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1. Introduction

Suppose w have type-ll right censored random samples from two exponential populations with a
common location parameter and possibly different scale parameters. More specificaly, tet

Xy < < Xy (2<r<m) andYy) <Y < <Y (2 <s<n) be he ordeed observations
taken from random samples of sizasndn which follows exponential distributions with a common
location parametept and possibly different scale parametersand o, respectively. We denote
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Ex(u, 0;) the exponential population with probability density function
1 :
ftp o) = —exp{—(t—p)/ai}, t>H,0>0-—o<p<mi=12 (1.1)
|

The problem is to estimate thg" quantile 8 = p + noy of the first population, where @ n =
—log(1—p); 0 < p < 1. The loss function is taken as

d-6
o1 >2’

L(d,a) = ( (1.2)
whered is an estimate for estimating the quantfleanda = (u, 01, 02). We evaluate the perfor-
manceof an estimator for quantile with the help of the risk functiefd, a) = E o, 0,(L(d, a)).

We nde that, forn = 0, the problem reduces to the problem of estimating common location
parameter (I’ of two exponential populations using type-ll censored samples and has been well
investigated by Chiou and Cohen [7] and Tripathy [21]. However, in this article we extend some of
their decision theoretic results to the case of estimating quantiles, that is,naeh It should be
noted that, exponential distributions have been widely used for analyzing failure time data which
arise naturally in various fields of study and we refer to Balakrisnan and Basu [2] and Ahsanulla
and Hamedani [1] for some applications of exponential distribution. Exponential quantiles are very
much useful in the study of reliability, life testing and survival analysis and some related areas. For
some practical application of exponential quantiles we refer to Epstein [10], Epstein and Sobel [11]
and Saleh [19].

The problem of estimating parameters of exponential distribution using various types of cen-
sored samples has received considerable attention in the recent past by several researchers. Needless
to say that the problem under consideration is quite popular as well as important for its real world
applications. The applications of this type of models are seen in industry, public health, business,
social sciences and related fields that arise naturally in the study of reliability, life testing and sur-
vival analysis. Suppose two brands of electrical products have been newly lunched in the market.
The life times of the products being random follow exponential distributions. It is also expected that
the minimum guarantee time (or equivalently the location parameétef both the products are
same due to market competition whereas the residual life times (or equivalently the scale parame-
ters) are different. Suppose andn units respectively, from the two brands have been put for life
testing. The experimenter could able to observe ofym) ands(< n) failure times due to certain
constraints. On the basis of these sample values one needs to draw the inference on the mean life
times or in general the quantile. Most of the commonly used censoring schemes available in the
literature are type-1 (when number of observations are random and time is fixed), type-ll (when
number of observations are fixed and time is random), random censoring (both time and number
of observations are random) or a mixture of these. For a quick review on estimation of parameters
of exponential population using such types of conventional censoring schemes, we refer to Law-
less [16] and Johnson et al. [15].

It should be noted that, type-Il censoring is a special case of progressive type-ll censoring
scheme. A lot of attention has been paid in estimating the parameters of an exponential population
using progressive type-ll censored samples by several authors in the recent past. For some classi-
cal as well as decision theoretic results in this direction, we refer to Balakrishnan and Sandhu [4],
Chandrasekar et al. [6], and Madi [17]. For some recent updates and detailed review on estimation
of parameters of an exponential population using progressive type-Il censored samples, one may
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refer to Balakrishnan and Cramer [3]. Estimation of quantiles of an exponential population using

douly censored (both left and right type-Il) samples has been considered by Elfessi [8], from a

decision theoretic point of view. On the other hand, a little attention has been paid in estimating

the parameters, when two or more exponential populations are available. We refer to Chiou and
Cohen [7] and Tripathy [21] where the model (1.1) has been previously considered in the literature.

Elfessi and Pal [9] considered the estimation of common scale parameter when type-ll censored
samples are available from several exponential populations.

It is worth mentioning that the model (1.1), we consider in this article reduces to the full sample
model wherr = mands= n, and that has been well investigated from a classical as well as decision
theoretic point of view by several researchers in the recent past. We refer to Ghosh and Razmpour
[12], Rukhin [18], Jin and Crouse [14], Sharma and Kumar [20] and Jin and Crouse [13] for some
excellent results and review on estimation of common location or/and quantiles of two or more
exponential populations when full sample is available.

