
Bayesian Inference Based on Multiply Type-II Censored Sample
from a General Class of Distributions

A.R. Shafay

Nature Science Department, Community College of Riyadh, King Saud University,
P.O. Box 28095, Riyadh 11437, Saudi Arabia

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum, Egypt
a shafay2013@yahoo.com

M.M. Mohie El-Din

Department of Mathematics, Faculty of Science, Al-Azhar University, Egypt
mmmmoheeldin@yahoo.com

Y. Abdel-Aty

Department of Mathematics, Faculty of Science, Al-Azhar University, Egypt
yahia1970@yahoo.com

In this paper, we consider a general form for the underlying distribution and a general conjugate prior, and
develop a general procedure for Bayesian estimation based on an observed multiply Type-II censored sample.
The problem of predicting the order statistics from a future sample are also discussed from a Bayesian view-
point. For the illustration of the developed results, the inverse Weibull distribution is used as example. Finally,
two numerical examples are presented for illustrating all the inferential procedures developed here.

Keywords: Order statistics; Multiply Type-II censored sample; Bayesian prediction; Bayesian estimation; The
inverse Weibull distribution; The inverse exponential distribution; The inverse Rayleigh distribution.

2000 Mathematics Subject Classification: 62G30, 62F15, 62N01

1. Introduction

In reliability analysis, experiments often get terminated before all units on test fail due to cost and
time considerations. In such cases, failure information is available only on part of the sample, and
only partial information on all units that had not failed. Such data are called censored data. There
are several forms of censored data. One of the most common forms of censoring is Type-II right
censoring which can be described as follows: Consider n identical units under observation in a life-
testing experiment and suppose only the first r ≤ n failure times X1:n, · · · ,Xr:n are observed and the
rest of the data are only known to be larger than Xr:n. A generalization of Type-II censoring scheme
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is multiple Type-II censoring scheme. Under this scheme, we observe only the jth1 , jth2 , · · · , jthr fail-
ure times X j1:n,X j2:n, ...,X jr:n, where 1 ≤ j1 < j2 < · · · < jr ≤ n, and the rest of the data are not
available. Particular applications of such censoring are found in reliability theory and survival anal-
ysis. Surveys regarding censored data can be found in Nelson [19], Balakrishnan and Cohen [6],
Cohen [10], Balakrishnan and Aggarwala [5], and McCool [15]. For a survey on multiple Type-II
censoring, one may refer to Kong [14].

Let X1:n < X2:n < · · · < Xn:n be the order statistics from a random sample of size n from an
absolutely continuous cumulative distribution function (CDF) F(x)≡ F(x|θ) with probability den-
sity function (PDF) f (x) ≡ f (x|θ), where the parameter θ ∈ Θ may be a real vector. These order
statistics have been used in a wide range of problems, including robust statistical estimation, detec-
tion of outliers, characterization of probability distributions, goodness-of-fit tests, entropy estima-
tion, analysis of censored samples, reliability analysis, quality control and strength of materials;
for more details, see Arnold et al. [4], David and Nagaraja [11], Balakrishnan and Rao [7, 8], and
the references contained therein. The joint density of multiply Type-II censored order statistics
X = (X j1:n,X j2:n, ...,X jr:n) is given by

fX(x) =
n!

(n− jr)!
[1−F(x jr)]

(n− jr)
r

∏
i=1

1
( ji − ji−1 −1)!

[
F(x ji)−F(x ji−1)

]( ji− ji−1−1) f (x ji), (1.1)

where x = (x j1 , ...,x jr) is a vector of realizations and j0 = 0.
We consider here the general inverse exponential form for the underlying distribution, suggested

by Mohie El-Din et al. [16], that is described as follows; Motivated by the fact that the CDF can be
written in the form

F(x|θ) = exp[−λ (x;θ)], (1.2)

where λ (x;θ) = − lnF(x|θ). Of course, some conditions need to be imposed so that F(x|θ) is a
valid CDF. These conditions are: λ (x;θ) is continuous, monotone decreasing and differentiable
function, with λ (x;θ)→ ∞ as x →−∞ and λ (x;θ)→ 0 as x → ∞. The PDF corresponding to (1.2)
is given by

f (x|θ) = λ ′(x;θ)exp[−λ (x;θ)], (1.3)

where λ ′(x;θ) is the derivative of λ (x;θ) with respect to x. With an appropriate choice of λ (x;θ),
several distributions that are used in reliability studies can be obtained as special cases such as the
inverse exponential, inverse Rayleigh, inverse Weibull, inverse Pareto, negative exponential, nega-
tive Weibull, negative Pareto, negative power, Gumbel, exponentiated-Weibull, loglogistic, Burr X,
inverse Burr XII and inverse paralogistic distributions.

