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Abstract

The paper opens up a new aging class and a new stochastic orders
which is depend on risk class, that plays vital role in the reliability the-
ory, �nance topics, stochastic orders, and the economic theory. The article
presents some new interesting implications and characterizations concern-
ing this class. In addition, we list a series of inequalities that provide
bounds for strong risk and some aging classes. Furthermore, a su¢ cient
condition for a probability distribution to have a new class is provided.
In addition, The paper demonstrates the preservation properties of a new
stochastic order under some reliability operations such as mixture, and
convolution. Moreover, some new reliability concepts based on discrete
lifetime random variable are studied.

Keywords: Stochastic orders; Mean inactivity time class; Strong
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1 Introduction and Motivations

Consider a probability density function f(t) for a lifetime random variable X
with distribution function F (t) and survival function F (t) = 1 � F (t) ; t 2
R+: In addition, we assume that the mean life �X =

R1
0
F (u) du and the

variance �2X are �nite. Likewise, let Y be the second lifetime random variable
with the density function g (t), distribution function G (t) and survival function
G (t) = 1 � G (t); t 2 R+. Furthermore, the mean life �Y =

R1
0
G (u) du and

variance �2Y are both assumed to be �nite. Let lX = inf ft 2 R+ : F (t) > 0g ;
uX = sup ft 2 R+ : F (t) < 1g ; 
X = (lX ; uX) ; lY = inf ft 2 R+ : G (t) > 0g ;
uY = sup ft 2 R+ : G (t) < 1g and 
Y = (lY ; uY ). Let X has reversed hazard
rate function erF (t) = f(t)=F (t); t > lX and Y has reversed hazard rate function
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erG(t) = g(t)=G(t); t > lY : Then, the mean inactivity lifetime functions, and
variance inactivity lifetime functions respectively are de�ned by

mF (t) =

(
1

F (t)

R t
0
F (u) du; if t > lX
0; if t � lX

mG(t) =

(
1

G(t)

R t
0
G (v) dv; if t > lY
0; if t � lY

�2F(t) (t) =

(
2
R t
0

R y
0
F (u)dudy

F (t) �m2
F (t); if t > lX

0; if t � lX

and

�2G(t)
(t) =

(
2
R t
0

R y
0
G(u)dudy

G(t) �m2
G(t); if t > lY

0; if t � lY
:

The following de�nitions are essential for this study.
De�nition 1.1. The distribution function F (:) of the random variable X

is said to have the following characteristics:

(i) A decreasing reversed hazard rate (DRHR), if erF (t) is a decreasing func-
tion in t, or if F (t) ; is logarithmically concave in t 2 R+:

(ii) An increasing strong mean past lifetime class if
Z t

0

xF (x) dx=F (t) is non-

decreasing for all t > lX .

The following stochastic orders are de�ned in Nanda et al. (2003); Shaked
and Shanthikumar (2007); Mahdy (2012); Kayid and Izadkhah (2014):
De�nition 1.2. Let X1 and X2 be two non-negative and absolutely contin-

uous random variables, with the distribution functions F1 (:) and F2 (:), density
functions f1 (:) and f2 (:), reversed hazard rate functions erF1 (:) and erF2 (:),
mean past lifetime functions mF1(:) and mF2(:), and the variance past lifetime
functions �2F1(x) (:) and �2F2(x) (:), respectively. Hence, X1 is smaller than or
equal X2 in the following cases:

(i) A reversed residual lifetime ordering (X1 �RHR X2), if erF1 (x2) � erF2 (x2) ;
for all x2 > 0 or fF1 (x1) =F1 (x2)g � fF2 (x1) =F2 (x2)g ; for all x1 � x2:

(ii) A mean past lifetime order (X1 �MP X2 ), if mF1(x2) � mF2(x2); for all
x2 > 0.

(iii) A variance past lifetime order (X1 �V P X2 ) if �2F1(x) (x2) � �2F2(x) (x2) ;

for all x2 > 0.

(iv) A strong mean past lifetime order (X1 �SMP X2), if
Z x2

0

xF1 (x) dx=F1 (x2) �Z x2

0

xF2 (x) dx=F2 (x2) ; for all x2 2 R+:
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(v) A likelihood ratio order ( X1 �LR X2); if f1 (u) f2 (v) � f1 (v) f2 (u) ; for
all u � v:

Recently, Mahdy (2012) shown that, if X1 �V P X2, we can be get that
X1 (') �V P X2 (') for any concave transformation '. In addition, X1 (') �V P
X2 (')) X1 �V P X2 for any strictly increasing function (') :
In insurance, if we represent the distribution by the appropriate random

variable X, and let � present the risk measure functional, then

� : X! R:

Let an insurance contract in a speci�ed period (0; a) and let 
 be the state
space. If none of the risks speci�ed in the policy contract happen during the
policy term, then the policy holder has no monetary compensation for the paid
premiums. Then the loss that the di¤erence between amount of compensa-
tion (that denoted by C) and total losses resulting from achieve state � oc-
curs (that denoted by '

�
X(�)

�
= X2 is convex function) is [C � '

�
X(�)

�
j

X(�) � C], where X is premiums state �. Suppose we associate a "risk" as
V ar[C � '

�
X(�)

�
j X(�) � C], that is convex. We called it a strong risk func-

tion, SR, it is natural to demand that a risk function has this non-decreasing.
Then the variance of random variable [C�'

�
X(�)

�
j X(�) � C] base on convex

function, '
�
X(�)

�
; can use both in studying the e¤ects of investor and ana-

lyst beliefs on securities trading. Also, we can use SR in measure of dispersion
of returns of investment portfolio. In addition, SR measures the variability
of a security�s returns relative to market index or a particular benchmark. If
V ar[C � '

�
X(�)

�
j X(�) � C] is greater than that of the benchmark, then the

�nancial instrument is thought to be more perilous than the benchmark price.
Low V ar[C� '

�
X(�)

�
j X(�) � C] may mean lower risk.