In this paper our main objective is to estimate the quantles u + no; of the first popula-
tion for the model (1.1), using type-Il right censored samples. In fact, the results of Sharma and
Kumar [20] can be derived as a particular case of our results by choosiag n=sandm=n.
Basically they have obtained some inadmissibility results for estimating quaétéssuming the
sample sizes are equal. They also obtained estimators which dominate the UMVUE in terms of risk
values. However, in practice one would be interested to know the percentage of risk improvements
approximately. Taking advantages of computational facilities we compare all the proposed estima-
tors numerically. Hence it fills the gap in the literature which is not available. We organize our
findings as follows. In Section 2 we discuss the model and present some basic results. In Section 3,
we propose a class of estimators which contain the UMVUE of quardilesd obtain estimators
dominating the UMVUE. In Section 4, we derive sufficient conditions for improving equivariant
estimators and as a consequence some complete class results have been obtained. Most importantly,
in Section 5, we carry out a simulation study to numerically compare the risk values as well as the
percentage of relative risk improvements of all the proposed estimators which may be useful for
practical purposes. Finally we conclude our remarks in Section 6.

2. Construction of Some Basic Estimators for Quantiles

In this section, we discuss the model and derive some baseline estimators for the cuiantile
U+ noy. Specifically we obtain the MLE, a modification to the MLE and the UMVUE @or

Let X(1) < X2 < -+ < X(r), (2 <1 <m) be tter smallest ordered observations taken from a
random sample of siz@ having probability density functioBx(u, 01) as given in (1.1). Similarly,
let Y(1> < Y(z) << Y(s>, (2 < s< n) be the ssmallest ordered observations taken from a random
sample of sizea having probability density functioBx(u, 0,) as given in (1.1). The samples drawn
from two populations are assumed to be statistically independent.

For this particular model a sufficient statistic (d;,U»,Z), whereZ = min(X(l),Y(l)), U =
2511 X + (M=1)X1)], andUz = 2[33_, Y;j) + (n—9)Y,g)]. Thejoint probability density function
of U = (Uy,U2,2Z) is given by,

(W) = Kl -2 Y —2* (L2 4 321) exp{ i) nlte =) } 2.1)

Uu—2z U—2 o1 0
Uy > X),U2 > Y1), 2> H
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whereK = %}};Ug,, (see Chiou and Cohen [7] and Tripathy [21]). We also note that the random
varigble Z follows an exponential distribution with location parameteand scale parametey fb,
wherep = m/o1 + n/o,. The MLEs ofu, 01 and o> are obtained by Tripathy [21] and are given
by Z, m(U; — Z) /r (sayGimL), andn(U, — Z) /s (say G ) respectively. Using the MLEs qgf and

01, we obtain the MLE of the quantil®@ = u+noy as

duL =Z+nom. (2.2)

Further using the modified MLE of the common location paramgt€dmotivated by Ghosh and
Razmpour [12]), we propose a modification to the MLE of the quaétites

1 n
dvm :Z__f)+n01ML7 (2.3)

where p'= m/dimL +n/Gom . It is also noted that the sufficient statisti¢d; — Z,U, — Z) andZ

are idependent and also complete (see Chiou and Cohen [7]). Using the complete and sufficient
statistics(U; —Z,U, — Z,Z), one can easily obtain the UMVUE of the common location parameter

U as given in Tripathy [21] and derived by Chiou and Cohen [7]. Let us devipte U; — Z,

Vo = U, — Z. We note thatE(Vy) = Loy — p~t andE[(Z) 1+ (7)Y~ = p~L. Using these

resuts one can easily derive the UMVUE of the quantilas,

ViVo(k— 1)
(I’ — l)Vz + (S— l)Vl

dwv = +kVi, wherek=n m/r. (2.4)

3. Improving Upon the UMVUE

In this section we consider a class of estimators which contain the UMVU&$op + n g;. Using

a techmique of Brewster and Zidek [5], we obtain an estimator which dominates the UMVUE with
respect to the loss function (1.2). Let us consider the class of estimators for estimating the quantile
0 = pu+nopasb={d:: ce R} where

ViVo(k— 1)
(r—=21Vo+(s—1);
It should be noted that this class contains the UMM& for c = 1.

