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1. Introduction

1.1. General Introduction

In this paper, we deal with divergence measures estimation using essentially wavelets density func-
tion estimation. Let P be a class of probability measures on Rd , d ≥ 1, a divergence measure on 
P is a function

D : P2 −→ R
(Q,L) 7−→ D(Q,L) (1.1)

such that D(Q,Q) = 0 for any Q such that (Q,Q) in the domain of application of D .

The function D is not necessarily an application. And if it is, it is not always symmetrical and it
does neither have to be a metric. A great number of them are based on probability density functions
(pdf ). So let us suppose that any Q ∈P admits a pdf fQ with respect to a σ -finite measure ν on
(Rd ,B(Rd)), which is usually the Lebesgue measure λd (with λ1 = λ ) or a counting measure on
Rd .

We may present the following divergence measures.

(1) The L2
2-divergence measure :

DL2(Q,L) =
∫
Rd
( fQ(x)− fL(x))2dν(x). (1.2)

(2) The family of Renyi’s divergence measures indexed by α 6= 1, α > 0, known under the name of
Renyi-α :

DR,α(Q,L) =
1

α−1
log
(∫

Rd
f α
Q (x) f 1−α

L (x)dν(x)
)
. (1.3)

(3) The family of Tsallis divergence measures indexed by α 6= 1, α > 0, also known under the name
of Tsallis-α :

DT,α(Q,L) =
1

α−1

(∫
Rd

f α
Q (x) f 1−α

L (x)−1
)

dν(x); (1.4)

(4) The Kullback-Leibler divergence measure

DKL(Q,L) =
∫
Rd

fQ(x) log( fQ(x)/ fL(x)) dν(x). (1.5)

The latter, the Kullback-Leibler measure, may be interpreted as a limit case of both the Renyi’s
family and the Tsallis’ one by letting α → 1. As well, for α near 1, the Tsallis family may be
seen as derived from DR,α(Q,L) based on the first order expansion of the logarithm function in the
neighborhood of the unity.
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From this small sample of divergence measures, we may give the following remarks.

(a) The L2
2-divergence measure is both an application and a metric on P2, where P is the class of

probability measures on Rd such that ∫
Rd

f 2
Q(x) dν(x)<+∞.

(b) For example, for both the Renyi and the Tsallis families, we may have integrability problems
and lack of symmetry. From this sample tour, we have to be cautious, when speaking about diver-
gence measures as applications and/or metrics. In the most general case, we have to consider the
divergence measure between two specific probability measures as a number or a real parameter.

Originally, divergence measures came as extensions and developments of information theory that
was first set for discrete probability measures. In such a situation, the boundedness of these discrete
probability measures above zero and below +∞ was guaranteed. That is, the following assumption
holds :

Boundedness Assumption (BD). There exist two finite numbers 0 < κ1 < κ2 <+∞ such that

κ1 ≤ fQ, fL ≤ κ2. (1.6)

If Assumption (1.6) holds, we do not have to worry about integrability problems, especially for
Tsallis, Renyi and Kullback-Leibler measures, in the computations arising in the estimation theo-
ries. This explains why Assumption (1.6) is systematically used in a great number of works in that
topic, for example, in [Singh and Poczos (2014)], [Krishnamurthy et al.(2014)], [Hall(1987)], to
cite a few. But instead of Assumption (1.6), we use the following

Modified Boundedness Condition : There exist 0 < κ1 < κ2 < +∞ and a compact domain D as
large as possible such that

κ1 ≤ fQ1D, fL1D ≤ κ2. (1.7)

This implies that the modified divergence measure, denoted by D (m), is applied to the modified
pdf’s :

f (m)
Q = D−1

1 fQ1D and f (m)
P = D−1

2 fL1D,

where D1 and D2 are the integrals of fQand fL of D, respectively. Based on this technique, that we
apply in case of integrability problems, we will suppose, when appropriate, that Assumption (1.6)
holds on a compact set D.