As a result, the objective study is to achieve two aims. The �rst aim is con-
sider a new nonparametric class of distributions, depended on SR with introduce
some characterizations, and some preservation. The second aim is suggest a new
technique that improves the comparison between two distributions with some
characterizations, preservation results, and applications for strong risk order.
Section 2 provides some properties and application of new class. Furthermore,
the behavior of SR is presented. In addition, we listed a series of inequalities
that provide bound for SMP and SR functions. Also, a su¢ cient conditions
for a probability distribution to have a new class are studied. In Section 4,
the relationships between the strong risk order and others stochastic orders will
be discussed. Furthermore, useful properties and characterization of the strong
risk order is studied. In addition, we establish closure properties of strong risk
order under relevant reliability operations such as convolution, mixture and
transformation. Finally, Section 5 discusses the useful applications in statistical
reliability theory involving the strong risk order and the increasing strong risk
class.
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2 Characterizations of SR Class

Let a random variable X have the density function f (:), distribution func-
tion F (:), and reversed hazard rate erF (:). Setting u (y) =

R y
0
F (x) dx and

E
�
U2 j �

�
=
R1
0
u2dF [u j �] d�, and by using integration by parts one has SR

function we obtain:

�F (�) = (� (1� �))2 +
4

Z �

0

x
�
�� x2

�
F (x) dx

F (�)
� S2F (�): (2.1)

where SF (�) =
Z �

0

x F (x) dx=F (�), it is called strong mean past lifetime

(SMP). Then, after some algebraic calculations, we obtain

E
h�
��X2

�2 j X � �
i
= �F (�) + S

2
F (�)

= (� (1� �))2 +
4

�
�

Z �

0

Z x

0

F (u) dudx�
Z �

0

x3F (x) dx

�
F (�)

:

If we let �iF (x) = 4
Z x

0

yi F (y) dy=F (x), then (2.1) is equivalent to

�F (�) = (� (1� �))2 + SF (�) (2�� SF (�))� �3F (�) : (2.2)

In other words, (2.2) is equivalent to

�F (�) = �2 (1� 2�) + SF (�) (2�� SF (�)) + E
�
X4 jX � �

�
=F (�) ;

= (� (1� �))2 + 2�
�
�2F (�) +m

2
F (�)

�
� 4�3F (�)� S2F (�):

In such cases we express F 2 L:
De�nition 2.1. The non-negative random variable X is said to be smaller

than or equal to Y in strong risk order (X ��(�) Y ) ifZ �

0

x
�
�� x2

�
F (x) dxZ �

0

x (�� x2) G (x) dx
; is increasing in �, for all � 2 R+: (2.3)

Suppose we refer to strong risk with the symbol S, an increasing function
with abbreviate I and for decreasing function with symbol D, we can de�ne the
following two classes of lifetime:

(i) SD = (F 2 L : �F (�) , for all �, is a D ) ;

(ii) SI = (F 2 L : �F (�) , for all �, is a I ) :

175

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 172–192



Clearly SD and SI form a pair of dual classes base on the distinguishing
�F (�). In current section, we introduce and explain the properties and appli-
cations of the SD and SI classes. The su¢ cient conditions for F (:) to have the
SD and SI are provided by next theorem.
Theorem 2.1: Let T denote the lifetime of an equipment with SF (�),

�3F (�), erF (�) and SrF (�) = @SF (�)=@�. If

SF (�)
�
1� SrF (�)

�
+ �SrF (�) > (�)

�1
2

�
2� (1� 3�) + erF (�)�3F (�)� ; � > 0,

or

erF (�) �F (�) < (�) 2� (1� 2�)+2 (1� �)SF (�)+erF (�) hS2F (�) + �2 (1� �)2i :
Then T 2 SI (SD).
Proof. The �rst di¤erentiation of SF (�) can be rewritten as

SrF (�) =
@

@�
u (�) =F (�) = �� f (�)u (�)

F 2 (�)
; (2.4)

= 1� erF (�)SF (�):
By di¤erentiating (2.2) with respect to �, we can obtain the following equation:

@�F (�) =@� = 2� (1� 3�) + 2
�
SF (�)

�
1� SrF (�)

�
+ �SrF (�)

�
+ erF (�)�3F (�) ;

(2.5)
by using (2.2), and (2.4) in (2.5), we can decide that:

@�F (�) =@� = 2� (1� 2�)+2 (1� �)SF (�)+erF (�) hS2F (�) + �2 (1� �)2 � �F (�)i :
(2.6)

In this way we obtain the complete proof.
As mentioned earlier, the SR classes is important in reliability theory. The

next example illustrated the application of theorem 2.1 in reliability theory
whereas Theorem 1 in recognizing SI class.
Example 2.1: Suppose Y be an Weibull random variable with the density

function g (y) = ���y��1 exp
�
� (�y)�

�
; for y > 0, and �; � > 0. One can easily

prove that:

erG (y) = ����y��1 exp�� (�y)��� = h1� exp�� (�y)��i ;
SG(y) =

1h
1� exp

�
� (�y)�

�i
24�y2=2�+

24exp
�
� (�y)�

�
��2

0@(2=�)�1X
k=1

$ (2) (�y)
2��(k+1)