Let us cenotec; = -, ¢, = %, ci2 = max{cy, Cz}, c3 = (B ), where~ = Tt —

de=2Z+ +keW. (3.1)

_r
r+1-

2_
@n. Further define the constants

c,ifc>c

C.=< G, ifc< (3.2
c, otherwise
C12, if c> o

c' = { c3, ifc<cs (3.3)
c, otherwise

Theorem 3.1. The class of estimators.ds inadmissible and is improved by df ¢, # ¢ when
n>r/mandbydg ifc*#4cwhen0<n <r/m.
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Proof. The lines of the proof are very much similar to the arguments used in the proof of Theorem
3.10f [20], however one needs to use the joint distribution functiofMefV,) (as given in Tripathy
[21]). O

Next we obtain improved estimators for the UMVUE of the quarfilby an application of the
Theorem 3.1.

Theorem 3.2. Let the loss function be quadratic loss as given in (1.2). The uniformly minimum
variance unbiased estimator(UMVUEyd = d; for the quantile = u + n o1 is inadmissible and

is improved by d whenn > (r+1)/2m. For 1/m< n < (r +1)/2m the UMVUE is improved by
dc,. For 0 < n < 1/m the estimator gy is admissible and can not be improved.

Remark 3.1. The class of estimator|d. : ¢; < ¢ < ¢;} form an essentially complete class when
n >r/m. The class of estimatore; : ¢z < ¢ < ¢;} form an essentially complete class whenr-
1)/2m < n < r/m. The class{d. : ¢z < ¢ < ¢} form an essentially complete class whefml<

n < (r+1)/2m. Finally the clasqd; : ¢z < ¢ < ¢} is the essentially complete class in the clBss
when 0< n < 1/m, and can not be improved on by ady.

Remark 3.2. Using the above results it is easy to write the improved estimator which improves
upon the UMVUE of the quantil®. Let n > r/m then the estimator which improves upon the
UMVUE is obtained asly| = Z -+ % + ({I%)Vy. It is easy to write the improved esti-
mata for the case Im< n < (r +1)/2m. The estimatod; = dyy can not be improved by any

d: when 0< n < 1/m. In Section 5, we numerically evaluate the risk functions of these improved

estimators and show the percentage of improvement over the UM¥WE

4. An Inadmissibility Result for Affine Equivariant Estimators

In this section, we introduce the concept of invariance to our problem and obtain a broad class of
estimators for quantile8 = u + o1, which are invariant under an affine group of transformations.
Further sufficient conditions for improving these estimators are obtained.

Let Ga = {Qap : Gab(X) = ax+b,ac R ,b € R} be anaffine group of transformations. Under
this ransformation the problem remain invariant and the form of an affine equivariant estimator for
estimating the quantil@, based on the sufficient statisti¢¢, V>, Z) is obtained as

d(ZV1,Vo) = Z+V19(V) =dy, (say) 4.1)

whereg : Rt — R andV = V,/V;. To proceed further, let us define the functiapsand ¢ as
follows.

(V) = e ( 1 oam

m(n—%), ifo<v< —1_
m+ntty ; 1
n- m+nr+>’ if v> 1—nm

r+s
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wherett = -1 +% % For the affine equivariant estimatdy, we define the functiong;
and¢; as below.
o o ife<q
aw) = { @, otherwise (4.2)
o e i<
%) = { @, otherwise (4.3)

Now it is immediate to propose the main result of this section which will help in deriving improved
estimators for the quantilé®with respect to the quadratic loss function (1.2).

Theorem 4.1. For the affine equivariant estimatorp,das given in (4.1)), define the functiogs
and@; as given in (4.2) and (4.3) respectively. Let the loss functionéaffine invariant loss (1.2).

e The estimator g is inadmissible and is improved by,d if there exist some values of the
paranmetersa = (U, 01, 02) such that, Rd, # dy; ) > Owhenn < 1/m.

e The estimator ¢ is inadmissible and is improved bysd if there exist some values of the
paranetersa = (U4, 01, 0z) such that, Rdy, # dg; ) > 0whenn > 1/m.

Proof. The proof follows by an application of the Brewster and Zidek (Brewster and Zidek [5])
technique for improving equivariant estimators. The details of the proof has been omitted for brevity.
O

Remark 4.1. The d@ove theorem basically gives a complete class result. It simply tells that any
affine equivariant estimatak, of the form (4.1) can be improvedM(¢ < @) > 0 (whenn < 1/m)
orP(¢ < @) > 0 (whenn > 1/m).