Although we are focusing on the aforementioned divergence measures in this paper, it is worth
mentioning that there exist quite a few number of them. Let us cite for example the ones
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named after : Ali-Silvey or f -divergence [Topsoe(2000)], Cauchy-Schwarz, Jeffrey divergence 
(see [Evren(2012)]), Chernoff (See [Evren(2012)]) , Jensen-Shannon (See [Evren(2012)]). Accord-
ing to [Cichocki and Amari(2010)], there is more than a dozen of different divergence measures in 
the literature. In a longer version of this paper (see [Ba et al.(2017)]), some important applications 
of them are highlighted with there references. The reader, who is interested by a so important review 
topic is referred to that paper.

In the next subsection, we describe the frame in which we place the estimation problems we deal in 
this paper.

1.2. Statistical Estimation

The divergence measures may be applied to two statistical problems among others.

(A) First, it may be used as a fitting problem as described here. Let X1,X2, .... a sample from X  with 
an unknown probability distribution PX and we want to test the hypothesis that PX is equal to a 
known and fixed probability P0. Theoretically, we can answer this question by estimating a diver-
gence measure D(PX ,P0) by a plug-in estimator D(P(

X
n)
,P0) where, for each n ≥ 1, PX is replaced

by an estimator P(
X
n) of the probability law, which is based on sample X1, X2, ..., Xn, to be precised.

From there establishing an asymptotic theory of ∆n = D(P(
X
n)
,P0)−D(PX ,P0) is thought to be nec-

essary to conclude.

(B) Next, it may be used as tool of comparing for two distributions. We may have two samples and 
wonder whether they come from the same probability measure. Here, we also may two different 
cases.

(B1) In the first, we have two independent samples X1,X2, .... and Y1,Y2, .... respectively from a ran-
dom variable X and Y. Here the estimated divergence D(P(

X
n)
,P(

Y
m)
), where n and m are the sizes of 

the available samples, is the natural estimator of D(PX ,PY ) on which depends the statistical test of 
the hypothesis : PX = PY .

(B2) But the data may also be paired (X ,Y ), (X1,Y1),(X2,Y2), ..., that is Xi and Yi are measurements 
of the same case i = 1,2, ... In such a situation, testing the equality of the margins PX = PY should 
be based on an estimator P(n) of the joint probability law of the couple (X ,Y ) based on the paired

(X ,Y )
observations (Xi,Yi), i = 1,2, . . . ,n.

We did not encounter the approach (B2) in the literature. In the (B1) approach, almost all the papers 
used the same sample size, at the exception of [Poczos and Jeff(2011)], for the double-size estima-
tion problem. In our view, the study case should rely on the available data so that using the same 
sample size may lead to a loss of information. To apply their method, one should take the minimum 
of the two sizes and then loose information. We suggest to come back to a general case and then
study the asymptotic theory of D(P(

X
n)
,P(

Y
m)
) based on samples X1,X2, ..,Xn. and Y1,Y2, ...,Ym. In this
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paper, we will systematically use arbitrary samples sizes.

In the context of the situation (B1), there are several papers dealing with the estimation of the
divergence measures. As we are concerned in this paper by the weak laws of the estimators, our
review on that problematic did return only of a few results. Instead, the literature presented us many
kinds of results on almost-sure efficiency of the estimation, with rates of convergences and laws of
the iterated logarithm, Lp (p = 1,2) convergence, etc. To be precise, [Dhakher et al.(2016)] used
recent techniques based on functional empirical process to provide a series of interesting rates of
convergence of the estimators in the case of one-sided approach for the class de Renyi, Tsallis,
Kullback-Leibler to cite a few. Unfortunately, the authors did not address the problem of integrabil-
ity, taking for granted that the divergence measures are finite. Although the results should be correct
under the boundedness assumption BD we described earlier, a new formulation in that frame would
be welcome.

The paper of [Krishnamurthy et al.(2015)] is exactly what we want to do, except that it is concen-
trated on the L2-divergence measure and used the Parzen approach. Instead, we will handle the most
general case of φ -divergence measure and will use the wavelets probability density estimators.

In the context of the situation (B1), we may cite first the works of [Krishnamurthy et al.(2014)]
and [Singh and Poczos (2014)]. They both used divergence measures based on probability density
functions and concentrated on Renyi-α , Tsallis-α and Kullback-Leibler. In the description of the
results below, the estimated pfd’s - f and g - are usually in a periodic Hőlder class of a known
smoothness s..