In many practical problems, one may wish to use past data to predict an observation from a
future sample from the same population. As in the case of estimation, a predictor can be either
a point or an interval predictor. Several researchers have considered Bayesian prediction for future
observations based on Type-II censored data; see Dunsmore [12], Nigm and Hamdy [22], Nigm [20,
21], AL-Hussaini and Jaheen [3], AL-Hussaini [2], and Raqab and Madi [23]. Bayesian prediction
bounds for future observations based on multiply Type-II censored data have been discussed by
several authors, including Abdel-Aty et al. [1], Schenk et al. [24], Mohie El-Din et al. [17], and
Shafay et al. [25]. Recently, Mohie El-Din et al. [16] have considered the general inverse exponential
form for the underlying distribution, given in (1.2), and a general conjugate prior and developed a
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general procedure for determining the two-sample Bayesian prediction for future lifetimes based on
a right Type-II censored sample. In this paper, we discuss the same problem based on a multiply
Type-II censored data which involves some additional complications.

The rest of this paper is organized as follows. In Section 2, we present the structure of the
posterior distribution and derive the Bayesian estimation for the unknown parameters. In Section
3, the problem of predicting the order statistics from a future sample is then discussed when the
observed sample is a multiply Type-II censored sample from the same parent distribution. The
results for the inverse Weibull distribution are presented in Section 4. Finally, in Section 5, we
present some numerical results for illustrating all the inferential methods developed here.

2. The Posterior Distribution and Bayesian Estimation

In this section, we use the general inverse exponential form given in (1.2) and a general conjugate
prior to develop general procedure for determining the Bayesian estimator of the unknown parame-
ter θ .

Upon using (1.2) and (1.3) in (1.1), we obtain the likelihood function of the multiply Type-II
censored sample X = (X j1:n,X j2:n, ...,X jr:n) as

L(θ ;x) ∝
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,wA(θ ;x)exp[−B(θ ;x)], (2.1)

where Ck1,...,kr,w =

(
r

∏
i=1

cki( ji − ji−1)

)
cw(n− jr +1), ci( j) = (−1) j−i

(i−1)!( j−i)! for i = 1, ..., j,

A(θ ;x) =
r

∏
i=1

(
−λ ′(x ji ;θ)

)
,

and

B(θ ;x) = (n− jr −w+1)λ (x jr ;θ)+
r

∑
i=1

(
kiλ (x ji ;θ)+( ji − ji−1 − ki)λ (x ji−1 ;θ)

)
.

From the Bayesian viewpoint, the unknown parameter is regarded as a realization of a random
variable, which has some prior distribution. We consider here a general conjugate prior, suggested
by AL-Hussaini [2], that is given by

π(θ ;δ )∝C(θ ;δ )exp[−D(θ ;δ )], (2.2)

where θ ∈ Θ is the vector of parameters of the distribution in (1.2) and δ is the vector of prior
parameters. The prior family in (2.2) includes several priors used in the literature as special cases.

Upon combining (2.1) and (2.2), the posterior density function of θ , given the multiply Type-II
censored data, is obtained as

π∗(θ |x) = L(θ ;x)π(θ ;δ )/
∫

θ∈Θ

L(θ ;x)π(θ ;δ )dθ

= I−1
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,wη(θ ;x)exp[−ζ (θ ;x)], (2.3)
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where

η(θ ;x) =C(θ ;δ )A(θ ;x), ζ (θ ;x) = B(θ ;x)+D(θ ;δ ),

and

I =
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,w

∫
θ∈Θ

η(θ ;x)exp[−ζ (θ ;x)]dθ .