+ (�y)
2��

1A3535 ;
and

�3G (y) =
1h

1� exp
�
� (�y)�

�i
24y4 + 4

0@ exp(�(�y)�)
��4

�
�P(4=�)�1

k=1 $ (4) (�y)
4��(k+1) � (�y)4��

� 1A35 ;
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where $ (j) = (((j=�)� 1) ((j=�)� 2) ::: ((j=�)� k)) : By using (2.4) it can
easily check that

SG(y)
�
SrG(y)� 1

�
� ySrG(y) < y (1� 3y) +

�erG (y)�3G (y)� =2.
It follows from Theorem (2.1) that Y 2 SI: Also, according to Y 2 DRHR we
obtain Y 2 SI:
Introduce the notation

G
(r)
(�) =

Z 1

�

G
(r�1)

dI (<1) ; for r = 1; 2; :::

where G
(0) � G, and �r � E (Y r). When normalized, these are the survival

functions corresponding to the distribution function G(r) of Smith (1959, pp.
6), furthermore, by using Hall and Wellner (1981, pp. 173) we can prove that

�r = r!G
(r)
(0), for r = 1; 2; ::: with G

(r)
�nite if and only if �r is �nite. Hence

dG
(r)
=d� = �G(r�1):

The following a list series of inequalities, those provide bounds for SMP and
SR functions.
Since

�� SG(�) = E
�
Y 2 jY � �

�
;

we have

f�� SG(�)gG (�) = E
�
Y 2:I(Y <�)

�
= �2 � E

�
Y 2:I(Y��)

�
:

It is clear that
E
�
Y 2:I(Y <�)

�
� �2G (�)

and
E
�
Y 2:I(Y <�)

�
� �2;

and by using Jensen�s inequality, we get

E
�
Y 2 jY � �

�
� (��mG(�))

2
:

Further, Hölder�s inequality implies that

E
�
Y 2:I(Y <�)

�
�
�
E
�
Y 2w

��1=w
[G (�)](

1� 1
w ) ; for w > 1;

Similarly, E
�
Y 2:I(Y��)

�
� �2G (�) is also true for all w > 1. In this way we

obtain

E
�
Y 2:I(Y��)

�
�
�
E
�
Y 2w

��1=w �
G (�)

�(1� 1
w ) ; for w > 1:

It means
�2 =

�
E
�
Y 2w

��1=w �
G (�)

�� 1
w :

Furthermore, we can prove that

�G (�) = E
�
Y 4 jY � �

�
�
�
E
�
Y 2 jY � �

��2
:

We use below inequalities to obtain bound for SG(�) and �G (�) :
Proposition 2.1. If G is non-degenerate with �r � E (Y r) <1; then,
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(a) SG(�) � �� (�2=G (�)) ;

(b) �G (�) � �4;

(c) SG(�) � ��
h
�2w

G(�)

i1=w
, for all � and any w > 1;

(d) SG(�) � � �
��
�2 � �1=w2w

�
G (�)

�(1� 1
w )
�
=G (�)

�
, for Y � � and any

w > 1.

Proof. Since E
�
Y 2:I(Y <�)

�
= �2�E

�
Y 2:I(Y��)

�
; it implies thatG (�) (�� SG(�)) �

�2: Then, we �nished the proof (a). If

�G (�) =

�Z
0

�
�� u2

�2
g (u) du

G (�)
�
�
�� E

�
Y 2 jY � �

��2
;

= E
�
Y 4 jY � �

�
�
�
E
�
Y 2 jY � �

��2
;

it follows that � (�) � E
�
Y 4 jY � �

�
; which leads to complete proof of (b).

Furthermore, we have G (�) f�� SG(�)g = E
�
Y 2:I(Y <�)

�
; but

E
�
Y 2:I(Y <�)

�
�
�
E
�
Y 2w

��1=w
[G (�)](

1� 1
w ) :

Therefore,

G (�) (�� SG(�)) �
�
�2w

�1=w
G (�) [G (�)]

� 1
w ;

which leads to complete proof of (c). Now, we can provide that

E
�
Y 2:I(Y��)

�
� E

�
Y 2w

�1=w �
G (�)

�(1� 1
w ) ; for w > 1; (2.7)

In addition, (2.7) implies that

f�� SG(�)gG (�) = E
�
Y 2:I(Y <�)

�
= �2 � E

�
Y 2:I(Y��)

�
:

In this way we obtain

G (�) (�� SG(�)) � �2 � E
�
Y 2w

�1=w �
G (�)

�(1� 1
w )

= �2 � �1=w2w

�
G (�)

�(1� 1
w ) ;

which leads to complete proof of (d).
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3 Preservation Properties of SR Class

We started by investigating the preservation properties of SR class closed under
some reliability operations such as mixture.
For a family of distributions fM (� jX ) ; x � 0g of random samplesX and mixing
distribution (prior distribution) D (�) ; it is necessary to evaluate the mixture
distribution (	 (:)) : It obtained as follows

	(�) =

Z 1

0

M (� j� ) dD (�) ; � > 0:

In order to verify the validity of SR class will be closed under mixture, we
carried out the following theory.
Theorem 3.1. Suppose that M (� jX ) 2 SI for any � 2 R+. Then 	(�) 2 SI.
Proof. Without loss of generality, suppose that M (� jX ) = Exp (�) and
D (�) = Exp (1), that is, M (� j� ) = M� (k) = 1 � e���; � > 0, and D (�) =
1� e��, � > 0, after some algebraic calculations, we have