Specifically, [Krishnamurthy et al.(2014)] defined Renyi and Tsallis estimators by correcting the
plug-in estimator and established that, as long as DR,α( f ,g) ≥ c and DT,α( f ,g) ≥ c, for some
constant c > 0, then

E |DR,α( fn,gn)−DR,α( f ,g)| ≤ c
(

n−1/2 +n−
3s

2s+d

)
and

E |DT,α( fn,gn)−DT,α( f ,g)| ≤ c
(

n−1/2 +n−
3s

2s+d

)
,

[Poczos and Jeff(2011)] used a k−nearest-neighbor approach to prove that if |α−1|< k, (α 6= 1)
then

lim
n,m→∞

E [DT,α( fn,gm)−DT,α( f ,g)]2 = 0

and

lim
n,m→∞

E(DR,α( fn,gm)) = DR,α( f ,g).

There has been a recent interest in deriving convergence rates for divergence estimators ( [Moon and
Hero(2014)], [Krishnamurthy et al.(2014)]). The rates are typically derived in terms of smoothness
s of the densities :
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The estimator of [Liu et al.(2012)] converges at rate n− s+
s

d , achieving the parametric rate when 
s > d.

Similarly, [Sricharan et al.(2012)] showed that when s > d a k-nearest-neighbor style estimator 
achieves the rate n−2/d (in absolute error) ignoring logarithmic factors. In a follow up work, the 
authors improved this result to O(n−1/2) by using a set of weak estimators, but they required s > d 
orders of smoothness. One can also see [Singh and Poczos (2014)], [Kallberg and Seleznjev(2012)] 
for other contributions.

The majority of the aforementioned articles worked with densities in Hőlder classes, whereas our 
work applies for densities in the Besov classes.

Here, we will focus on divergence measures between absolutely continuous probability laws with 
respect to the Lebesgue measure. As well, our results applied to the approaches (A) and (B1) defined 
above. As a sequence, we estimate divergence measures by their plug-in counterparts, meaning that 
we replace the probability density functions (pdf ) in the expression of the divergence measure by a 
nonparametric estimators of the pdf ’s. From now, we have on our probability space, two indepen-
dent sequences :

(-) a sequence of independent and identically distributed random variables with common pdf fPX :

X1,X2, ... (1.8)

(-) a sequence of independent and identically distributed random variables with common pdf gPY :

Y1,Y2, ... (1.9)

To make the notations more simple, we write

f = fPX and g = fPY .

We focus on using pdf ’s estimates provided by the wavelets approach. We will deal on the Parzen
approach in a forthcoming study. So, we need to explain the frame in which we are going to express
our results.

We also wish to get, first, general laws for an arbitrary functional of the form

J( f ,g) =
∫

D
φ( f (x),g(x))dx, (1.10)

where φ(x,y) is a measurable function of (x,y) ∈ R2
+ on which we will make the appropriate con-

ditions. The results on the functional J( f ,g), which is also known under the name of φ -divergence,
will lead to those on the particular cases of the Renyi, Tsallis, and Kullback-Leibler measures.
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The exposure of all our results will be given in three a series of three papers. This paper is
devoted to the foundations the general asymptotic theory and the exposition of the mains theoretical
tools concerning the φ -forms. The second paper will deal with important key divergence measures
and symmetrized estimators. Finally a third paper will focus on the proofs.

1.3. Wavelets estimation of pdf’s

To begin with the wavelets theory and its statistical applications, we say that the wavelets setting
involves two functions ϕ and ψ in L2(R) respectively called father and mother such that{

ϕ(.− k), 2 j/2
ψ(2 j(.)− k),( j,k) ∈ Z2

}
,

is a orthonormal basis of L2(R). We adopt the following notation, for j ≥ 0, k ∈ Z :

ϕ j,k = 2 j/2
ϕ(2 j(.)− k) and ψ j,k = 2 j/2

ψ(2 j(.)− k).

Thus, any function f in L2(R) is characterized by its coordinates in the orthonormal basis, in the
form

f = ∑
k∈Z

α0,kϕ0,k + ∑
k∈Z

∑
j≥1

β j,kψ j,k (1.11)

with for j ≥ 0, k ∈ Z,

α0,k =
∫
R

f (t)ϕ0,k(t) dt and β j,k =
∫
R

f (t)ψ j,k(t) dt.