The Bayesian estimator of θ under the squared error loss function is the mean of the posterior
density function, given by

θ̂ = Eπ∗(θ |x)[θ ]

= I−1
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,w

∫
θ∈Θ

θ η(θ ;x)exp[−ζ (θ ;x)]dθ . (2.4)

3. Bayesian Predication

Let Y1:m ≤ Y2:m ≤ . . .≤ Ym:m be the order statistics from a future random sample of size m from the
same population. We use here the general inverse exponential form given in (1.2) and the general
conjugate prior given in (2.2) to develop a general procedure for deriving the point and interval
predictions for Ys:m, 1 ≤ s ≤ m, based on the observed multiply Type-II censored sample.

It is well known that the marginal density function of the sth order statistic from a sample of size
m from a continuous distribution with CDF F(x) and PDF f (x) is given, see Arnold et al. [4], by

fYs:m(y|θ) =
m!

(s−1)!(m− s)!
[F(y)]s−1[1−F(y)]m−s f (y), y > 0. (3.1)

Upon substituting (1.2) and (1.3) in (3.1), the marginal density function of Ys:m in (3.1) becomes

fYs:m(y|θ) =
m!

(s−1)!

m−s+1

∑
q=1

cq(m− s+1)
(
−λ ′(y;θ)

)
exp[−(m−q+1)λ (y;θ)], (3.2)

where cq(m− s+1) =
(−1)(m−s−q+1)

(q−1)!(m− s−q+1)!
for q = 1, ...,m− s+1.

Upon combining (2.3) and (3.2), the Bayesian predictive density function of Ys:m, given X = x,
is then

f ∗Ys:m
(y|x) =

∫
θ∈Θ

π∗(θ |x) fYs:m(y|θ)dθ

=
m!I−1

(s−1)!

j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

m−s+1

∑
q=1

Ck1,...,kr,wcq(m− s+1)

×
∫

θ∈Θ

(
−λ ′(y;θ)

)
η(θ ;x)exp [−(ζ (θ ;x)+(m−q+1)λ (y;θ))]dθ . (3.3)
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From (3.3), we simply obtain the predictive cumulative distribution function F∗
Ys:m

(t|x), for t ≥ 0, as

F∗
Ys:m

(t|x) =
t∫
0

f ∗Ys:m
(y|x)dy

=
m!I−1

(s−1)!

j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

m−s+1

∑
q=1

Ck1,...,kr,wcq(m− s+1)
m−q+1

×
∫

θ∈Θ

η(θ ;x)exp[−{ζ (θ ;x)+(m−q+1)λ (t;θ)}]dθ . (3.4)

The Bayesian point predictor of Ys:m under the squared error loss function is the mean of the predic-
tive density, given by

Ŷs:m =

∞∫
0

y f ∗Ys:m
(y|x)dy. (3.5)

The Bayesian predictive bounds of a two-sided equi-tailed 100(1−γ)% interval for Ys:m, 1 ≤ s ≤ m,
can be obtained by solving the following two equations:

F∗
Ys:m

(LYs:m |x) =
γ
2

and F∗
Ys:m

(UYs:m |x) = 1− γ
2
, (3.6)

where LYs:m and UYs:m denote the lower and upper bounds, respectively.

Remark 3.1. In the case when the observed sample is right Type-II censored (i.e., ji = i, 1 ≤ i ≤ r),
the predictive density and cumulative distribution functions of Ys:m given in (3.3) and (3.4) reduce
to expressions (2.13) and (2.14) of Mohie El-Din et al. [16], respectively.

4. The Inverse Weibull Distribution

Several distributions that are used in reliability studies can be obtained as special cases from the
general inverse exponential form given in (1.2). We consider in this section the inverse Weibull dis-
tribution as illustrative example. The inverse Weibull model has been derived as a suitable model
for describing the degradation phenomena of mechanical components, such as the dynamic compo-
nents of diesel engines, see for example Murthy et al. [18]. The physical failure process given by
Erto and Rapone [13] also leads to the inverse Weibull model. Erto and Rapone [13] showed that
the inverse Weibull model provides a good fit to survival data such as the times to breakdown of an
insulating fluid subject to the action of constant tension, see also Nelson [19]. Calabria and Pulcini
[9] provided an interpretation of the inverse Weibull distribution in the context of a load-strength
relationship for a component.

