} for estimating the quantilesθ form a complete
class with respect to the loss function (1.2) whenη < 1/m. The class of estimators{dφ : φ ≥ φ2}
for estimating the quantilesθ form a complete class with respect to the loss function (1.2) when
η > 1/m.

It is easy to note that, all the estimators such as the MLEdML, a modification to the MLEdMM

(MM) and the UMVUEdMV considered for the quantilesθ belong to the classdφ as given in (4.1).

Remark 4.3. Though the estimatorsdML anddMM belong to the classdφ in (4.1), the condition for
improving these estimators does not satisfy which has been observed from our simulation study.
Hence we are not able to get improved estimator fordML anddMM . However, the UMVUEdMV has
been improved by using Theorem 4.1, whenη < 1/m and denote the improved estimator asdMVA.

A numerical comparison of this estimator with other estimators has been done using Monte-Carlo
simulation method in Section 5.

5. Simulation Study

In the previous sections we have proposed various estimators for the quantilesθ such as the MLE
dML, a modification to the MLE (MM)dMM andthe UMVUE dMV . Further improved estimators
dMV I anddMVA dominating the UMVUE have also been derived. However, it should be noted that the
analytical comparison of risk values for all these estimators is not possible. Taking the advantages of
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computational facilities, we in this section numerically evaluate the risk values of all these estima-
tors. For this purpose, we have generated 20,000 type-II censored random samples each from two
exponential populations having probability density function (1.1) with a common location parame-
ter µ and different scale parametersσ1, σ2. The loss function is taken as (1.2). We use Monte-Carlo
simulation method to compute the simulated risk values of each estimator. The accuracy of simula-
tion has been checked and the standard error is of the order of 10−4. It can be easily seen that with
respect to the loss function (1.2), the risk values of all the estimators are function ofτ = σ2/σ1 > 0,
for fixed sample sizes and fixedη . The simulation study has been conducted for wide range of the
parameters, however for illustrative purpose we report the simulated risk values for some selected
choices of parameters. Let us define the percentage of relative risk improvements (RRI) of all the
estimators with respect to the MLE as,

R1=
(

1− dMM

dML

)

∗100,R2=
(

1− dMV

dML

)

∗100,R3=
(

1− dMVI

dML

)

∗100,R4=
(

1− dMVA

dML

)

∗100.

Alsowe define the percentage of risk improvement of improved estimators over their old estimators,

P1=
(

1− dMV I

dMV

)

∗100,P2=
(

1− dMVA

dMV

)

∗100.

Further we define the censoring factors (k1 andk2) for both the populations as the ratio of
number of observed samples to the total number of samples. That is for the first populationk1= r/m
and for the second populationk2 = s/n. It can be noticed that the censoring factorsk1 andk2
always lie between 0 and 1. A massive simulation study has been carried out by considering various
combinations of sample sizes andη . However, for illustration purpose, we present (in Table 1) the
percentage of relative risk performances as well as percentage of risk improvements for sample sizes
(m,n) = (8,8) and forη = 1.5, η = 0.01. The first column gives the values ofτ . Corresponding to
one value ofτ , there corresponds four values of relative risk performances for an estimator. These
four values correspond tok1= k2= 0.25,0.50,0.75,1.00 respectively.

The following conclusions can be drawn from our simulation study as well as the Table 1.

(1) Letη > r/mor (r+1)/2m. The percentage of relative risk valuesR2 increases with respect
to bothτ andk1, k2, whereas the relative risk valueR3 increases for small values ofτ and
then starts decreasing after attending maximum somewhere near 1.0. The behavior ofR1 is
not clear.

(2) Let η < 1/m. The relative risk improvement (R1, R2, R4) of all the estimators with respect
to the MLEdML increases as the censoring factorsk1 andk2 increase for fixed sample sizes.
Also R1, R2 andR4 increases with respect toτ and attains its maximum somewhere near
τ = 1, then slowly decrease. Further, asτ becomes large the risk values of all the estimators
converge to some constant value.