Remark 4.2. The class of estimatods, : ¢ > ¢} for estimating the quantile8 form a complete
class with respect to the loss function (1.2) whiert 1/m. The class of estimatord, : ¢ > @}

for estmating the quantile® form a complete class with respect to the loss function (1.2) when
n>1/m.

It is easy to note that, all the estimators such as the MUE a modification to the MLEwm
(MM) and the UMVUEdyy considered for the quantilésbelong to the clasd, as given in (4.1).

Remark 4.3. Though the estimatomdy,. anddyy belong to the clasd, in (4.1), the condition for
improving these estimators does not satisfy which has been observed from our simulation study.
Hence we are not able to get improved estimatodfgr anddyy. However, the UMVUE]y has

been inmproved by using Theorem 4.1, when< 1/m and denote the improved estimatordag a.

A numeical comparison of this estimator with other estimators has been done using Monte-Carlo
simulation method in Section 5.

5. Simulation Study

In the previous sections we have proposed various estimators for the quérgilet as the MLE

dwv, a madification to the MLE (MM)dym andthe UMVUE dyy . Further improved estimators

dwvvi anddyy A dominating the UMVUE have also been derived. However, it shouldbbedthat the
analytical comparison of risk values for all these estimators is not possible. Taking the advantages of
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computational facilities, we in this section numerically evaluate the risk values of all these estima-
tors For this purpose, we have generated 20,000 type-ll censored random samples each from two
exponential populations having probability density function (1.1) with a common location parame-
ter u and different scale parameteass, g,. The loss function is taken as (1.2). We use Monte-Carlo
simulation method to compute the simulated risk values of each estimator. The accuracy of simula-
tion has been checked and the standard error is of the order6f [t@an be easily seen that with
respet to the loss function (1.2), the risk values of all the estimators are functioa-af, /01 > 0,
for fixed sample sizes and fixegl The simulation study has been conducted for wide range of the
parameters, however for illustrative purpose we report the simulated risk values for some selected
choices of parameters. Let us define the percentage of relative risk improvements (RRI) of all the
estimators with respect to the MLE as,

dmvm

R1= (1—m>*1OQR2: (1—3“”7\:) «100 R3 = (1—%%10%4: (1—%“”—“;’:*)*100

Alsowe define the percentage of risk improvement of improved estimators over their old estimators,

P1— (1— M) +100,P2 = (1— M) +100
dmv dmv

Further we define the censoring factolsl (andk2) for both the populations as the ratio of
number of observed samples to the total number of samples. That is for the first popkllatiopim
and for the second populatidt®2 = s/n. It can be noticed that the censoring factéfisand k2
always lie between 0 and A massive simulation study has been carried out by considering various
combinations of sample sizes andHowever, for illustration purpose, we present (in Table 1) the
percentage of relative risk performances as well as percentage of risk improvements for sample sizes
(m,n) = (8,8) and forn = 1.5, n = 0.01. The first column gives the values of Corresponding to
one value ofr, there corresponds four values of relative risk performances for an estimator. These
four values correspond td = k2 = 0.25,0.50,0.75, 1.00 respectively.

The following conclusions can be drawn from our simulation study as well as the Table 1.

(1) Letn >r/mor(r+1)/2m. The percentage of relative risk valug® increases with respect
to botht andkl, k2, whereas the relative risk vall8 increases for small values ofand
then starts decreasing after attending maximum somewhere Qedh#& behavior oR1 is
not clear.

(2) Letn < 1/m. The relative risk improvemenR{, R2, R4) of all the estimators with respect
to the MLEdy, increases as the censoring factitsandk2 increase for fixed sample sizes.
Also R1, R2 andR4 increases with respect toand attains its maximum somewhere near
T =1, then slowly decrease. Further,ebecomes large the risk values of all the estimators
converge to some constant value.

(3) The percentage of improvementsdpfy; overdyy (P1) is maximum around 39% and the
percenitage of improvements afya overdyy (P2) is near to 15%As thecensoring fac-
torskl andk2 increase the percentage of improvement becomes negligible. The maximum
improvement is obtained near= 1.