SM�
(�) =

�
�2=2

�
�
�
(�=�) exp (���) +

�
1=�2

�
(exp (���)� 1)

�
1� exp (���) ; � 2 R+

andZ �

0

x3 M� (x) dx

M� (�)
=

�
�4�4=4

�
+ exp (���)

�
�2�2 (� + 3) + 6��+ 6

�
� 6

(1� exp (���)) �4
;

where SM�
(�) is SMP of M�: Suppose

& (x) = exp (��x)
��

4x2�2 (� + 3) + 24�x+ 24

�4

�
+ 4

�
x2=�

�
+ 4x��2

�
;

then we have

4

Z �

0

x
�
�� x2

�
M� (x) dx

M� (�)
=
�3�4 (2� �)� 4��2 � �4& (�) + 24

�4 [1� exp (���)]
:

Hence, �M�
(�) is increasing in �, which leads to M� 2 SI for all � 2 R+:

Now, we checked for the presence of 	 2 SI. Firstly, 	(�) can be computed
by the following equation:

	(�) =

Z 1

0

M� (�) dG (�) = 1� (1 + �)�1 ; for � 2 R+:

Therefore, the density function of 	 ( denoted as  ) is:

 (�) = (1 + �)
�2
; � 2 R+;
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and the reversed hazard rate (denoted as er	 (�)) is
er	 (�) = (1 + �)�2 = h1� (1 + �)�1i ; � 2 [0;1) :

It is evident that er	 (�) is strictly decreasing in � > 0, this mean that er	 (�) 2
DRHR. It follows from (2.6) that 	 2 SI.
In order to verify the validity of the SI is closed under mixing of non-crossing

distributions, we provide the following result.

Theorem 3.2. Suppose fM (� jX ) ; x � 0g be a family of life distribution
achieving the following requirements:

(i) M� (:) 2 SI for each � 2 R+:

(ii) �1 6= �2:

(iii) The family fM� (k)g is non-crossing function for �1 and �2.
Then  (�) of fM (� jX ) ; x � 0g is belong to the class SI.

Proof. Equation (2.5) demonstrate that

S	(�)
�
1� Sr	 (�)

�
+ �Sr	 (�) � �� (1� 3�)�

1

2
er	 (�)�3	 (�) ;

This true when M� (k) 2 SI, for all � 2 R+. This inequality can be written as�Z �

0

u	(u) du

�3
� 	3 (�)

�
(1� 3�)fr	 (�) +

1

2�
�3	 (�) +

1er	 (�)
�
+
1

�
; (3.1)

where S	(�) =
R �
0
x	(x) dx=	(�), er	 (�) = @	(�) =@�	(�) and �3	 (�) =

4

Z x

0

y3 	(y) dy=	(�) :

According to (3.1), the property of the non-crossing function and Fubini�s the-
orem we have�Z �

0

u	(u) du

�3
=

�Z 1

0

�Z �

0

u F� (u) dG (�)

�
du

�3
�
Z 1

0

�Z �

0

u F� (u)

�3
dG (�) du:

From now on we assume that M (� jX ) = Exp (�) and D (�) = Exp (1), and
� = 1. We started by investigating that 	 2 SI. Firstly, we can derive that�Z 1

0

u	(u) du

�3
=

�Z 1

0

u
�
1� (1 + u)�1

�
du

�3
=

�
ln 2� 1

2

�3
� 	3 (1)

�
�2er	 (1) + 12�3	 (1) + 1er	 (1)

�
+ 1

Hence, the mixture 	 satis�es (3.1), and then 	 2 SI.
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Theorem 3.3. The class of lifetime distribution SI is not closed under
convolution.
Proof. We start with two functions U (�) and V (�), where

U (�) =

�
�; if � 2 (0; 1) ;
0; if � =2 (0; 1) ; and V (x) =

�
1� e��; if � > 0;
0; otherwise.

:

Clearly, U 2 unif (0; 1), while V 2 Exp (1). Now, consider the following mix-
ture of two distributions U and V :

E� (x) = �U (x) + �V (x) ; where � 2 (0; 1) and � = 1� �: (3.2)

A random variable T is the lifetime of some devices with the distribution
function E�. We started by investigating E� 2 SI or E� 2 SD. Hence, by using
(2.5) we have

@�E� (�) =@� = 2� (1� 3�)+2
�
SE� (�)

�
1� SrE� (�)

�
+ �SrE� (�)

�
+erE� (�)�3E� (�) ;

where SE� (�) =
R �
0
xE� (x) dx=E� (�), erE� (�) = @E� (�) =@�E� (�) and �3E� (�) =

4

Z x

0

y3 E� (y) dy=E� (�) : Then, we derive

SE� (�) =
� �

3

3 + �
�
�2

2 + �e
�� + e�� � 1

�
��+ � (1� e��)

and erE� (�) = � + � (e��)

��+ � (1� e��)
:

(3.3)
Furthermore

�3E� (�) =
� 4�

5

5 + �
�
�4 + 4�2e�� + 12�2e�� + 24 (�e�� + e�� � 1)

�
��+ � (1� e��)

:

Additionally, Eq. (2.4) and Eq. (3.3) satisfy the following relation

SrE� (�) = 1�

�
� + � (e��)

� �
� �

3

3 + �
�
�2

2 + �e
�� + e�� � 1

��
�
��+ � (1� e��)

� �
��+ � (1� e��)

� :

Thus by setting (� = 1, and � = 1=2), we have �E� (�) is decreasing. Hence, we
can decide that E� (�) =2 SI i.e. E� (�) 2 SD.
Let F1 and F2 be two independent distributions function of T1 and T2:

Suppose F1 and F2 are SI and the distribution of T1+T2 can be represented as

FT1+T2 (�) = (F1 � F2) (�) =
Z �

0

F1 (�� u) dF2 (u) ; � 2 R+: (3.4)

Let us take T1; T2 2 E� (x) and the G is convolution of E� , i.e. C (�) =
E� � E� (�). Equations (3.2) and (3.4) demonstrate that:

e� (�) = � + � exp (��) ;
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where e� (:) is the density function of E� (:), and

C (�) = 0:5�2�2 + � [�� �] ;

where

� = 2� (exp (��) + �� 1) ; and � = � exp (��) (1� �) + �

Thus, SMP of C can present as follow:

SC(�) =
2
3�

3�2 � 3
2�

2�2 + 0:125�4�2 +
�
2�� � ��

�
"� + ��

�
�2 exp (��) + 2"�

�
0:5�2�2 + � [�� �]

:

Moreover,

erC (�) = � + � exp (��)
0:5�2�2 + � [�� �]

;

and

�3C (�) =
4
�
� (�) + � (�) + 0:5�2 �

6

6 + 2��
�5

5 � 2��
�4

4 � ��
�4

4

�
0:5�2�2 + � [�� �]

:

where SC(�) =
R �
0
xC (x) dx=C (�), erC (�) = @C (�) =@�C (�) ; and �3C (�) =

4

Z x

0

y3 C (y) dy=C (�) ; "� = (�� exp (��)� exp (��) + 1), � (�) = (1� �)2(

24�24�e�� �16�2e����4e���24e��) and � (�) =
�
2� (1� �)� (1� �)2

�
(6�

6�e�� �4�2e���6e��): Then we can decide that @�C (�) =@� is I. Thus C 2 SI.
Therefore, T1 and T2 =2 SI . But their convolution C is belong to SI. It mean
SI is not closed under convolution, in general. Hence, the proof is complete.

4 Properties of SR Ordering Under Operations

In this section, we focus our attention on a new stochastic comparison de�ned in
terms of SR function. The next theorem provides that ��(t) order lies between
�RHR and ��(t) :
Theorem 4.1. LetX1 � 0 andX2 � 0 be two continuous random variables,

with the distribution functions F1 (:) and F2 (:), and let �i (t) =
Z t

0

vi F1 (v) dv

/F1 (t) and �
i (t) =

Z t

0

vi F2 (v) dv=F2 (t) : Then we have

1. X1 �RHR X2 ) X1 ��(t) X2;

2. X1 �SMP X2 ) X1 ��(t) X2;

3. X1 ��(t) X2 ) X1 �V P X2:

182

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 1 (March 2018) 172–192



Proof : (1) By de�nition of �RHRwe can obtain

tZ
0

�0 (x)F1 (x)

F1 (t)
� �0 (x)F2 (x)

F2 (t)
dx � 0; for all t 2 R+:

which means that X1 ��(t) X2:
(2). Note that X1 �SMP X2 implies

�3 (t)F1 (t)

�3 (t)F2 (t)
is increasing in t.

which, by using the same type of argument as used in proving theorem 3.1 of
Nanda et al. (2003), givesR t

0
�0 (u)F1 (u) duR t

0
�0 (u)F2 (u) du

is increasing in t 2 R+:

Hence, by (1.1), we have our result.
As follows from the theorem shown above, the next example indicates that

X ��(t) Y 9 X �RHR Y and X ��(t) Y 9 X �SMP Y . In addition, X �V P Y
9 X ��(t) Y:
Example 4.1 : Let X1 and X2 be to non-negative random variables with

the distribution functions F1, and F2; respectively, which are given by

F1 (u) =

�
u
2 0 � u � 2
1 u > 2

and

F2 (u) =

8<:
u2

2 0 � u � 1
u2+2
6 1 < u � 2
1 u > 2

Then, after some algebraic calculations, we deduce thatZ t

0

u
�
t� u2

�
F1 (u) duZ t

0

u (t� u2)F2 (u) du
=

8><>:
8
10

5�3t
3t�2t2 0 � t � 1

t4(10�6t)�
5t5

2 � 5t6

3 +10t3�5t4�t 252 +
20
3

� 1 < t � 2

1 t > 2;

(4.1)

and R t
0
�0 (u)F1 (u) duR t

0
�0 (u)F2 (u) du

=

8<:
2
t 0 � t � 1
6t

t2+12 1 < t � 2
1 x > t:

(4.2)

By (4.1) we can conclude that X1 ��(t) X2 does not hold in this case. While in
parallel, Kayid and Izadkhah (2014, pp.595) showed in their counterexample 1
that X1 �SMP X2: Also, (4.2) is increasing in t, and hence X1 �V P X2.
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The next result provides useful characterization of the SR order.
Theorem 4.2. Suppose X1 2 R+ and X2 2 R+ be two continuous random

variables with distribution functions F1 and F2; respectively, and let �i (x) =Z x

0

ui F1 (u) du /F1 (x) and �
i (x) =

Z x

0

ui F2 (u) du=F2 (x), hence X1 �SMP

X2, if X1 ��(t) X2 holds, therefore

mF1(t)�mF2(t) � fSF1(t)� SF2(t)g =t;

and
X1 �MP X2:

Proof. If X1 ��(t) X2 holds, we obtain

tF2 (t)

tZ
0

�i (u)F1 (u) du�tF1 (t)
tZ
0

�i (u)F2 (u) du � F1 (t)F2 (t)
�
�3 (t)� �3 (t)