For an easy introduction to the wavelets theory and to its applications to statistics, see for instance
[Hardle et al.(1998)], [Daubechies(1992)], [Blatter(1998)], etc. In this paper we only mention the
unavoidable elements of this frame.

Based on the orthonormal basis defined below, the following Kernel function is introduced

R2 3 (x,y) 7→ K(x,y) = ∑
k∈Z

ϕ(x− k)ϕ(y− k).

For any j ≥ 1 fixed, called a resolution level, we define

K j(x,y) = 2 jK(2 jx,2 jy)

and for measurable function h, we define the operator projection K j of h onto the space Vj of L2(R)
(spanned by 2 j/2ϕ(2 j(.)− k)), by

R 3 x 7→ K j(h)(x) =
∫

K j(x,y)h(y)dy.

Therefore we can write, for all x ∈ R,
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K j(h)(x) = 2 j
∫

K(2 jx,2 jy)h(y)dy

= 2 j
∫

∑
k

ϕ(2 jx− k)ϕ(2 jy− k)h(y)dy. (1.12)

In the frame of this wavelets theory, for each n≥ 1, we fix the resolution level depending on n and
denoted by j = jn, and we use the following estimator of the pdf f associated to X , based on the
sample of size n from X , as defined in (1.8),

fn(x) =
1
n

n

∑
i=1

K jn(x,Xi). (1.13)

As well, in a two samples problem, we will estimate the pdf g associated to Y , based on a sample
of size n from Y , as defined in (1.9), by

gn(x) =
1
n

n

∑
i=1

K jn(x,Yi). (1.14)

The aforementioned estimator is known under the name of linear wavelets estimators.

Before we give the main assumptions on the wavelets we are working, we have to define the concept
of weak differentiation. Denote by D(R) the class of functions from R to R with compact support
and infinitely differentiable. A function f : R→ R is weak differentiable if and only if there exists
a function g : R→ R locally integrable (on compact sets) such that, for any φ ∈D(R), we have

∫
f (u)φ ′(u)du =−

∫
g(u)φ(u)du.

In such a case, g is called the weak derivative function of f and denoted f [1]. If the first weak deriva-
tive has itself a weak derivative, ans so forth up to the p−1-th derivative, we get the p-th derivative
function f [p]. Now we may expose the four assumptions we require on the wavelets.

Assumption 1. . The wavelets ϕ and ψ are bounded and have compact support and either (i) the
father wavelet ϕ has weak derivatives up to order T in Lp(R)(1≤ p≤∞ ) or (ii) the mother wavelet
ψ associated to ϕ satisfies

∫
xmψ(x)dx = 0 for all m = 0, . . . ,T.

and

Assumption 2. ϕ : R→R is of bounded p-variation for some 1≤ p < ∞ and vanishes on (B1,B2]
c

for some −∞ < B1 < B2 < ∞.

Wavelets generators with compact supports are available in the literature. We may cite those named
after Daubechies, Coiflets and Symmlets (See [Hardle et al.(1998)]). The cited generators fulfill our
two main assumption.
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Under Assumption 2, the summation over k, in (1.12), is finite since only a number of the terms in
the summation are non zeros (see [Giné and Nickl(2009)]).

Assumption 3. There exists a non-negative symmetrical and continuous function Φ(t) of t ∈R with
a compact support K such that :

∀(x,y) ∈ R2, |K(x,y)| ≤Φ(x− y).

The fourth assumption concerns the resolution level we choose. We set for once an increasing
sequence ( jn)n≥1 such that

Assumption 4. limn→+∞ n−1/42 jn = 1.

By the way, we have as n→ ∞, and

√
jn2 jn

n
+2−t jn ≈

√
1

4log2
logn
n3/4 +n−t/4→ 0, ∀t > 0 (1.15)

jn
log logn

→ ∞ and sup
n≥n0

( j2n− jn) =
1
4

.

These conditions allow the use the [Giné and Nickl(2009)]’s results.