(3) The percentage of improvements ofdMV I overdMV (P1) is maximum around 39% and the
percentage of improvements ofdMVA overdMV (P2) is near to 15%. As thecensoring fac-
torsk1 andk2 increase the percentage of improvement becomes negligible. The maximum
improvement is obtained nearτ = 1.

(4) Consider for small values ofη that isη < 1/m. When the values ofτ are close to 0, the
estimatordMM has the maximum percentage of relative risk performance. For moderate
values ofτ (0.25< τ < 3.00), the estimatordMVA has the maximum percentage of relative
risk improvement and is seen to vary from 30% to 47%. However, for large values ofτ (≥

142

 
___________________________________________________________________________________________________________
 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 136–145



3.0) the estimatordMM performs the best and the percentage of relative risk improvement
is seen near to 45%.

(5) Consider thatη > 1.0 or η > (r + 1)/2m. When the values ofτ are close to 0, and k1
and k2 also close to 0, the estimatordMM has the maximum percentage of relative risk
performance and is seen near to 1%. For moderate to large values ofτ , the estimatordMV I

has the maximum percentage of relative risk improvement and it is seen near to 36%.
(6) From our simulation study we notice, that the amount of improvement ofdMVA overdMV

decreases as the values ofτ increases. The improvement is not significant as the values of
k1 andk2 increases forη < 1/m. We also observe that the estimatordMV I gives maximum
percentage of improvement overdMV for the caseη > r/m.

(7) On the basis of our computational results, we recommend the following. Whenη is small
and the values ofτ are close to 0, we recommend to usedMM . For moderate values ofτ we
recommend to usedMVA whereas for large values ofτ the estimatordMM is recommended.
Whenη > (r +1)/2m, and for small values ofτ , we recommend to usedMM whereas for
moderate to large values ofτ we recommend using the estimatordMV I.

(8) A similar type of observations have been made for other combinations ofk1, k2 and the
sample sizes.

6. Conclusions and an Example

In this paper we have considered the estimation of quantiles of two exponential populations assum-
ing that the location parameters are equal using type-II censored samples from a decision theoretic
point of view. We have derived some baseline estimators such as the MLE, the modified MLE
and the UMVUE for the quantileθ . We also obtained estimators which dominate the UMVUE
for η > 1/m. Further inadmissibility results have been proved for affine equivariant estimators. It
should be noted that when the censoring factorsk1 andk2 become 1, the problem reduces to the full
sample problem which was earlier studied by several authors including Sharma and Kumar [20].
Though they have obtained improved estimators analytically, it is essential to know the percentage
of risk improvement approximately. In this regard our results (Section 5) add one more dimension
to their results and may be handy for practical purposes fork1 = k2 = 1. Also we have obtained
the results when the sample sizes are not equal andk1= k2= 1. The present work also extends the
results of Tripathy [21] to the case ofη 6= 0 which is new.

Next, we present an example where our model fits well and compute the estimates for the quan-
tile θ = µ +ησ1.

Example 6.1. (Simulated Data) Suppose two brands of electronic devices each having 30 units are
placed for a life testing experiment. It is known that, the lifetimes (in hours) of each unit follows
an exponential distribution with same minimum guarantee time. The experimenter could able to
observe only 10 units of failures (in hours) from each brands of devices because of some constraints.
The data for both the brands are obtained as Brand 1: 59.69, 60.18, 68.33, 113.78, 155.78, 203.83,
237.86, 243.67, 251.62, 301.49; Brand 2: 37.62, 73.03, 100.54, 103.61, 106.37, 110.72, 119.26,
135.59, 169.75, 177.03.

On the basis of above data, we have computed the statistic values asZ = 37.62, V1 = 219.91,
andV2 = 118.18. Let η = 2.0, then the various estimates for the quantileθ = µ +ησ1 have been
computed asdML = 1357.13, dMM = 1349.448,dMV = 1399.84, dMV I = 1279.88. In this situation,
we recommend to usedMV I .
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Table 1: Relative risk performances of various estimators for quantileθ
(m,n) = (8,8) with k1=k2=0.25,0.50,0.75,1.00