�
:

It evident that

tZ
0

(t�u) fF1 (u)F2 (t)� F2 (u)F1 (t)g du �
tZ
0

u3 fF1 (u)F2 (t)� F2 (u)F1 (t)g du=t;

and

t2 (mF1(t)�mF2(t)) + t (SF2(t)� SF1(t))

�
tZ
0

x3F1 (x) dx=F1 (t)�
tZ
0

x3F2 (x) dx=F2 (t) ;

since X1 �SMP X2, Thus the following result is obtained:

tZ
0

u3F1 (u)F2 (t)� u3F2 (u)F1 (t) du � 0;

consequently,
tmF1(t)� tmF2(t) � SF1(t)� SF2(t);

which is equivalent to the required statement.
In next result develop some preservation of SMP and SR orders and SI

class.
Proposition 4.1. Let X1 2 R+ be continuous random variable with distri-

bution function F1 and SMP function SF1(t); hence SF1(t) is increasing in t if
X1 �SMP X1 +X2 for any continuous random variable X2 2 R+ independent
of X1.
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Proof: By apply Fubini�s theorem and using change of order double integra-
tion, it is obvious that

SX1+X2
(t) =

R t
0

R y
0
yF1 (y � v) dF2 (v) dyR t
0
F1 (t� v) dF2 (v)

;

=

R t
0

R t�v
0

(y + v)F1 (y) dydF2 (v)R t
0
F1 (t� v) dF2 (v)

;

=

R t
0
F1 (t� v)SX(t� v)dF2 (v) +

R t
0
vF1 (t� v)mX1

(t� v)dF2 (v)R t
0
F1 (t� v) dF2 (v)

;

� SX1
(t) +

R t
0
vF1 (t� v)mX1

(t� v)dF2 (v)R t
0
F1 (t� v) dF2 (v)

:

This is true for SF1(t) is increasing in t 2 R+: Therefore, we shall write the
above expression as

SX1+X2
(t) � SX1

(t);

when a =
R t
0
uF1 (t� u)mX1

(t�u)dF2 (u) =
R t
0
F1 (t� u) dF2u and a � SX1+X2

(t):
Hence, we have the required results.
Theorem 4.3. Let X1 2 R+ be continuous random variable with distribu-

tion function F1 and SR function �F1(t); then X1 2 SI if X1 ��(t) X1 +X2 for
any continuos random variable X2 , that is independent of X1.
Proof: Based on Fubini�s theorem and using change of order double integra-
tion, it is clear that

�X1+X2 (t) + S
2
X1+X2

(t) = (t (1� t))2 +
4t
R t
0

R y
0

R x
0
F1 (x� v) dF2 (v) dxdyR t

0
F1 (t� v) dF2 (v)

(4.3)

�
4
R t
0

R v
0
z3F1 (z � v) dF2 (v) dzR t

0
F1 (t� v) dF2 (v)

= (t (1� t))2 +
4

"
t
R t
0

R t�v
0

R y�v
0

F1 (x) dxdydF2 (v)

�
R t
0

R t
v
z3F1 (z � v) dzdF2 (v)

#
R t
0
F1 (t� v) dF2 (v)

:

This is true for �F1 (t) increasing in t 2 R+: According to (4.3) we obtain

(t (1� t))2+

R t
0
F1 (t� v)

�
�X1

(t� v) + S2X1
(t� v)

� ((t� v) (1� (t� v)))2
�
dF2 (v)

�4
R t
0

R t�v
0

h
(y + v)

3 � 1
4y
3
i
F1 (y) dydF2 (v)R t

0
F1 (t� v) dF2 (v)

� �X1 (t)+S
2
X1
(t);

whereZ t

0

Z t�v

0

�
4v3 + 12v y2 + 12y v2

�
F1 (y) dydF2 (v) �

Z t

0

Z t�v

0

y3F1 (y) dydF2 (v) :
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By apply proposition (4.1) we can prove that S2X1+X2
(t) � S2X1

(t): This com-
pletes the proof.
Theorem 4.4. Suppose X1 2 R+ and X2 2 R+ are two random variables

with distribution functions U1 and U2 respectively, and let  is strictly increasing
and convex upwards and  (0) = 0. If X1 ��(t) X2; then we have  (X1) ��(t)
 (X2) :

Proof : Let  is di¤erentiable with derivative  n. If X1 ��(t) X2 then for any
t > 0, we have

�U1 (t) =

4

�
t

Z t

0

Z x

0

U1 (u) dudx�
Z t

0

v3U1 (v) dv

�
U1 (t)

�

0@ tZ
0

u U1 (v) dv

U1 (t)

1A2

�
4

�
t

Z t

0

Z x

0

U2 (u) dudx�
Z t

0

v3U2 (v) dv

�
U2 (t)

�

0@ tZ
0

u U2 (u) du

U2 (t)

1A2

= �U2 (t) :

It lead to

4 �1 (t)

26664
Z  �1(t)

0

Z  �1(v)

0

U1 (u) dudv

U1
�
 �1 (t)

� �

Z  �1(t)

0

Z  �1(v)

0

U2 (u) dudv

U2
�
 �1 (t)

�
37775

�4

26664
Z  �1(t)

0

x3U1 (x) dx

U1
�
 �1 (t)

� �

Z  �1(t)

0

x3U2 (x) dx

U2
�
 �1 (t)

�
37775

�

2664
0B@ �1(t)Z

0

u U1 (u) du

U1
�
 �1 (t)