We also denote

an = ‖ fn− f‖
∞
, bn = ‖gn−g‖

∞
, n≥ 1 (1.16)

cn = an∨bn, cn,m = an∨bm,n≥ 1, m≥ 1,

c∗n,m = cn,m∨ cm,n, n≥ 1, m≥ 1.

where ‖h‖
∞

stands for supx∈D(h) |h(x)|, and D(h) is the domain of application of h.

In the sequel we suppose the densities f and g belong to the Besov space Bt
∞,∞ (R). We will say a

word of simple conditions under which our pdf’s do belong to such spaces.

Suppose that the densities f and g belong to Bt
∞,∞ (R), that ϕ satisfies Assumption 2, and ϕ,ψ sat-

isfy Assumption 1. Then Theorem 3 [Giné and Nickl(2009)] implies that the rates of convergence
an, bn and cn are of the form

O

(√
1

4log2
logn
n3/4 +n−t/4

)
almost-surely and converge all to zero at this rate (with 0 < t < T ).

In order to establish the asymptotic normality of the divergences estimators, we need this key tool
concerning the wavelets empirical process denoted by Gw

n,X(h), where h ∈Bt
∞,∞ (R) and defined as

follows by
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Gw
n,X(h) =

√
n
(
Pw

n,X −EX
)
(h),

where Pw
n,X(h) = Pn,X (K jn(h)) =

1
n ∑

n
i=1 K jn(h)(Xi) and EX(h) =

∫
h(x) f (x)dx denotes the expec-

tation of the measurable function h with respect to the probability distribution function PX . The
superscript w refers to wavelets. We have

Gw
n,X(h) =

√
n
∫
( fn(x)− f (x))h(x)dx (1.17)

since, by Fubini’s Theorem,

√
n
(
Pw

n,X −EX
)
(h) =

√
n

(
1
n

n

∑
i=1

K jn(h)(Xi)−
∫

f (x)h(x)dx

)

=
√

n

(
1
n

n

∑
i=1

∫
K jn(x,Xi)h(x)dx−

∫
f (x)h(x)dx

)

=
√

n
∫ (1

n

n

∑
i=1

K jn(x,Xi)− f (x)

)
h(x)dx

=
√

n
∫
( fn(x)− f (x))h(x)dx.

We are ready to give our results on the functional J introduced in Formula (1.10).

2. RESULTS

2.1. Main Results

Here, we present a general asymptotic theory of a class of divergence measures estimators including
the Renyi and Tsallis families and the Kullback-Leibler ones.

Actually, we gather them in the φ -divergence measure form. We will obtain a general frame from
which we will derive a number of corollaries. The assumption (1.6) will be used in the particular
cases to ensure the finiteness of the divergence measure as mentioned in the beginning of the article.
However, in the general results, the assumption (1.6) is part of the general conditions.

We begin to state a result as a general tool for establishing asymptotic normality and related to the
wavelets empirical process, which we will use for establishing the asymptotic normality of diver-
gence measures.

Theorem 2.1. Given the (Xn)n≥1, defined in (1.8) such that f ∈ Bt
∞,∞(R) and let fn defined as

(1.13) and Gw
n,X defined as in (1.17). Then, under Assumption (1-3) and for any bounded h, defined
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on D, belonging to Bt
∞,∞ (R), we have

σ
−1
h,nG

w
n,X(h) N (0,1) as n→ ∞,

where we have

σ
2
h,n = EX (K jn(h)(X))2− (EX(K jn(h)(X))2→ Var(h(X)) as n→ ∞.

Based on that result which will be proved later, we are going to state all results of the functional J
defined in Formula 1.10, regarding its almost-sure and Gaussian asymptotic behavior. Let us begin
by some notations. Let us assume that φ have continuous second order partial derivatives defined as
follows :

φ
(1)
1 (s, t) =

∂φ

∂ s
(s, t), φ

(1)
2 (s, t) =

∂φ

∂ t
(s, t)

and

φ
(2)
1 (s, t) =

∂ 2φ

∂ s2 (s, t), φ
(2)
2 (s, t) =

∂ 2φ

∂ t2 (s, t), φ
(2)
1,2 (s, t) = φ

(2)
2,1 (s, t) =

∂ 2φ

∂ s∂ t
(s, t).