(4) Consider for small values af that isn < 1/m. When the values of are close to Othe
estimatordyy has the maximum percentage of relative risk performance. For raiede
values oft (0.25 < 1 < 3.00), the estimatodyya has the maximum percentage of relative
risk improvement and is seen to vary from 30% to 4H6wever, for large values af (>
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3.0) the estimatody peforms the best and the percentage of relative risk improvement
is seen near to 45%

(5) Consider that) > 1.0 orn > (r +1)/2m. When the values of are close to Dand k1
and k2 also close to Othe estimatordyy has the maximum percentage of relative risk
performance and is seen near to 1Fer moderate to large values pfthe estimatodyy
has the maximum percentage of relative risk improvement and ieis isear to 36%

(6) From our simulation study we notice, that the amount of improvemediy@k over dyy
decreases as the valuestahcreases. The improvement is not significant as the values of
k; andk; increases fon < 1/m. We also observe that the estimatif, gives maximum
percettage of improvement ovetyy, for the case) > r/m.

(7) On the basis of our computational results, we recommend the following. Wiesmall
and the values of are close to Owe recommend to usdy. For moderate values afwe
recommend to useyya Whereas for large values ofthe estimatodyy is recommended.
Whenn > (r 4+ 1)/2m, and for small values of, we recommend to uséyy whereas for
moderae to large values of we recommend using the estimaty .

(8) A similar type of observations have been made for other combinatioks, && and the
sample sizes.

6. Conclusions and an Example

In this paper we have considered the estimation of quantiles of two exponential populations assum-
ing that the location parameters are equal using type-Il censored samples from a decision theoretic
point of view. We have derived some baseline estimators such as the MLE, the modified MLE
and the UMVUE for the quantilé®. We also obtained estimators which dominate the UMVUE
for n > 1/m. Further inadmissibility results have been proved for affine equivariant estimators. It
should be noted that when the censoring fackdrandk2 become 1the problem reduces to the full
sample problem which was earlier studied by several authors including Sharma and Kumar [20].
Though they have obtained improved estimators analytically, it is essential to know the percentage
of risk improvement approximately. In this regard our results (Section 5) add one more dimension
to their results and may be handy for practical purpose&ict k2 = 1. Also we have obtained
the results when the sample sizes are not equakardk2 = 1. The present work also extends the
results of Tripathy [21] to the case gf# 0 which is new.

Next, we present an example where our model fits well and compute the estimates for the quan-
tile 8 = u+noi.

Example 6.1. (Simulated Data) Suppose two brands of electronic devices each having 30 units are
placed for a life testing experiment. It is known that, the lifetimes (in hours) of each unit follows
an exponential distribution with same minimum guarantee time. The experimenter could able to
observe only 10 units of failures (in hours) from each brands of devices because of some constraints.
The data for both the brands are obtained as Brand 1: 59.69, 60.18, 68.33, 113.78, 155.78, 203.83,
237.86, 243.67, 251.62, 301.49; Brand 2: 37.62, 73.03, 100.54, 103.61, 106.37, 110.72, 119.26,
135.59, 169.75, 177.03.

On the basis of above data, we have computed the statistic valdes 85.62, V; = 21991
andV, = 118.18 Let n = 2.0, then the various estimates for the quan@le- u + n o1 have been
comptled asdy. = 135713, dum = 1349.448,dyy = 139.84, duyy) = 1279.88. In this situation,
we recommend to usdiy .
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Table 1: Relative risk performances of various estimators for quaftile
(m,n) = (8,8) with k1=k2=0.25,0.50,0.75,1.00