�
1CA
2

�

0B@ �1(t)Z
0

u U2 (u) du

U2
�
 �1 (t)

�
1CA
2
3775

� 0:

According Kayid and Izadkhah (2014, Theorem 5, pp. 596) we can prove

X1 � SMPX2 )  (X1) �SMP  (X2)

) S2U1(t) � S2U2(t)) S2U1( (t)) � S2U2( (t))

since t � 0 and SU1(t) and SU2(t) are non-negative functions. According Mahdy
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(2012) we can decide thatZ  �1(t)

0

Z  �1(v)

0

U1 (u) dudv

U1
�
 �1 (t)

� �

Z  �1(t)

0

Z  �1(v)

0

U2 (u) dudv

U2
�
 �1 (t)

�
=

Z t

0

Z v

0

U1
�
 �1 (u)

�
dudv

U1
�
 �1 (t)

� �

Z t

0

Z v

0

U2
�
 �1 (u)

�
dudv

U2
�
 �1 (t)

� :

In addition, X1 ��(t) X2 implies that,Z t

0

x3U1 (x) dx

U1 (t)
�

Z t

0

x3U2 (x) dx

U2 (t)

where t 2 R+. It is clear thatZ  �1(t)

0

x3U1 (x) dx

U1
�
 �1 (t)

� �

Z  �1(t)

0

x3U2 (x) dx

U2
�
 �1 (t)

� ;

and
 �1(t)Z
0

"
v3U1 (v)

U1
�
 �1 (t)

� � v3U2 (v)

U2
�
 �1 (t)

�# dv � 0:
On the other hand,  (X1) ��(t)  (X2) i¤, for all t > 0 and  (0) = 0,Z t

0

v3 Pr ( (X1) � v) dv

Pr ( (X1) � v)
�

Z t

0

v3 Pr ( (X2) � v) dv

Pr ( (X2) � v)
;

since

Pr ( (X1) � x) = Pr
�
X1 �  �1 (x)

�
= U1

�
 �1 (x)

�
;

therefore, Z t

0

x3U1
�
 �1 (x)

�
dx

U1
�
 �1 (t)

� �

Z t

0

x3U2
�
 �1 (x)

�
dx

U2
�
 �1 (t)

� :

If we let � =  �1 (x)) x =  (�)) dx=d� =  = (�) then we obtainZ  �1(t)

0

 3 (�) = (�)U1 (�) d�

U1
�
 �1 (t)

� �

Z  �1(t)

0

 3 (�) = (�)U2 (�) d�

U2
�
 �1 (t)

� ;
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and
 �1(t)Z
0

� (x)

"
x3U1 (�) d�

U1
�
 �1 (t)

� � x3U2 (�) d�

U2
�
 �1 (t)

�# � 0;
where � (s) =  3 (s) = (s) =s3: Its obvious that, if  (s) is non-negative and
decreasing, we can conclude that  3 (s) =s3 is decreasing in s, it is implies that
� (s) is decreasing in s . Therefore, the complete proof is given by apply lemma
7.1(b) of Barlow and Proschan (1981). .

5 Reliability Applications of SR Ordering

In the following results, we explore the possibility of apply a new techniques in
statistical reliability theory. Let U1; U2; :::; Un denote the component lifetimes
of the system and assume that U1:n; U2:n; :::; Un:n represent the ordered lifetimes
of the components.

5.1 Order Statistics

Theorem 5.1. Let U1; U2;:::; Un and V1; V2; :::; Vn be independent and identi-
cally distributed (i.i.d) copies of U and V , with distribution functions H1 and
H2 respectively. If Un:n ��(t) Vn:n; then we have Ui ��(t) Vi:
Proof. Let Un:n ��(t) Vn:n hold. Then we implies that

t

Z t

0

Z x

0

fHn1 (u)Hn2 (t)�Hn2 (u)Hn1 (t)g dudx �
tZ
0

x3 fHn1 (x)Hn2 (t)�Hn2 (x)Hn1 (t)g

Since,

k (u) =

"
nX
i=1

�
Hn�i2 (t)Hn�i1 (u)

� �
Hi�11 (t)Hi�12 (u)

�#�1
;

is non-negative and decreasing in u � 0 for any t > 0: Now, we can derive

H2 (t)H1 (u)�H1 (t)H2 (u) = fHn1 (u)Hn2 (t)�Hn2 (u)Hn1 (t)g k (u) ;

and

t

Z t

0

Z x

0

fH1 (u)H2 (t)�H2 (u)H1 (t)g dudx �
tZ
0

v3 fH1 (v)H2 (t)�H2 (v)H1 (t)g dv for any t > 0,

based on Lemma 7.1(b) of Barlow and Proschan (1981). It lead to Ui ��(t) Vi,
for i 2 N:
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5.2 Discrete SR order

De�nition 5.1. Suppose X 2 R+ and Y 2 R+ be two random variables,
with distribution functions FX and FY , and discrete strong mean past lifetime
Sd;X(x) and Sd;Y (x) respectively. Then, it is said that X is smaller than or
equal Y in discrete SR order

�
X �d��(x) Y

�
, if

Sd;X(x) +

Px�1
j=lx

j3FX (j)

2xFX (x)
� Sd;Y (x) +

Px�1
j=lx

j3FY (j)

2xFY (x)
; for x 2 N+:

Given a sequence of absolutely continuous non-negative random variables
Z1; Z2; :::are i.i.d. random variables with common cumulative distribution func-
tion FZ1 and a common density function fZ1 . Let M1 2 N+ and M2 2 N+

be two random variables which are independent of the Zi�s. Denote Z1:Mj �
minfZ1; Z2; :::; ZMjg and ZMj :Mj � maxfZ1; Z2; :::; ZMjg, j = 1; 2: Below we
consider the SR order between two such extreme order statistics.
Theorem 5.2. Let M1 �d��(z) M2, then we have ZM1:M1