Define the functions hi, i = 1, . . .4 :

h1(x) = φ
(1)
1 ( f (x),g(x)), h2(x) = φ

(1)
2 ( f (x),g(x)),

h3(x) = φ
(1)
1 (g(x), f (x)) and h4(x) = φ

(1)
2 (g(x), f (x))

Set

A1 =
∫

D
|h1(x)|dx and A2 =

∫
D
|h2(x)|dx

and

A3 =
∫

D
|h3(x)|dx and A4 =

∫
D
|h4(x)|dx.

We require the following general conditions.

C-A. All the constants Ai are finite.

C-h. All the functions hi used in the theorem below are bounded and lie in a Besov space Bt
∞∞ for

some t such that t > 1/2.

C1-φ . The following integral
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∫ {
|φ (1)

1 ( f (x),g(x))|+ |φ (1)
2 ( f (x),g(x))|

}
dx <+∞.

us finite.

C2-φ . For any measurable sequences of functions δ
(1)
n (x), δ

(2)
n (x), ρ

(1)
n (x), and ρ

(2)
n (x) of x ∈ D,

uniformly converging to zero, that is

max
i=1,2, j=1,2

sup
{∣∣∣δ (i)

n (x)
∣∣∣+ ∣∣∣ρ( j)

n (x)
∣∣∣}<+∞,

we have as n→ ∞ ∫
D

φ
(2)
1

(
f (x)+δ

(1)
n (x),g(x)

)
dx→

∫
D

φ
(2)
1 ( f (x),g(x))dx, (2.1)

∫
D

φ
(2)
2

(
f (x),g(x)+δ

(2)
n (x)

)
dx→

∫
D

φ
(2)
2 ( f (x),g(x))dx, (2.2)

and ∫
D

φ
(2)
1,2

(
f (x)+ρ

(1)
n (x),g(x)+ρ

(2)
n (x)

)
dx→

∫
D

φ
(2)
1,2 ( f (x),g(x))dx. (2.3)

Remark 2.1.
(a) To check C-h, we may use criteria based on properties of Besov spaces derived on high order
differentiability and on the fact we work on compact sets, as it will be seen in the second part of
this paper, or in the Appendix section on [Ba et al.(2017)]. These techniques show that our results
apply to all the usual distributions.

(b) The conditions in C2-φ may be justified by the Dominated Convergence Theorem or the mono-
tone Convergence Theorem or from other limit theorems. We may either express conditions on the
general function φ under which these results hold true. But here, we choose to state the final results
and next, to check them for particular cases, in which we may use convergence theorems.

Based on (1.13) and (1.14), we will use the following estimators

J( fn,g) =
∫

D
φ( fn(x),g(x))dx, J( f ,gn) =

∫
D

φ( f (x),gn(x))dx,

and J( fn,gn) =
∫

D
φ( fn(x),gn(x))dx.

Here are our main results.

I - Statements of the main results.
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The first concerns the almost sure efficiency of the estimators.

Theorem 2.2. Under the assumptions 1-3, C-A, C-h, C1-φ , C2-φ and (BD), we have

limsup
n→+∞

|J( fn,g)− J( f ,g)|
an

≤ A1,a.s (2.4)

limsup
n→+∞

|J( f ,gn)− J( f ,g)|
bn

≤ A2,a.s (2.5)

limsup
(n,m)→(+∞,+∞)

∣∣∣∣J( fn,gm)− J( f ,g)
cn,m

∣∣∣∣≤ A1 +A2 a.s (2.6)

where an, bn and cn are as in (1.16).

The second concerns the asymptotic normality of the estimators.

Theorem 2.3. Under the assumptions 1-3, C-A, C-h, C1-φ , C2-φ and (BD), we have

√
n(J( fn,g)− J( f ,g)) N (0,Var(h1(X))) , as n→+∞ (2.7)

√
n(J( f ,gn)− J( f ,g)) N (0,Var(h2(Y ))) , as n→+∞ (2.8)

and as n→+∞ and m→+∞,

(
nm

mVar(h1(X)+nVar(h2(Y ))

)1/2(
J( fn,gm)− J( f ,g)

)
 N (0,1) . (2.9)

3. Comments and Announcements

In a second paper, we will give versions of our main results on specific and classical divergence
measures. The references below, in general, will not be repeated in the two other papers.
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