The distribution function of the inverse Weibull distribution is given by

F(x | θ) = exp[−α/xβ ], x > 0, (4.1)

where α > 0 and β > 0 are the scale and shape parameters, respectively, and so we have

λ (x;α,β ) = α/xβ and λ ′(x;α,β ) =−αβ/xβ+1.

We provide here the Bayesian inference for the inverse Weibull distribution, when the scale param-
eter is unknown and the shape parameter is known. It is assumed that the scale parameter has a
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gamma prior distribution with the shape and scale parameters as c and d, respectively and it has the
density function

π(α;δ ) ∝ αc−1 exp[−dα], α > 0, (4.2)

where c and d can be chosen to suit the prior belief of the experimenter in terms of location and
variability of the prior distribution. Moreover, Jeffrey’s prior can be obtained as a special case of
(4.2) by substituting c = d = 0. So, we have

C(α;δ ) = αc−1 and D(α;δ ) = dα,

where δ = (c,d).
Hence, the posterior density function of α , given the multiply Type-II censored data, become

π∗(α|x) = I−1
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,wαr+c−1

×exp

[
−α

(
(n− jr −w+1)

xβ
jr

+
k1

xβ
j1

+
r

∑
i=2

(
ki

xβ
ji

+
( ji − ji−1 − ki)

xβ
ji−1

)
+d

)]
, (4.3)

where

I =Γ(r+c)
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,w

[
(n− jr −w+1)

xβ
jr

+
k1

xβ
j1

+
r

∑
i=2

(
ki

xβ
ji

+
( ji − ji−1 − ki)

xβ
ji−1

)
+d

]−(r+c)

.

The Bayesian estimator of α is then given by

α̂ = Γ(r+ c+1)I−1
j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

Ck1,...,kr,w

×

[
(n− jr −w+1)

xβ
jr

+
k1

xβ
j1

+
r

∑
i=2

(
ki

xβ
ji

+
( ji − ji−1 − ki)

xβ
ji−1

)
+d

]−(r+c+1)

.

The predictive density and cumulative distribution functions of Ys:m are given, respectively, as

f ∗Ys:m
(y|x) = m!Γ(r+ c+1)I−1

(s−1)!

j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

m−s+1

∑
q=1

βCk1,...,kr,wcq(m− s+1)
yβ+1

×

[
(n− jr −w+1)

xβ
jr

+
k1

xβ
j1

+
r

∑
i=2

(
ki

xβ
ji

+
( ji − ji−1 − ki)

xβ
ji−1

)
+

(m−q+1)
yβ +d

]−(r+c+1)

(4.4)

and

F∗
Ys:m

(t|x) = m!Γ(r+ c)I−1

(s−1)!

j1− j0

∑
k1=1

..
jr− jr−1

∑
kr=1

n− jr+1

∑
w=1

m−s+1

∑
q=1

Ck1,...,kr,wcq(m− s+1)
m−q+1

×

[
(n− jr −w+1)

xβ
jr

+
k1

xβ
j1

+
r

∑
i=2

(
ki

xβ
ji

+
( ji − ji−1 − ki)

xβ
ji−1

)
+

(m−q+1)
tβ +d

]−(r+c)

.

(4.5)
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The Bayesian point predictor of Ys:m under the squared error loss function is then obtained as the
mean of the Bayesian predictive density function in (4.4), and this would require numerical integra-
tion. The Bayesian predictive bounds of a two-sided equi-tailed 100(1− τ)% interval for Ys:m can
be obtained by solving the two equations in (3.6) where F∗

Ys:m
(t|x) as in (4.5).

Remark 4.1. In the case when the observed sample is right Type-II censored (i.e., ji = i, 1 ≤ i ≤ r),
the posterior density function of α becomes

π∗(α|x) = I−1
n−r+1

∑
w=1

cw(n− r+1)αr+c−1 exp

[
−α

(
(n− r−w+1)

xβ
r

+
r

∑
i=1

(
1

xβ
i

)
+d

)]
, (4.6)

where

I = Γ(r+ c)
n−r+1

∑
w=1

cw(n− r+1)

[
(n− r−w+1)

xβ
r

+
r

∑
i=1

(
1

xβ
i

)
+d

]−(r+c)

,

and so the Bayesian estimator of α becomes

α̂ = Γ(r+ c+1)I−1
n−r+1

∑
w=1

cw(n− r+1)

[
(n− r−w+1)

xβ
r

+
r

∑
i=1

(
1

xβ
i

)
+d

]−(r+c+1)

.