Tl n=1215 n=0.01

R1 R2 R3 P1 R1 R2 R4 P2
0.71| -81.30 | -25.16 | 30.96 | 27.00 | 9.91 | 13.03| 3.46
0.05| 230 | -25.68| 1.73 | 21.81| 39.18| 35.78 | 35.85| 0.11
257 | -11.89| 3.83 | 14.05| 42.54 | 41.43 | 41.43| 0.01
438 | -6.71 5.34 | 11.29 | 45.60 | 44.97 | 44.97 | 0.00
0.34 | -48.47| 2.60 | 34.40| 30.01 | 19.93 | 30.70 | 13.45
0.25| 1.60 | -17.28 | 9.07 | 22.47| 40.72 | 39.08 | 40.51 | 2.35
2.76 | -9.13 8.51 | 16.17 | 43.63 | 42.81 | 43.25| 0.76
3.91| -4.96 8.31 | 12.65| 46.21 | 45.78 | 45.93 | 0.26
0.18 | -22.85| 21.96 | 36.48 | 30.63 | 22.39 | 33.70 | 14.57
0.75| 1.02 | -8.88 | 16.86 | 23.65| 41.95| 40.92 | 43.00| 3.52
120 | -4.34 | 11.87 | 15.54 | 44.83 | 44.66 | 45.40 | 1.33
1.65| -2.30 9.86 | 11.89 | 46.66 | 46.58 | 46.88 | 0.56
0.13 | -17.03 | 26.53 | 37.22 | 31.03 | 23.76 | 34.46 | 14.03
1.00| 0.53| -6.06 | 17.61 | 22.31 | 42.72| 41.64 | 43.31| 2.86
111 | -357 | 13.11 | 16.11| 46.57 | 46.59 | 47.19| 1.11
1.32| -1.80 | 10.10 | 11.69| 47.02 | 47.20 | 47.34| 0.27
0.19 | -14.31| 29.15 | 38.02 | 31.34 | 23.79 | 33.63 | 12.90
1.25| 019 | -4.27 | 17.18 | 20.57 | 41.72| 41.27 | 42.61| 2.28
0.95| -2.85 | 14.30 | 16.68 | 45.93 | 46.00 | 46.51 | 0.94
1.04 | -1.42 | 10.64 | 11.90 | 46.04 | 46.02 | 46.20 | 0.34
0.01| -6.92 | 32.14 | 36.54 | 30.62 | 22.18 | 31.21 | 11.60
2.00| 0.11 | -2.38 | 18.66 | 20.56 | 41.62 | 40.94 | 41.84| 152
0.50 | -1.56 | 14.41 | 15.73 | 44.85| 44.65| 4490 | 0.45
0.29 | -0.64 9.60 | 10.18 | 46.08 | 45.92 | 46.06 | 0.26
0.03| -5.36 | 33.31 | 36.71 | 29.23 | 20.06 | 28.40 | 10.42
250 0.24 | -1.90 | 19.78 | 21.27 | 40.87 | 39.80 | 40.51| 1.18
0.12| -0.86 | 13.15 | 13.90 | 44.15| 43.98 | 44.11| 0.23
0.28 | -0.49 | 10.91 | 11.35| 4598 | 46.12 | 46.15| 0.05
0.06 | -4.59 | 3450 | 37.38 | 29.44 | 20.13 | 28.29 | 10.22
3.00 | 0.07 | -1.40 | 19.40 | 20.52| 41.07 | 40.09 | 40.64 | 0.91
0.16 | -0.77 | 13.47 | 14.13 | 44.29 | 43.72 | 43.88 | 0.27
0.35| -0.46 | 11.33 | 11.75| 46.14 | 46.13 | 46.16 | 0.05
0.04 | -3.53 | 34.62 | 36.85| 29.12 | 21.00 | 27.45| 8.16
3.50 | 0.17 | -1.38 | 20.94 | 22.02 | 40.39| 39.02 | 39.51| 0.79
0.28 | -0.76 | 15.01 | 15.66 | 43.77 | 43.25| 43.35| 0.17
0.16 | -0.30 | 10.47 | 10.74 | 46.04 | 45.89 | 4591 | 0.02
0.08 | -3.33 | 35.63 | 37.70 | 28.68 | 17.91 | 24.47 | 7.99
4.00 | 0.09 | -0.99 | 20.04 | 20.83 | 39.96 | 38.87 | 39.24 | 0.61
0.18 | -0.57 | 15.11 | 15.59 | 43.27 | 42.84 | 42.88 | 0.07
0.30| -0.34 | 11.68 | 11.98 | 45.06 | 44.76 | 44.77 | 0.02
0.00 | -2.27 | 34.00 | 35.47 | 28,99 | 17.85| 24.42 | 7.99
450 | 0.05| -0.75 | 20.25 | 20.85| 39.56 | 37.88 | 38.19 | 0.49
0.11| -0.42 | 14.85 | 15.21 | 4491 | 4441 | 44.46 | 0.08
0.29 | -0.31 | 11.93 | 12.20 | 44.80 | 44.48 | 44.47 | 0.01
0.01| -2.02 | 33.30 | 34.62 | 27.82| 16.13 | 22.36 | 7.42
5.00 | 0.07 | -0.72 | 19.60 | 20.18 | 39.62 | 38.22 | 38.47| 0.39
0.00 | -0.25 | 13.44 | 13.66 | 43.76 | 42.95 | 42.98 | 0.04
0.03 | -0.13 | 10.35 | 10.47 | 44.58 | 44.27 | 44.28 | 0.02
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