�(z) ZM2:M2
:

Proof. The density function of ZMj :Mj is given by

fZMj :Mj (z) =
1X
n=1

nFn�1Z1
(z)fZ1(z) Pr (Mj = n) ;

and the distribution function of ZMj :Mj
which is given by

HMj :Mj (z) =

1X
n=1

Fn(z) Pr (Mj = n) ; for all z > 0;

for all z > 0; and n 2 N: Thus, by Shaked & Shanthikumar (2007), we obtain

 (z; j) =

Z z

0

Z y

0

�
HMj :Mj

(u)� y2HMj :Mj
(y)
	
dudy

=

1X
n=1

'(z; n)�(n; j); for all z > 0 and j = 1; 2;

where '(z; n) =
R z
0

R y
0

�
Fn(u)� y2Fn(y)

	
dudy and in addition, �(n; j) =

Pr (Mj = n) : Let k(n; j) =
P1
i=n �(i; j); for each n 2 N and j = 1; 2: We ob-

serve thatM1 �LR M2, impliesM1 ��(z) M2 by using Theorem 1.C.1 on page 43
of Shaked and Shanthikumar (2007), and Li and Zhang (2008). If M1 �LR M2;
and thus k(n; j) is TP2 in (n; j) 2 N � f1; 2g: But it is not hard to see that
'(z; n) isn�t TP2 in (n; j) 2 N � f1; 2g, where det ['(z; n)] is negative for any
strictly increasing convex function and zFn(z) �

R z
0
ufZMj :Mj (u)du � z3Fn(z),

for z 2 R+: Also, therefore, by the basic composition formula (Theorem 5.1 on
page 123 of Karlin (1968)) we can be seen that  (z; j) is not TP2 in z � 0 and
j 2 f1; 2g: That is, ZM1:M1


�(z) ZM2:M2
:
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5.3 Inactivity time of random at a random

Let U and V be two the lifetimes of system C1 and system C2, respectively.
Then the residual lifetime at random time V can be represented as

UV = U � V jU > V :

It represents the residual life of system C1 at a time when system C2 fails.
Dequan and Jinhua (2000) established a number of stochastic orders for UV
under a lot of assumptions of U and V . In addition, Misra et al. (2008) studied
adequate permissions for log-concavity and log-convexity of the residual life at
random time. Stochastic orders are conducted under particular permissions
on the concerned total life and random time and their preservation properties
are established by Li and Zuo (2004). Dewan and Khaledi (2014) presented
now stochastic orders between multivariate residual lifetime at random time
and studies some characterizations. Furthermore suppose G (:) be distribution
function of random variable V and Vi0s hold for V as well. Moreover, let U and
V are independent. The random variable U(V ) = V � U jU � V is called the
inactivity time of U at a random time V . It has the distribution function

G
U(V )

(x) =

Z 1

0

[G1 (y)�G1 (y � x)] dG2 (y) =
Z 1

0

G1 (y) dG2 (y) ; x � 0:
(5.1)

when U and V are U -independent. The following results shows that U(t) �SMP

U does imply U(V ) �SMP U; in addition, U(t) ��(t) U does imply U(V ) ��(t) U:
Theorem 5.3: U(V ) �SMP U for any V that is d-independent of U i¤

U(t) �SMP U for all t � 0.
Proof. When U(t) �SMP U for all t; u � 0, we obtain the following:

R u
0
v [G1 (t)�G1 (t� v)] dvdG2 (y)

G1 (t)�G1 (t� u)
�

Z u

0

v G1 (v) dv

G1 (u)
:

From this we deduce that

R1
0

R u
0
v [G1 (t)�G1 (t� v)] dvdG2 (y)R1

0
[G1 (t)�G1 (t� u)] dG2 (t)

�

R1
0

G1(t)�G1(t�u)
G1(u)

Z u

0

x G1 (x) dxdG2 (y)R1
0
G1 (t) dG2 (t)

;

=

R1
0
[G1 (t)�G1 (t� u)]S(u)dG2 (y)R1
0
[G1 (t)�G1 (t� u)] dG2 (t)

= S(u), for any u � 0

by using (5.1), we can decide that U(V ) �SMP U: Further, let U(V ) �SMP U
holds for all value of y and let y equal to constant then U(t) �SMP U for all
t � 0:
Proposition 5.1. U(V ) ��(t) U for any V that is d-independent of U i¤

U(t) ��(t) U for all t � 0.
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Proof. With same steps in theorem 8 , and by using (2.4) and (5.1) and we
can achieve its proof.
In the following example, we can illustrate Theorem 5.3 and Proposition 5.1.
Example 5.1 : Let U , and V denote the random variable have distribution

functions G1, and G2 respectively, which are given by

G1 (u) =

�
u
b for u 2 [0; b)
1 for u � b

and G2 (u) = 1� exp (��u) ; u 2 R+:

and thus G
U(V )

(u) = u�: It is clear that

R u
0
vG

U(V )
(v) dv

G
U(V )

(u)
=

Z u

0

v G1 (v) dv

G1 (u)
=

Z u

0

vG(u) (v) dv =
u2

3
:

Hence, U(V ) �SMP U , U(t) �SMP U: In addition, by using (2.2), we get that
U(t) ��(t) U , also, U(V ) 
�(t) U:
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