The predictive density and cumulative distribution functions of Ys:m in this case become

f ∗Ys:m
(y|x) = m!Γ(r+ c+1)I−1

(s−1)!

n−r+1

∑
w=1

m−s+1

∑
q=1

βcw(n− r+1)cq(m− s+1)
yβ+1

×

[
(n− r−w+1)

xβ
r

+
r

∑
i=1

(
1

xβ
i

)
+

(m−q+1)
yβ +d

]−(r+c+1)

and

F∗
Ys:m

(t|x) = m!Γ(r+ c)I−1

(s−1)!

n−r+1

∑
w=1

m−s+1

∑
q=1

cw(n− r+1)cq(m− s+1)
m−q+1

×

[
(n− r−w+1)

xβ
r

+
r

∑
i=1

(
1

xβ
i

)
+

(m−q+1)
tβ +d

]−(r+c)

.

Remark 4.2. The inverse Weibull distribution contains many of important special cases such as
the inverse exponential and inverse Rayleigh distributions. The corresponding results of the inverse
exponential and inverse Rayleigh distributions can be obtained by setting β = 1 and 2, respectively.

5. Numerical Results

To illustrate the inferential procedures developed in the preceding sections, we present in this section
a numerical study for the inverse exponential and inverse Rayleigh distributions as special cases of
the inverse Weibull distribution when β = 1 and β = 2, respectively.
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5.1. Numerical results for the inverse exponential distribution

To illustrate the prediction results for the inverse exponential distribution, we generated order statis-
tics from a sample of size n = 10 from the inverse exponential distribution with α = 5. The gen-
erated order statistics are listed as follows: 1.31662, 3.04073, 5.25839, 5.39344, 5.64310, 5.88457,
13.72085, 22.43066, 29.19947, 1393.06058.

We then used these data to consider two different multiply Type-II censoring schemes:

(1) Scheme 1: r = 6 with j1 = 1, j2 = 3, j3 = 5, j4 = 6, j5 = 7 and j6 = 8. Under this censoring
scheme, we obtained the following data: 1.31662, 5.25839, 5.64310, 5.88457, 13.72085 and
22.43066;

(2) Scheme 2: r = 8 with j1 = 1, j2 = 3, j3 = 4, j4 = 5, j5 = 6, j6 = 7, j7 = 9 and j8 = 10.
Under this censoring scheme, we obtained the following data: 1.31662, 5.25839, 5.39344,
5.64310, 5.88457, 13.72085, 29.19947 and 1393.06058.

We assume these data to have come from the inverse exponential distribution, where the param-
eter α is unknown. Based on the above two multiply Type-II censoring schemes, we used the results
presented earlier in Section 4 (when β = 1) to compute the Bayesian estimate of α . In addition, sup-
pose we want to predict the order statistics from a future unobserved sample with size m = 10. In
this case, the point predictors and the 95% two-sample Bayesian prediction intervals for the order
statistics Ys:10, for s = 1, ...,10, are all obtained for three different choices of the prior, namely,

(1) Informative gamma prior 1 (GP 1) : E(α) = 5 and Var(α) = 2.5. So, we have c = 10 and
d = 2.

(2) Informative gamma prior (GP 2): E(α) = 5 and Var(α) = 5. So, we have c = 5 and d = 1.
(3) Jeffreys’ prior (JP): π(α) ∝ 1/α . So, we have c = 0 and d = 0.

The Bayesian estimates of α based on the three choices of the prior and the two multiply Type-II
censoring schemes, are presented in Table 1. Table 2 shows the point predictors and the 95% two-
sample Bayesian prediction intervals for the order statistics Ys:10, for s = 1, ...,10, based on the three
choices of the prior and the two multiply Type-II censoring schemes.

Table 1. The Bayesian estimates of α based on the
three choices of the prior and the two multiply Type-II
censoring schemes.