τ ↓ η = 1.5 η = 0.01
R1 R2 R3 P1 R1 R2 R4 P2

0.71 -81.30 -25.16 30.96 27.00 9.91 13.03 3.46
0.05 2.30 -25.68 1.73 21.81 39.18 35.78 35.85 0.11

2.57 -11.89 3.83 14.05 42.54 41.43 41.43 0.01
4.38 -6.71 5.34 11.29 45.60 44.97 44.97 0.00
0.34 -48.47 2.60 34.40 30.01 19.93 30.70 13.45

0.25 1.60 -17.28 9.07 22.47 40.72 39.08 40.51 2.35
2.76 -9.13 8.51 16.17 43.63 42.81 43.25 0.76
3.91 -4.96 8.31 12.65 46.21 45.78 45.93 0.26
0.18 -22.85 21.96 36.48 30.63 22.39 33.70 14.57

0.75 1.02 -8.88 16.86 23.65 41.95 40.92 43.00 3.52
1.20 -4.34 11.87 15.54 44.83 44.66 45.40 1.33
1.65 -2.30 9.86 11.89 46.66 46.58 46.88 0.56
0.13 -17.03 26.53 37.22 31.03 23.76 34.46 14.03

1.00 0.53 -6.06 17.61 22.31 42.72 41.64 43.31 2.86
1.11 -3.57 13.11 16.11 46.57 46.59 47.19 1.11
1.32 -1.80 10.10 11.69 47.02 47.20 47.34 0.27
0.19 -14.31 29.15 38.02 31.34 23.79 33.63 12.90

1.25 0.19 -4.27 17.18 20.57 41.72 41.27 42.61 2.28
0.95 -2.85 14.30 16.68 45.93 46.00 46.51 0.94
1.04 -1.42 10.64 11.90 46.04 46.02 46.20 0.34
0.01 -6.92 32.14 36.54 30.62 22.18 31.21 11.60

2.00 0.11 -2.38 18.66 20.56 41.62 40.94 41.84 1.52
0.50 -1.56 14.41 15.73 44.85 44.65 44.90 0.45
0.29 -0.64 9.60 10.18 46.08 45.92 46.06 0.26
0.03 -5.36 33.31 36.71 29.23 20.06 28.40 10.42

2.50 0.14 -1.90 19.78 21.27 40.87 39.80 40.51 1.18
0.12 -0.86 13.15 13.90 44.15 43.98 44.11 0.23
0.28 -0.49 10.91 11.35 45.98 46.12 46.15 0.05
0.06 -4.59 34.50 37.38 29.44 20.13 28.29 10.22

3.00 0.07 -1.40 19.40 20.52 41.07 40.09 40.64 0.91
0.16 -0.77 13.47 14.13 44.29 43.72 43.88 0.27
0.35 -0.46 11.33 11.75 46.14 46.13 46.16 0.05
0.04 -3.53 34.62 36.85 29.12 21.00 27.45 8.16

3.50 0.17 -1.38 20.94 22.02 40.39 39.02 39.51 0.79
0.28 -0.76 15.01 15.66 43.77 43.25 43.35 0.17
0.16 -0.30 10.47 10.74 46.04 45.89 45.91 0.02
0.08 -3.33 35.63 37.70 28.68 17.91 24.47 7.99

4.00 0.09 -0.99 20.04 20.83 39.96 38.87 39.24 0.61
0.18 -0.57 15.11 15.59 43.27 42.84 42.88 0.07
0.30 -0.34 11.68 11.98 45.06 44.76 44.77 0.02
0.00 -2.27 34.00 35.47 28.99 17.85 24.42 7.99

4.50 0.05 -0.75 20.25 20.85 39.56 37.88 38.19 0.49
0.11 -0.42 14.85 15.21 44.91 44.41 44.46 0.08
0.29 -0.31 11.93 12.20 44.80 44.48 44.47 0.01
0.01 -2.02 33.30 34.62 27.82 16.13 22.36 7.42

5.00 0.07 -0.72 19.60 20.18 39.62 38.22 38.47 0.39
0.00 -0.25 13.44 13.66 43.76 42.95 42.98 0.04
0.03 -0.13 10.35 10.47 44.58 44.27 44.28 0.02
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