GP 1 GP 2 JP
Scheme 1 5.009 5.014 5.028
Scheme 2 5.006 5.010 5.021

5.2. Numerical results of the inverse Rayleigh distribution

To illustrate the prediction results for the inverse Rayleigh distribution, we generated order statis-
tics from a sample of size n = 10 from the inverse exponential distribution with α = 5. The gen-
erated order statistics are listed as follows: 1.35854, 1.80942, 2.04633, 2.08176, 2.34668, 2.94300,
4.81843, 5.26941, 8.16025, 59.60427.

We then used these data to consider two different multiply Type-II censoring schemes:
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Table 2. The Bayesian prediction for Ys:10 (s = 1,2, ...,10) based on the three choices of the prior and the two multiply
Type-II censoring schemes.

prior GP 1 GP 2 JP
s LYs:10 UYs:10 Ŷs:10 LYs:10 UYs:10 Ŷs:10 LYs:10 UYs:10 Ŷs:10
1 Scheme 1 0.721 4.619 2.094 0.686 4.737 2.462 0.620 4.971 3.017

Scheme 2 0.722 4.616 1.986 0.687 4.733 2.153 0.621 4.964 2.681

2 Scheme 1 1.153 6.715 3.045 1.092 6.889 3.538 0.980 7.233 4.916
Scheme 2 1.154 6.710 2.952 1.093 6.883 3.242 0.983 7.223 4.142

3 Scheme 1 1.563 9.230 4.172 1.479 9.460 4.627 1.326 9.919 5.788
Scheme 2 1.565 9.224 4.089 1.480 9.453 4.383 1.329 9.905 5.094

4 Scheme 1 2.012 12.611 5.490 1.906 12.907 5.837 1.710 13.494 6.980
Scheme 2 2.014 12.603 5.243 1.909 12.895 5.462 1.714 13.477 6.103

5 Scheme 1 2.543 17.563 7.287 2.411 17.940 7.798 2.170 18.695 9.358
Scheme 2 2.546 17.555 7.074 2.416 17.927 7.359 2.176 18.671 8.869

6 Scheme 1 3.209 25.583 9.996 3.067 26.067 10.350 2.755 27.043 11.907
Scheme 2 3.210 25.569 9.526 3.104 26.040 10.042 2.758 27.010 11.005

7 Scheme 1 4.101 40.475 14.542 3.908 41.115 14.991 3.548 42.423 16.007
Scheme 2 4.109 40.450 14.282 3.915 41.083 14.638 3.554 42.368 15.215

8 Scheme 1 5.400 75.022 22.780 5.165 75.931 23.081 4.721 77.798 24.457
Scheme 2 5.439 74.978 22.361 5.171 75.769 22.584 4.726 77.699 23.762

9 Scheme 1 7.563 199.92 46.646 7.269 201.38 47.159 6.705 204.44 48.724
Scheme 2 7.669 199.01 45.127 7.274 201.22 46.827 6.714 204.19 47.951

10 Scheme 1 12.340 1977.3 1071.8 11.95 1978.8 1074.5 11.172 1983.3 1085.7
Scheme 2 12.433 1976.6 1069.1 11.99 1977.3 1072.9 11.188 1980.7 1080.3

(1) Scheme 1: r = 6 with j1 = 1, j2 = 3, j3 = 5, j4 = 6, j5 = 7 and j6 = 8. Under this censoring
scheme, we obtained the following data: 1.35854, 2.04633, 2.34668, 2.94300, 4.81843 and
5.26941;

(2) Scheme 2: r = 8 with j1 = 1, j2 = 3, j3 = 4, j4 = 5, j5 = 6, j6 = 7, j7 = 9 and j8 = 10.
Under this censoring scheme, we obtained the following data: 1.35854, 2.04633, 2.08176,
2.34668, 2.94300, 4.81843, 8.16025 and 59.60427.

We assume these data to have come from the inverse Rayleigh distribution, where the parameter
α is unknown. Based on the above two multiply Type-II censoring schemes, we used the results
presented earlier in Section 4 (when β = 2) to compute the Bayesian estimate of α . In addition,
suppose we want to predict the order statistics from a future unobserved sample with size m = 10.
In this case, the point predictors and the 95% two-sample Bayesian prediction intervals for the order
statistics Ys:10, for s = 1, ...,10, are all obtained for three different choices of the hyper-parameters c
and d, namely,

(1) Informative gamma prior 1 (GP 1): E(α) = 5 and Var(α) = 2.5. So, we have c = 10 and
d = 2.

(2) Informative gamma prior 2 (GP 2): E(α) = 5 and Var(α) = 5. So, we have c = 5 and
d = 1.

(3) Jeffreys’ prior (JP): π(α) ∝ 1/α . So, we have c = 0 and d = 0.
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The Bayesian estimates of α based on the three choices of the prior and the two multiply Type-II
censoring schemes, are presented in Table 3. Table 4 shows the point predictors and the 95% two-
sample Bayesian prediction intervals for the order statistics Ys:10, for s = 1, ...,10, based on the three
choices of the prior and the two multiply Type-II censoring schemes.

Table 3. The Bayesian estimates of α based on the
three choices of the prior and the two multiply Type-II
censoring schemes.

GP 1 GP 2 JP
Scheme 1 5.334 5.458 5.730
Scheme 2 5.240 5.367 5.645

Table 4. The Bayesian prediction for Ys:10 (s = 1,2, ...,10) based on the three choices of the prior and the two multiply
Type-II censoring schemes.

prior GP 1 GP 2 JP
s LYs:10 UYs:10 Ŷs:10 LYs:10 UYs:10 Ŷs:10 LYs:10 UYs:10 Ŷs:10
1 Scheme 1 0.877 2.217 1.415 0.865 2.269 1.735 0.843 2.377 1.945

Scheme 2 0.878 2.216 1.392 0.866 2.268 1.682 0.844 2.376 1.874

2 Scheme 1 1.109 2.672 1.713 1.092 2.736 1.941 1.060 2.867 2.105
Scheme 2 1.110 2.270 1.699 1.093 2.734 1.887 1.062 2.865 2.002

3 Scheme 1 1.291 3.133 2.000 1.271 3.206 2.402 1.233 3.357 2.784
Scheme 2 1.292 3.131 1.979 1.273 3.203 2.038 1.235 3.354 2.572

4 Scheme 1 1.465 3.663 2.291 1.442 3.745 2.696 1.401 3.917 2.903
Scheme 2 1.466 3.660 2.287 1.444 3.740 2.473 1.402 3.913 2.711

5 Scheme 1 1.647 4.323 2.632 1.623 4.416 3.091 1.577 4.609 3.334
Scheme 2 1.648 4.322 2.622 1.624 4.412 2.806 1.580 4.605 3.049

6 Scheme 1 1.850 5.217 3.060 1.825 5.323 3.547 1.777 5.545 3.908
Scheme 2 1.852 5.210 3.019 1.828 5.320 3.176 1.780 5.542 3.631

7 Scheme 1 2.091 6.563 3.646 2.065 6.686 4.007 2.017 6.947 4.817
Scheme 2 2.093 6.561 3.573 2.067 6.682 3.824 2.020 6.941 4.230

8 Scheme 1 2.410 8.935 4.498 2.374 9.088 5.626 2.326 9.410 6.715
Scheme 2 2.411 8.931 4.466 2.377 9.081 5.415 2.329 9.402 5.988

9 Scheme 1 2.840 14.588 6.130 2.816 14.802 7.474 2.771 15.258 8.970
Scheme 2 2.842 14.497 6.072 2.822 14.714 7.278 2.775 15.218 8.002

10 Scheme 1 3.627 45.883 14.136 3.610 46.410 16.857 3.577 47.542 18.545
Scheme 2 3.639 44.912 12.612 3.623 45.645 14.849 3.582 46.604 17.013

5.3. Concluding Remarks

From the results in Tables 1-4, the following points can be observed:

(1) The results obtained based on the multiply Type-II censoring scheme 2 (with r = 8) is more
precise than the corresponding ones based on the multiply Type-II censoring scheme 2 (with
r = 6), as we would expect;
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(2) A comparison of the results for the informative gamma priors with the corresponding ones
for the Jeffreys’ prior reveals that the former produce more precise results, as we would
expect;

(3) The results obtained based on informative gamma prior 1 (with Var(α) = 2.5) is more
precise than the corresponding ones based on informative gamma prior 2 (with Var(α)= 5),
as we would expect;

(4) The width of the Bayesian prediction intervals decreases with increasing β .
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